首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Christmas Mountains caldera complex developed approximately 42 Ma ago over an elliptical (8×5 km) laccolithic dome that formed during emplacement of the caldera magma body. Rocks of the caldera complex consist of tuffs, lavas, and volcaniclastic deposits, divided into five sequences. Three of the sequences contain major ash-flow tuffs whose eruption led to collapse of four calderas, all 1–1.5 km in diameter, over the dome. The oldest caldera-related rocks are sparsely porphyritic, rhyolitic, air-fall and ash-flow tuffs that record formation and collapse of a Plinian-type eruption column. Eruption of these tuffs induced collapse of a wedge along the western margin of the dome. A second, more abundantly porphyritic tuff led to collapse of a second caldera that partly overlapped the first. The last major eruptions were abundantly porphyritic, peralkaline quartz-trachyte ash-flow tuffs that ponded within two calderas over the crest of the dome. The tuffs are interbedded with coarse breccias that resulted from failure of the caldera walls. The Christmas Mountains caldera complex and two similar structures in Trans-Pecos Texas constitute a newly recognized caldera type, here termed a laccocaldera. They differ from more conventional calderas by having developed over thin laccolithic magma chambers rather than more deep-seated bodies, by their extreme precaldera doming and by their small size. However, they are similar to other calderas in having initial Plinian-type air-fall eruption followed by column collapse and ash-flow generation, multiple cycles of eruption, contemporaneous eruption and collapse, apparent pistonlike subsidence of the calderas, and compositional zoning within the magma chamber. Laccocalderas could occur else-where, particularly in alkalic magma belts in areas of undeformed sedimentary rocks.  相似文献   

2.
Los Azufres geothermal field is located within a silicic volcanic complex in central Mexico. The complex is one of the major silicic centers in the Trans-Mexican Volcanic Belt (TMVB). Pradal and Robin (1985) first suggested the existence of the Los Azufres caldera, and Ferrari et al. (1991) recognized the existence of a collapse structure. According to Pradal and Robin this is a caldera of resurgent type. This geophysical study aims to contribute to the knowledge of the structure of the Los Azufres area. Gravity, aeromagnetic, magnetotelluric (MT) and d.c. vertical electric-resistivity soundings were analyzed. Results show that Los Azufres is a very structurally complex setting with relatively thin crust caused by the extensional tectonics characterizing this central sector of the TMVB. Faults belonging to the E-W to NE-SW (extensional neotectonics) and NW-SE (Basin and Range province) systems are observed to affect the geologic units of Los Azufres. According to our study, the Los Azufres geothermal field is located in a structural high located in the middle of a sub-circular depression delimited to the north-northeast by the Santa Ines Range, and to the southwest by the Mil Cumbres formation. The larger depression consists of two narrow, deep depressions that correspond to La Venta and to the Valley of Juarez. They are separated by the above mentioned structural high. These sub-depressions are believed to be the sites of a maximum caldera collapse, and the structural high is interpreted to be at least in part the caldera's resurgent dome. Geoelectric structure of the caldera derived from d.c. resistivity indicates that the brines of the Los Azufres geothermal system ascend along faults, both bounding and internally disrupting the structural high/resurgent dome. A reasonable correlation is observed between gravity and aeromagnetic data.  相似文献   

3.
A method is presented to analyze the effect of stress-strain discontinuities on the ground deformations generated by a pressure source. This is meant to simulate the effects due to caldera structures, likely to present fractured zones at the borders of the collapsed area. A method originally developed by Crouch (1976) to solve plane-strain problems has been used to simulate deformation curves for several source and discontinuity geometries. The main result is that the location of the discontinuities controls the extension of the deformed zone, and always reduces it with respect to a continuous medium. With respect to a homogeneous medium the presence of lateral discontinuities also acts towards lowering the overpressure required to produce a given amount of deformation. These results indicate that, when analyzing ground deformations in calderas, the use of classical methods involving continuous media should be avoided, or at least taken with caution. These methods, in fact, assume that the extension of the deformed zone is only linked to the source depth.Some examples of ground deformations in active calderas have been analyzed in the framework of the results obtained from theoretical modeling. Four calderas recently affected by ground deformations have been considered: Rabaul (New Guinea), Campi Flegrei (Italy), Long Valley and Yellowstone (U.S.A.). The effects of collapsed structures on the deformation field are possibly evidenced for all the four calderas. At Rabaul and Campi Flegrei, the fracture systems mainly affecting the ground deformations probably represent younger, innermost collapses and are well evidenced by seismicity studies. Ground deformations are here concentrated in an area much smaller than the one enclosed by geologically visible caldera rims. In particular, at Rabaul, the effect of the innermost collapse can explain the high concentration of the uplift in the period 1971–1985, previously modeled by a very shallow source (1–3 km) in terms of overpressure in the main magma chamber, probably located at 4–5 km of depth.  相似文献   

4.
Air photographs taken in 1946, 1960, and 1982, together with SPOT HVR-1 images obtained in April and October of 1988, are used to characterize recent activity in and around the caldera of Fernandina Volcano, West Galapagos Islands. The eruptive and collapse events during this time span appear to be distributed in a NW-SE band across the summit and caldera. On the flanks of the volcano, subtle topographic ridges indicate that this is a long-term preferred orientation of extra-caldera activity as well (although radial and arcuate fissures are found on all sectors). The caldera is formed from the coalescence of multiple collapse features that are also distributed along a NW-SE direction, and these give the caldera its elongate and scalloped outline. The NW and SE benches consist of lavas that ponded in once-separated depressions that have been incorporated into the caldera by more recent collapse. The volume of individual eruptions within the caldera over the observed 42 years appears to be small (4x106 m3) in comparison to the volumes of individual flows exposed in the caldera walls (120–150x106 m3). Field observations (in 1989) of lavas exposed in the caldera walls and their cross-cutting relationships show that there have been at least three generations of calderas, and that at times each was completely filled. An interplay between a varying supply rate to the volcano and a regional stress regime is suggested to be the cause of long-term spatial and volumetric variations in activity. When supply is high, the caldera is filled in relative to collapse and dikes tend to propagate in all directions through the edifice. At other times (such as the present) supply is relatively low; eruptions are small, the caldera is far from being filled in, and dike propagation is influenced by an extra-volcano stress regime.  相似文献   

5.
Plio-Quaternary volcanism played an important role in the present physical state of Eastern Anatolia. Mount Nemrut, situated to the west of Lake Van is one of the main volcanic centers in the region, with a spectacular summit caldera 8.5 × 7 km in diameter. The most recent eruptions of the volcano were in 1441, 1597 and 1692. Nemrut Lake covers the western half of the caldera; it is a deep, half-bowl-shaped lake with a maximum depth of 176 m. Numerous eruption centers are exposed within the caldera as a consequence of magma–water interaction. Current activity of Nemrut caldera is revealed as hot springs, fumaroles and a small, hot lake.Self-potential and bathymetric surveys carried out in the caldera were used to characterize the structure of the caldera and the associated hydrothermal fluid circulation. In addition, analyses based on digital elevation models and satellite imagery were used to improve our knowledge about the structure of the caldera. According to SP results, the flanks of the volcano represent “the hydrogeologic zone”, whereas the intra-caldera region is an “active hydrothermal area” where the fluid circulation is controlled by structural discontinuities. There is also a northern fissure zone which exhibits hydrothermal signatures. Nemrut caldera collapsed piecemeal, with three main blocks. Stress controlling the collapse mechanism seems to be highly affected by the regional neotectonic regime. In addition to the historical activity, current hydrothermal and hydrogeologic conditions in the caldera, in which there is a large lake and shallow water table, increase the risk of the quiescent volcano.  相似文献   

6.
The formation of ring faults yields important implications for understanding the structural and dynamic evolution of collapse calderas and potentially associated ash-flow eruptions. Caldera collapse occurred in 2000 at Miyakejima Island (Japan) in response to a lateral intrusion. Based on geophysical data it is inferred that a set of caldera ring faults was propagating upward. To understand the kinematics of ring-fault propagation, linkage, and interaction, we describe new laboratory sand-box experiments that were analyzed through Digital Image Correlation (DIC) and post-processed using 2D strain analysis. The results help us gain a better understanding of the processes occurring during caldera subsidence at Miyakejima. We show that magma chamber evacuation induces strain localization at the lateral chamber margin in the form of a set of reverse faults that sequentially develops and propagates upwards. Then a set of normal faults initiates from tension fractures at the surface, propagating downwards to link with the reverse faults at depth. With increasing amounts of subsidence, interaction between the reverse- and normal-fault segments results in a deactivation of the reverse faults, while displacement becomes focused on the outer normal faults. Modeling results show that the area of faulting and collapse migrates successively outward, as peak displacement transfers from the inner ring faults to later developed outer ring faults. The final structural architecture of the faults bounding the subsiding piston-like block is hence a consequence of the amount of subsidence, in agreement with other caldera structures observed in nature. The experimental simulations provide an analogy to the observations and seismic records of caldera collapse at Miyakejima volcano, but are also applicable to caldera collapse in general.  相似文献   

7.
 A radar and gravity survey of the ice-filled caldera at Volcán Sollipulli, Chile, indicates that the intra-caldera ice has a thickness of up to 650 m in its central part and that the caldera harbours a minimum of 6 km3 of ice. Reconnaissance geological observations show that the volcano has erupted compositions ranging from olivine basalt to dacite and have identified five distinct volcanic units in the caldera walls. Pre- or syn-caldera collapse deposits (the Sharkfin pyroclastic unit) comprise a sequence which evolved from subglacial to subaerial facies. Post-caldera collapse products, which crop out along 17 of the 20 km length of the caldera wall, were erupted almost exclusively along the caldera margins in the presence of a large body of intra-caldera ice. The Alpehué crater, formed by an explosive eruption between 2960 and 2780 a. BP, in the southwest part of the caldera is shown to post date formation of the caldera. Sollipulli lacks voluminous silicic pyroclastic rocks associated with caldera formation and the collapse structure does not appear to be a consequence of a large-magnitude explosive eruption. Instead, lateral magma movement at depth resulting in emptying of the magma chamber may have generated the caldera. The radar and gravity data show that the central part of the caldera floor is flat but, within a few hundred metres of the caldera walls, the floor has a stepped topography with relatively low-density rock bodies beneath the ice in this region. This, coupled with the fact that most of the post-caldera eruptions have taken place along the caldera walls, implies that the caldera has been substantially modified by subglacial marginal eruptions. Sollipulli caldera has evolved from a collapse to a constructional feature with intra-caldera ice playing a major role. The post-caldera eruptions have resulted in an increase in height of the walls and concomitant deepening of the caldera with time. Received: 12 June 1995 / Accepted: 7 December 1995  相似文献   

8.
Digital marine seismic reflection data acquired in 1973 in the Bay of Pozzuoli, and recently reprocessed, were used to study the volcanological evolution of the marine sector of Campi Flegrei Caldera during the last 37 ka. In order to gain more information, interpretation also involved estimation of the "pseudo-velocity" and the "pseudo-density" from the resistivity logs of two onshore deep exploration wells. The main results are: (1) discovery of ancient pre-18 ka and post-37 ka submarine and mainly effusive volcanic activity, along coeval emission centers located at the edges of Campi Flegrei Caldera; (2) confirmation that the caldera collapse in the marine sector of Campi Flegrei seems strongly controlled by regional NE–SW and NW–SE structural discontinuities; (3) the finding of at least two episodes of collapse in the bay; and (4) identification of a post-18 ka volcanic deflation phase that has caused about 150–200 m of subsidence in the central sector of the Bay of Pozzuoli in the last 18 ka.Editorial responsibilty: T. Druitt  相似文献   

9.
Caldera morphology on the six historically active shield volcanoes that comprise Isabela and Fernandina islands, the two westernmost islands in the Galapagos archipelago, is linked to the dynamics of magma supply to, and withdrawal from, the magma chamber beneath each volcano. Caldera size (e.g., volumes 2–9 times that of the caldera of Kilauea, Hawai'i), the absence of well-developed rift zones and the inability to sustain prolonged low-volumetric-flow-rate flank eruptions suggest that magma storage occurs predominantly within centrally located chambers (at the expense of storage within the flanks). The calderas play an important role in the formation of distinctive arcuate fissures in the central part of the volcano: repeated inward collapse of the caldera walls along with floor subsidence provide mechanisms for sustaining radially oriented least-compressive stresses that favor the formation of arcuate fissures within 1–2 km outboard of the caldera rim. Variations in caldera shape, depth-to-diameter ratio, intra-caldera bench location and the extent of talus slope development provide insight into the most recent events of caldera modification, which may be modulated by the episodic supply of magma to each volcano. A lack of correlation between the volume of the single historical collapse event and its associated volume of erupted lava precludes a model of caldera formation linked directly to magma withdrawal. Rather, caldera collapse is probably the result of accumulated loss from the central storage system without sufficient recharge and (as has been suggested for Kilauea) may be aided by the downward drag of dense cumulates and intrusives.  相似文献   

10.
Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

11.
Campi Flegrei is a caldera complex located west of Naples, Italy. The last eruption occurred in 1538, although the volcano has produced unrest episodes since then, involving rapid and large ground movements (up to 2 m vertical in two years), accompanied by intense seismic activity. Surface ground displacements detected by various techniques (mainly InSAR and levelling) for the 1970 to 1996 period can be modelled by a shallow point source in an elastic half-space, however the source depth is not compatible with seismic and drill hole observations, which suggest a magma chamber just below 4 km depth. This apparent paradox has been explained by the presence of boundary fractures marking the caldera collapse. We present here the first full 3-D modelling for the unrest of 1982–1985 including the effect of caldera bordering fractures and the topography. To model the presence of topography and of the complex caldera rim discontinuities, we used a mixed boundary elements method. The a priori caldera geometry is determined initially from gravimetric modelling results and refined by inversion. The presence of the caldera discontinuities allows a fit to the 1982–1985 levelling data as good as, or better than, in the continuous half-space case, with quite a different source depth which fits the actual magma chamber position as seen from seismic waves. These results show the importance of volcanic structures, and mainly of caldera collapses, in ground deformation episodes.  相似文献   

12.
In the mid-fifteenth century, one of the largest eruptions of the last 10 000 years occurred in the Central New Hebrides arc, forming the Kuwae caldera (12x6 km). This eruption followed a late maar phase in the pre-caldera edifice, responsible for a series of alternating hydromagmatic deposits and airfall lapilli layers. Tuffs related to caldera formation ( 120 m of deposits on a composite section from the caldera wall) were emitted during two main ignimbritic phases associated with two additional hydromagmatic episodes. The lower hydromagmatic tuffs from the precaldera maar phase are mainly basaltic andesite in composition, but clasts show compositions ranging from 48 to 60% SiO2. The unwelded and welded ashflow deposits from the ignimbritic phases and the associated intermediate and upper hydromagmatic deposits also show a wide compositional range (60–73% SiO2), but are dominantly dacitic. This broad compositional range is thought to be due to crystal fractionation. The striking evolution from one eruptive style (hydromagmatic) to the other (magmatic with emission of a large volume of ignimbrites) which occurred either over the tuff series as a whole, or at the beginning of each ignimbritic phase, is the most impressive characteristic of the caldera-forming event. This strongly suggests triggering of the main eruptive phases by magma-water interaction. A three-step model of caldera formation is presented: (1) moderate hydromagmatic (sequences HD 1–4) and magmatic (fallout deposits) activity from a central vent, probably over a period of months or years, affected an area slightly wider than the present caldera. At the end of this stage, intense seismic activity and extrusion of differentiated magma outside the caldera area occurred; (2) unhomogenized dacite was released during a hydromagmatic episode (HD 5). This was immediately followed by two major pyroclastic flows (PFD 1 and 2). The vents spread and intense magma-water interaction at the beginning of this stage decreased rapidly as magma discharge increased. Subsequent collapse of the caldera probably commenced in the southeastern sector of the caldera; (3) dacitic welded tuffs were emplaced during a second main phase (WFD 1–5). At the beginning of this phase, magma-water interaction continued, producing typical hydromagmatic deposits (HD 6). Caldera collapse extended to the northern part of the caldera. Previous C14 dates and records of explosive volcanism in ice from the south Pole show that the climactic phase of this event occurred in 1452 A.D.  相似文献   

13.
Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200°C) reservoirs within the volcanic fill in parts of the west moat. These reservoirs contain fluids which are chemically similar to thermal fluids encountered in the central and eastern parts of the caldera. The roots of the present-day hydrothermal system (the source reservoir, principal zones of upflow, and the magmatic heat source) most likely occur within metamorphic basement rocks beneath the western part of the caldera. Geothermometer-temperature estimates for the source reservoir range from 214 to 248°C. Zones of upflow of hot water could exist beneath the plateau of moat rhyolite located west of the resurgent dome or beneath Mammoth Mountain. Lateral flow of thermal water away from such upflow zones through reservoirs in the Bishop Tuff and early rhyolite accounts for temperature reversals encountered in most existing wells. Dating of hot-spring deposits from active and inactive thermal areas confirms previous interpretations of the evolution of hydrothermal activity that suggest two periods of extensive hot-spring discharge, one peaking about 300 ka and another extending from about 40 ka to the present. The onset of hydrothermal activity around 40 ka coincides with the initiation of rhyolitic volcanism along the Mono-Inyo Craters volcanic chain that extends beneath the caldera's west moat.  相似文献   

14.
Edifices of stratocones and domes are often situated eccentrically above shallow silicic magma reservoirs. Evacuation of such reservoirs forms collapse calderas commonly surrounded by remnants of one or several volcanic cones that appear variously affected and destabilized. We studied morphologies of six calderas in Kamchatka, Russia, with diameters of 4 to 12 km. Edifices affected by caldera subsidence have residual heights of 250–800 m, and typical amphitheater-like depressions opening toward the calderas. The amphitheaters closely resemble horseshoe-shaped craters formed by large-scale flank failures of volcanoes with development of debris avalanches. Where caldera boundaries intersect such cones, the caldera margins have notable outward embayments. We therefore hypothesize that in the process of caldera formation, these eccentrically situated edifices were partly displaced and destabilized, causing large-scale landslides. The landslide masses are then transformed into debris avalanches and emplaced inside the developing caldera basins. To test this hypothesis, we carried out sand-box analogue experiments, in which caldera formation (modeled by evacuation of a rubber balloon) was simulated. The deformation of volcanic cones was studied by placing sand-cones in the vicinity of the expected caldera rim. At the initial stage of the modeled subsidence, the propagating ring fault of the caldera bifurcates within the affected cone into two faults, the outermost of which is notably curved outward off the caldera center. The two faults dissect the cone into three parts: (1) a stable outer part, (2) a highly unstable and subsiding intracaldera part, and (3) a subsiding graben structure between parts (1) and (2). Further progression of the caldera subsidence is likely to cause failure of parts (2) and (3) with failed material sliding into the caldera basin and with formation of an amphitheater-like depression oriented toward the developing caldera. The mass of material which is liable to slide into the caldera basin, and the shape of the resulted amphitheater are a function of the relative position of the caldera ring fault and the base of the cone. A cone situated mostly outside the ring fault is affected to a minor degree by caldera subsidence and collapses with formation of a narrow amphitheater deeply incised into the cone, having a small opening angle. Accordingly, the caldera exhibits a prominent outward embayment. By contrast, collapse of a cone initially situated mostly inside the caldera results in a broad amphitheater with a large opening angle, i.e. the embayment of the caldera rim is negligible. The relationships between the relative position of an edifice above the caldera fault and the opening angle of the formed amphitheater are similar for the modeled and the natural cases of caldera/cone interactions. Thus, our experiments support the hypothesis that volcanic edifices affected by caldera subsidence can experience large-scale failures with formation of indicative amphitheaters oriented toward the caldera basins. More generally, the scalloped appearance of boundaries of calderas in contact with pre-caldera topographic highs can be explained by the gravitational influence of topography on the process of caldera formation.Editorial responsibility: J. Stix  相似文献   

15.
During the past 1.2 m.y., a magma chamber of batholithic proportions has developed under the 100 by 30 km Toba Caldera Complex. Four separate eruptions have occurred from vents within the present collapse structure, which formed from eruption of the 2800 km3 Youngest Toba Tuff (YTT) at 74 ka. Eruption of the three older Toba Tuffs alternated from calderas situated in northern and southern portions of the present caldera. The northern caldera apparently developed upon a large andesitic stratovolcano. The calderas associated with the three older tuffs are obscured by caldera collapse and resurgence resulting from eruption of the YTT. Samosir Island and the Uluan Block are two sides of a single resurgent dome that has resurged since eruption of the YTT. Samosir Island is composed of thick YTT caldera fill, whereas the Uluan Block consists mainly of the Oldest Toba Tuff (OTT). In the past 74000 years lava domes have been extruded on Samosir Island and along the caldera's western ring fracture. This part of the ring fracture is the site of the only current activity at Toba: updoming and fumarolic activity. The Toba eruptions document the growth of the laterally continuous magma body which eventually erupted the YTT. Repose periods between the four Toba Tuffs range between 0.34 and 0.43 m.y. and give insights into pluton emplacement and magmatic evolution at Toba.  相似文献   

16.
In the Llucmajor aquifer system (Majorca Island, Spain) some geothermal evidences have appeared. This phenomenon is not isolated to Majorca and it is present in other areas, where it can be associated with structural conditions, especially to the extensional event suffered by the island after the Alpine Orogeny. However, the origin of this anomaly in Llucmajor is not well known, and there is no surface geological evidence of these structural conditions. With the aim of delineating the geoelectrical structure of the zone and identifying the geological structure that allows the presence of this anomaly, an audiomagnetotelluric (AMT) survey was carried out. The AMT data was processed using a Wavelet Transform-based scheme. Dimensionality analysis indicates that the geoelectrical structure is mainly 3D. The 3D model was obtained by trial and error forward modeling, taking accounting of the responses from the determinant of the impedance tensor. The model shows a vertical resistivity distribution with three horizons associated with different units: on the top, a shallow high resistive media related to an unconfined shallow aquifer; in the middle, a conductive layer related to the aquitard, and below it, another resistive media related to the confined deeper aquifer. The intermediate horizon shows a sudden thinning beneath the thermal anomalous zone that can be identified as a weakness zone (fault or fracture) connecting both aquifers. An exploratory well was drilled after the AMT survey and reached almost 700 m in depth. This allowed correlating the resistivity distribution of the 3D model with data logging and lithology obtained from the well, showing a proper agreement between them.  相似文献   

17.
Structures at calderas may form as a result of precursory tumescence, subsidence due withdrawal of magmatic support, resurgence, and regional tectonism. Structural reactivation and overprinting are common. To explore which types of structures may derive directly from subsidence without other factors, evidence is reviewed from pits caused by the melting of buried ice blocks, mining subsidence, scaled subsidence models, and from over 50 calderas. This review suggests that complex patterns of peripheral deformation, with multiple ring and arcuate fractures both inside and outside caldera rims, topographic embayments, arcuate graben, and concentric zones of extension and compression may form as a direct result of subsidence and do not require a complex subsidence and inflation history. Downsag is a feature of many calderas and it does not indicate subsidence on an inward-dipping ring fault, as has been inferred previously. Where magmatic inflation is absent or slight, initial arcuate faults formed during collapse are likely to be multiple, and dip outwards to vertical. Associated downsag causes the peripheries of calderas undergo radial (centripetal) extension, and this accounts for some of the complex peripheral fractures, arcuate crevasses, graben, and some topographic moats. The structural boundary of a caldera, defined here as the outermost limits of subsidence and related deformation including downsag, commonly lies outside ring faults and outside the embayed topographic wall. It is likely to be funnel-shaped, i.e. inward-dipping, even though ring and arcuate fractures within it may dip outward. Inward-dipping arcuate normal faults at shallow levels and steep inward-dipping contacts between a caldera's fill and walls may both occur at a caldera that has initially subsided on outward-dipping ring faults. They arise due to peripheral surficial extension, gravitational spreading and scarp collapse. Topographic enlargement at some calderas and the formation of embayments may reflect general progressive downsag and localized downsag, respectively. These processes may occur in addition to surficial degradation of oversteep ring-fault scarps.  相似文献   

18.
Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ± 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical calderas of continental-margin volcanic arcs. Erosional remnants of the outflow Chegem Tuff sheet extend at least 50 km north from the source caldera in the upper Chegem River. These outflow remnants were previously interpreted by others as erupted from several local vents, but petrologic similarities indicate a common origin and correlation with thick intracaldera Chegem Tuff. The 11 × 15 km caldera and associated intrusions are superbly exposed over a vertical range of 2,300 m in deep canyons above treeline (elev. to 3,800 m). Densely welded intracaldera Chegem Tuff, previously described by others as a rhyolite lava plateau, forms a single cooling unit, is > 2 km thick, and contains large slide blocks from the caldera walls. Caldera subsidence was accommodated along several concentric ring fractures. No prevolcanic floor is exposed within the central core of the caldera. The caldera-filling tuff is overlain by andesitic lavas and cut by a 2.84 ± 0.03-Ma porphyritic granodiorite intrusion that has a cooling age analytically indistinguishable from that of the tuffs. The Eldjurta Granite, a pluton exposed low in the next large canyon (Baksan River) 10 km to the northwest of the caldera, yields variable K-feldspar and biotite ages (2.8 to 1.0 Ma) through a 5-km vertical range in surface and drill-hole samples. These variable dates appear to record a prolonged complex cooling history within upper parts of another caldera-related pluton. Major W-Mo ore deposits at the Tirniauz mine are hosted in skarns and hornfels along the roof of the Eldjurta Granite, and associated aplitic phases have textural features of Climax-type molybdenite porphyries in the western USA. Similar 40Ar/39Ar ages, mineral chemistry, and bulk-rock compositions indicate that the Chegem Tuff, intracaldera intrusion, and Eldjurta Granite are all parts of a large magmatic system that broadly resembles the middle Tertiary Questa caldera system and associated Mo deposits in northern New Mexico, USA. Because of their young age and superb three-dimensional exposures, rocks of the Chegem-Tirniauz region offer exceptional opportunities for detailed study of caldera structures, compositional gradients in volcanic rocks relative to cogenetic granites, and the thermal and fluid-flow history of a large young upper-crustal magmatic system.  相似文献   

19.
Changing stresses in multi-stage caldera volcanoes were simulated in scaled analogue experiments aiming to reconstruct the mechanism(s) associated with caldera formation and the corresponding zones of structural weakness. We evaluate characteristic structures resulting from doming (chamber inflation), evacuation collapse (chamber deflation) and cyclic resurgence (inflation and deflation), and we analyse the consequential fault patterns and their statistical relationship to morphology and geometry. Doming results in radial fractures and subordinate concentric reverse faults which propagate divergently from the chamber upwards with increasing dilation. The structural dome so produced is characterised bysteepening in the periphery, whereas the broadening apex subsides. Pure evacuation causes the chamber roof to collapse along adjacent bell-shaped reverse faults. The distribution of concentric faults is influenced by the initial edifice morphology; steep and irregular initial flanks result in a tilted or chaotic caldera floor. The third set of experiments focused on the structural interaction of cyclic inflation and subsequent moderate deflation. Following doming, caldera subsidence produces concentric faults that characteristically crosscut radial cracks of the dome. The flanks of the edifice relax, resulting in discontinuous circumferential faults that outline a structural network of radial and concentric faults; the latter form locally uplifted and tiltedwedges (half-grabens) that grade into horst-and-graben structures. This superimposed fault pattern also extends inside the caldera. We suggest that major pressure deviations in magma chamber(s) are reflected in the fault arrangement dissecting the volcanoflanks and may be used as a first-order indication of the processes and mechanisms involved in caldera formation.  相似文献   

20.
The liquid being sampled from a draining reservoir of density-stratified fluid, such as an erupting zoned magma chamber, is derived from a relatively thin withdrawal layer adjacent to the level of the chamber outlet. This is a consequence of the buoyancy force associated with the density gradient inhibiting vertical motion so that the opportunity for widely separated density levels (compositions) to be tapped and mingled syneruptively is suppressed.Density gradients in zoned chambers of 0.02 – 10 kgm−3/m are suggested by data from caldera-forming eruptions. Viscosity gradients can be specified for a given density gradient using calculated relationships between viscosity and density. Published compositional and geothermometric data are used to show that zoned high-silica rhyolites decrease in viscosity upward because of the roofward concentration of dissolved volatiles. Other zoned calc-alkaline magmas increase in viscosity upward because of decreasing temperature and concentration of network modifying cations.A method is developed of calculating the scale of the withdrawal layer thickness, δ, for given kinematic viscosity, eruption rate, and density and viscosity gradients. The method is systematized by the identification of specific flow regimes describing the action of either viscous or inertial forces in balancing the buoyancy force. Thin withdrawal layers are favoured by small eruption rates, small viscosity, and by large density gradients. For particularly steep density gradients, however, the consequently large viscosity gradient plays a role in determining the withdrawal layer thickness. Withdrawal layer thicknesses of the order of 100 m are calculated for typical pyroclastic eruptions of zoned acid magma, and are mostly independent of the viscosity gradient.The vertical scale at which a zoned chamber is instantaneously being tapped during an eruption is equal to the scale of the withdrawal layer thickness. Thus, an eruption that causes collapse of a caldera block through a height that is less than that of the withdrawal layer scale will produce magmas from deeper levels than that to which the chamber roof sinks. In this case the eruption is said to oversample the chamber with respect to the amount of caldera collapse and will produce an essentially constant range of compositions throughout. Alternatively, if the caldera collapse distance is much greater than δ then the selective withdrawal process leads to successive levels of the chamber being “skimmed off” (on a scale δ). This allows the compositional stratigraphy of the chamber to be inverted by the eruptive process, with little opportunity for syneruptive mixing between diverse magma compositions. The geological record shows that most calderas associated with zoned magmas collapsed through vertical distances in excess of 100 m (the characteristic estimate for δ) and, in agreement with our modelling of selective withdrawal, show smooth correlations between composition, or temperature, and the order of eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号