首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of meteoric smoke as condensation nuclei for mesospheric ice has recently been challenged by model simulations on the global transport of meteoric material. At the same time a considerable fraction of smoke particles is charged in the mesosphere. This has significant effects on nucleation processes as it can remove the Kelvin barrier. We suggest that in particular nucleation on negatively charged smoke is likely to be a dominant mechanism for mesospheric ice formation. This is in contrast to nucleation on positive ion clusters as the latter is largely hampered by efficient ion/electron recombination. Surprisingly, the large potential of nucleation on charged smoke has so far not been considered in mesospheric ice models. A challenging question concerns the fraction of mesospheric smoke that is actually charged. An improved understanding of mesospheric charging and nucleation will require laboratory experiments on nuclei in the transition regime between molecular and particulate sizes.  相似文献   

2.
Condensed water particles are known to exist in the high latitude upper mesosphere during the summer months. However, the mechanism or mechanisms through which they nucleate remains uncertain. It is postulated here that particles of amorphous solid water (ASW, condensed water with a non-crystalline structure) may nucleate homogeneously in the summer mesosphere. Using classical nucleation theory and a one-dimensional model, it is shown that more than 105 cm?3 amorphous solid water particles can nucleate homogeneously under mesopause conditions. Furthermore, it is shown that homogeneous nucleation competes with heterogeneous nucleation on meteoric smoke particles when the cooling rate is >0.5 K/h. The homogeneous nucleation of amorphous solid water could provide an explanation for the high density of ice particles (many thousands per cm3) thought to be required for electron depletions in the upper mesosphere. A parameterisation for homogeneous nucleation is presented which can be used in other mesospheric cloud models.  相似文献   

3.
A review of the important constraints on gravity wave induced diffusion of chemical tracers, heat, and momentum is given. Ground-based microwave spectroscopy measurements of H2O and CO and rocket-based mass spectrometer measurements of Ar constrain the eddy diffusion coefficient for constituent transport (K zz ) to be (1–3)×105 cm2s–1 in the upper mesosphere. Atomic oxygen data also limitsK zz to a comparable value at the mesopause. From the energy balance of the upper mesosphere the eddy diffusion coefficient for heat transport (D H ) is, at most 6×105 cm2s–1 at the mesopause and decreasing substantially with decreasing altitude. The available evidence for mean wind deceleration and the corresponding eddy diffusion coefficient for momentum stresses (D M ) suggests that it is at least 1×106 cm2s–1, in the upper mesosphere. Consequently the eddy Prandtl number for macroscopic scale lengths is >3.  相似文献   

4.
Meteoric smoke forms in the mesosphere from the recondensation of the metallic species and silica produced by meteoric ablation. A photochemical flow reactor was used to generate meteoric smoke mimics using appropriate photolytic precursors of Fe and Si atoms in an excess of oxidant. The following systems were studied: (i) Fe+O3/O2, (ii) Fe+O3/O2+H2O, (iii) Fe+Si/SiO+O3/O2 and (iv) Si/SiO+O3/O2. The resulting nano-particles were captured for imaging by transmission electron microscopy, combined with elemental analysis using X-ray (EDX) and electron energy loss (EELS) techniques. These systems generated particle compositions consistent with: (i) Fe2O3 (hematite), (ii) FeOOH (goethite), (iii) Fe2SiO4 (fayalite) and (iv) SiO2 (silica). Electron diffraction revealed that the Fe-containing particles were entirely amorphous, while the SiO2 particles displayed some degree of crystallinity. The Fe-containing particles formed fractal aggregates with chain-like morphologies, whereas the SiO2 particles were predominantly spherical and compact in appearance. The optical extinction spectra of the Fe-containing particles were measured from 300 nm<λ<650 nm. Excellent agreement was found with the extinction calculated from Mie theory using the refractive indices for the bulk compounds, and assuming that the fractal aggregates are composed of poly-disperse distributions of constituent particles with radii ranging from 5 to 100 nm. These sizes were confirmed from measurements of the particle size distributions and microscopic imaging. Finally, the particle growth kinetics of the Fe-containing systems exhibit unexpectedly rapid agglomerative coagulation. This was modelled by assuming an initial period of coalescent particle growth resulting from diffusional (Brownian) coagulation to form primary particles; further growth of these particles is then dominated by long-range magnetic dipole–dipole interactions, leading to the fractal aggregates observed. The atmospheric implications of this work are then discussed.  相似文献   

5.
The viscosity of a natural phonolitic composition with variable amounts of H2O has been experimentally determined. The starting materials were crystal-free phonolitic glasses from Montaña Blanca, situated within the Las Cañadas caldera of Teide. Dry phonolitic melt viscosities were determined using concentric cylinder viscometry in the low viscosity range. The glassy quench products of these runs were then hydrated by high pressure synthesis in a piston–cylinder apparatus to generate a suite of samples with water contents ranging from 0.02 to 3.75 wt%. Samples thus hydrated were quenched rapidly and prepared (cut and polished) for the determination of water contents by infrared spectroscopy before and after experimental viscometry. The viscosities of the melts (dry and hydrated) were determined at 1 bar using a micropenetration technique. Samples were stable under the measurement conditions up to 3.75 wt% H2O. Homogeneity of water content was confirmed by infrared spectroscopy and total water contents were calculated using absorptivity coefficients for compositions extremely close to that investigated here. The variation of viscosity as a function of water content and temperature can be described in the high viscosity interval of relevance to many welding processes by the non-Arrhenian expression:
(1)
log10 η=−5.900−0.286 ln (H2O)+(10775.4−394.8(H2O))/(T−148.7+21.65 ln (H2O))
whereas the high viscosity range alone is adequately described by the Arrhenian expression
(2)
log10 η=−10.622−0.738 ln (H2O)+(17114.3−590.4(H2O))×1/T
where η is the viscosity in Pa s, H2O is the water content in wt% and T is the temperature in K.These results are particularly useful for the scaling of conditions extant during the welding of phonolitic products of Montaña Blanca. The welding of glassy phonolitic rocks is enhanced by the lower viscosity of these melts with respect to calcalkaline rhyolites. The ratio of viscosities of phonolitic to calcalkaline rhyolitic melts is a complex function of temperature and water content and reaches up to 104.5 at 0.1 wt% H2O and 500°C. Abundant evidence of welding and remobilisation of pyroclastic and spatter products of Teide system volcanism are consistent with these experimental observations.  相似文献   

6.
This study compares the Isis II satellite measurements of the electron density and temperature, the integral airglow intensity and volume emission rate at 630 nm in the SAR arc region, observed at dusk on 4 August, 1972, in the Southern Hemisphere, during the main phase of the geomagnetic storm. The model results were obtained using the time dependent one-dimensional mathematical model of the Earth’s ionosphere and plasmasphere (the IZMIRAN model). The major enhancement to the IZMIRAN model developed in this study to explain the two component 630 nm emission observed is the analytical yield spectrum approach to calculate the fluxes of precipitating electrons and the additional production rates of N+2, O+2, O+(4S), O+(2D), O(2P), and O+(2P) ions, and O(1D) in the SAR arc regions in the Northern and Southern Hemispheres. In order to bring the measured and modelled electron temperatures into agreement, the additional heating electron rate of 1.05 eV cm−3 s−1 was added in the energy balance equation of electrons at altitudes above 5000 km during the main phase of the geomagnetic storm. This additional heating electron rate determines the thermally excited 630 nm emission observed. The IZMIRAN model calculates a 630 nm integral intensity above 350 km of 4.1 kR and a total 630 nm integral intensity of 8.1 kR, values which are slightly lower compared to the observed 4.7 kR and 10.6 kR. We conclude that the 630 nm emission observed can be explained considering both the soft energy electron excited component and the thermally excited component. It is found that the inclusion of N2(v > 0) and O2(v > 0) in the calculations of the O+(4S) loss rate improves the agreement between the calculated Ne and the data on 4 August, 1972. The N2(v > 0) and O2(v > 0) effects are enough to explain the electron density depression in the SAR arc F-region and above F2 peak altitude. Our calculations show that the increase in the O+ + N2 rate factor due to the vibrationally excited nitrogen produces the 5–19% reductions in the calculated quiet daytime peak density and the 16–24% decrease in NmF2 in the SAR arc region. The increase in the O+ + N2 loss rate due to vibrationally excited O2 produces the 7–26% decrease in the calculated quiet daytime peak density and the 12–26% decrease in NmF2 in the SAR arc region. We evaluated the role of the electron cooling rates by low-lying electronic excitation of O2(a1δg) and O2(b1σg+), and rotational excitation of O2, and found that the effect of these cooling rates on Te can be considered negligible during the quiet and geomagnetic storm period 3–4 August, 1972. The energy exchange between electron and ion gases, the cooling rate in collisions of O(3P) with thermal electrons with excitation of O(1D), and the electron cooling rates by vibrational excitation of O2 and N2 are the largest cooling rates above 200 km in the SAR arc region on 4 August, 1972. The enhanced IZMIRAN model calculates also number densities of N2(B3πg+), N2(C3πu), and N2(A3σu+) at several vibrational levels, O(1S), and the volume emission rate and integral intensity at 557.7 nm in the region between 120 and 1000 km. We found from the model that the integral integral intensity at 557.7 nm is much less than the integral intensity at 630 nm.  相似文献   

7.
To investigate the isotopic composition and age of water in volcanic gases and magmas, we analyzed samples from 11 active volcanoes ranging in composition from tholeiitic basalt to rhyolite: Mount St. Helens (USA), Kilauea (USA), Pacaya (Guatemala), Galeras (Colombia), Satsuma Iwo-Jima (Japan), Sierra Negra and Alcedo (Ecuador), Vulcano (Italy), Parícutin (Mexico), Kudryavy (Russia), and White Island (New Zealand). Tritium at relatively low levels (0.1–5 T.U.) is found in most emissions from high-temperature volcanic fumaroles sampled, even at discharge temperatures >700°C. Although magmatic fluids sampled from these emissions usually contain high CO2, Stotal, HCl, HF, B, Br, 3He R/RA, and low contents of air components, stable isotope and tritium relations of nearly all such fluids show mixing of magmatic volatiles with relatively young meteoric water (model ages≤75 y). Linear δD/δ18O and 3H/δ18O mixing trends of these two end-members are invariably detected at arc volcanoes. Tritium is also detected in fumarole condensates at hot spot basalt volcanoes, but collecting samples approaching the composition of end-member magmatic fluid is exceedingly difficult. In situ production of 3H, mostly from spontaneous fission of 238U in magmas is calculated to be <0.001 T.U., except for the most evolved compositions (high U, Th, and Li and low H2O contents). These values are below the detection limit of 3H by conventional analytical techniques (about 0.01 T.U. at best). We found no conclusive evidence that natural fusion in the Earth produces anomalous amounts of detectable 3H (>0.05 T.U.).  相似文献   

8.
A systematic study of the chemo-isotopic characteristics and origin of the groundwater was carried out at six major qanats in the hyper-arid Gonabad area, eastern Iran. These qanats as a sustainable groundwater extraction technology have a long history, supporting human life for more than a thousand years in this region. The Gonabad qanats are characterized by outlet electrical conductivity (EC) values of 750 to 3900 µS/cm and HCO3-Na-Mg and Cl-Na water types. The Gonabad meteoric water line (GnMWL) was drawn at the local scale as δ2H = 6.32×δ18O + 8.35 (with R2 = 0.90). It has a lower slope and intercept than the global meteoric water line due to different water vapor sources and isotope kinetic fractionation effects during precipitation in this arid region. The altitude effects on isotopic content of precipitation data were derived as δ18O = (−0.0031 × H(m.a.s.l))−1.3). The δ2H and δ18O isotopes signatures demonstrate a meteoric origin of the groundwater of these qanats. The shift of the qanat's water samples from the local meteoric water line (LMWL) in a dry period with higher temperatures is most probably due to evaporation during the infiltration process and water movement in qanat gallery. Based on the isotopic results and mass balance calculations, the qanats are locally recharged from an area between 2000 to 2400 m.a.s.l of nearby carbonate formations and coarse alluvial sediments. The dissolution of evaporate interlayers in Neogene deposits deteriorates the groundwater quality, especially in Baidokht qanat.  相似文献   

9.
Recondensed meteoric material, so-called meteoric smoke, has long been considered the main candidate for condensation nuclei for mesospheric ice formation. Recently however, model studies have shown that meteoric smoke particles are transported away from the polar region, where ice phenomena such as noctilucent clouds occur, before they can grow large enough to serve as ice condensation nuclei. In the accompanying paper it is argued that charging of the meteoric smoke particles may solve this dilemma by significantly altering the efficiency of the particles as condensation nuclei. In the present paper, the feasibility of this idea is investigated more quantitatively, by analysing the time scales of processes such as charging, recombination, and particle growth. Despite large uncertainties, especially in the charging efficiency of the smallest smoke particles, we show that reasonable assumptions yield number densities of charged condensation nuclei that are consistent with what is expected for mesospheric ice phenomena.  相似文献   

10.
During the Arctic Tropospheric Ozone Chemistry (ARCTOC) campaigns at Ny-Ålesund, Spitsbergen, the role of halogens in the depletion of boundary layer ozone was investigated. In spring 1995 and 1996 up to 30 ppt bromine monoxide were found whenever ozone decreased from normal levels of about 40 ppb. Those main trace gases and others were specifically followed in the UV-VIS spectral region by differential optical absorption spectroscopy (DOAS) along light paths running between 20 and 475 m a.s.l. The daily variation of peroxy radicals closely followed the ozone photolysis rate J(O3(O1D)) in the absence of ozone depletion most of the time. However, during low ozone events this close correlation was no longer found because the measurement of radicals by chemical amplification (CA) turned out to be sensitive to peroxy radicals and ClOx. Large CA signals at night can sometimes definitely be assigned to ClOx and reached up to 2 ppt. Total bromine and iodine were both stripped quantitatively from air by active charcoal traps and measured after neutron activation of the samples. Total bromine increased from background levels of about 15 ppt to a maximum of 90 ppt during an event of complete ozone depletion. For the spring season a strong source of bromine is identified in the pack ice region according to back trajectories. Though biogenic emission sources cannot be completely ruled out, a primary activation of halogenides by various oxidants seems to initiate an efficient autocatalytic process, mainly driven by ozone and light, on ice and perhaps on aerosols. Halogenides residing on pack ice surfaces are continuously oxidised by hypohalogenous acids releasing bromine and chlorine into the air. During transport and especially above open water this air mixes with upper layer pristine air. As large quantities of bromine, often in the form of BrO, have been observed at polar sunrise also around Antarctica, its release seems to be a natural phenomenon. The source strength of bromine from halogen activation on the pack ice, as based on the measured inorganic bromine levels, averages about 1012 Br-atoms m−2 s−1 during sunlit periods in Arctic spring. The total source strength of inorganic bromine from sunlit polar regions may therefore amount to 30 kt y−1.  相似文献   

11.
The chemical composition and D/H, and ratios have been determined for the acid hot waters and volcanic gases discharging from Zaō volcano in Japan. The thermal springs in Zaō volcano issue acid sulfate-chloride type waters (Zaō) and acid sulfate type waters (Kamoshika). Gases emitted at Kamoshika fumaroles are rich in CO2, SO2 and N2, exclusive of H2O. Chloride concentrations and oxygen isotope data indicate that the Zaō thermal waters issue a fluid mixture from an acid thermal reservoir and meteoric waters from shallow aquifers. The waters in the Zaō volcanic system have slight isotopic shifts from the respective local meteoric values. The isotopic evidence indicates that most of the water in the system is meteoric in origin. Sulfates in Zaō acid sulfate-chloride waters with δ34S values of around +15‰, are enriched in 34S compared to Zaō H2S, while the acid sulfate waters at Kamoshika contain supergene light sulfate (δ34S = + 4‰) derived from volcanic sulfur dioxide from the volcanic exhalations. The sulfur species in Zaō acid waters are lighter in δ34S than those of other volcanic areas, reflecting the difference in total pressure.  相似文献   

12.
The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp = 8+). A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.Paper Presented at the Second IAGA/ICMA (IAMAS) Workshop on Solar Activity Forcing of the Middle Atmosphere, Prague, August 1997  相似文献   

13.
Hydrochemical (major and some minor constituents), stable isotope ( and , δ13CTDIC total dissolved inorganic carbon) and dissolved gas composition have been determined on 33 thermal discharges located throughout Sicily (Italy) and its adjacent islands. On the basis of major ion contents, four main water types have been distinguished: (1) a Na-Cl type; (2) a Ca-Mg > Na-SO4-Cl type; (3) a Ca-Mg-HCO3 type and (4) a Na-HCO3 type water. Most waters are meteoric in origin or resulting from mixing between meteoric water and heavy-isotope end members. In some samples, δ18O values reflect the effects of equilibrium processes between thermal waters and rocks (positive 18O-shift) or thermal waters and CO2 (negative 18O-shift). Dissolved gas composition indicates the occurrence of gas/water interaction processes in thermal aquifers. N2/O2 ratios higher than air-saturated water (ASW), suggest the presence of geochemical processes responsible for dissolved oxygen consumption. High CO2 contents (more than 3000 cc/litre STP) dissolved in the thermal waters indicate the presence of an external source of carbon dioxide-rich gas. TDIC content and δ13CTDIC show very large ranges from 4.6 to 145.3 mmol/Kg and from –10.0‰ and 2.8‰, respectively. Calculated values indicate the significant contribution from a deep source of carbon dioxide inorganic in origin. Interaction with Mediterranean magmatic CO2 characterized by heavier carbon isotope ratios ( value from -3 to 0‰ vs V-PDB (CAPASSO et al., 1997, GIAMMANCO et al., 1998; INGUAGGIATO et al., 2000) with respect to MORB value and/or input of CO2-derived from thermal decomposition of marine carbonates have been inferred.  相似文献   

14.
A self-consistent method for daytime F-region modelling was applied to EISCAT observations during two periods comprising the very disturbed days 3 April 1992 and 10 April 1990. The observed strong Ne decrease at F2-layer heights originated from different physical mechanisms in the two cases. The negative F2-layer storm effect with an NmF2 decrease by a factor of 6.4 on 3 April 1992 was produced by enhanced electric fields (E 85 mV/m) and strong downward plasma drifts, but without any noticeable changes in thermos-pheric parameters. The increase of the O+ + N2 reaction rate resulted in a strong enrichment of the ionosphere with molecular ions even at F2-layer heights. The enhanced electric field produced a wide mid-latitude daytime trough on 03 April 1992 not usually observed during similar polarization jet events. The other strong negative storm effect on 10 April 1990 with a complete disappearance of the F2-layer maximum at the usual heights was attributed mainly to changes in neutral composition and temperature. A small value for the shape parameter S in the neutral temperature profile and a low neutral temperature at 120 km indicate strong cooling of the lower thermosphere. We propose that this cooling is due to increased nitric oxide concentration usually observed at these heights during geomagnetic storms.  相似文献   

15.
The influence of atmospheric solar radiation absorption on the photodetachment, dissociative photodetachment, and photodissociation rate coefficients (photodestruction rate coefficients) of O?, Cl?, O2 ?, O3 ?, OH?, NO2 ?, NO3 ?, O4 ?, OH?(H2O), CO3 ?, CO4 ?, ONOO?, HCO3 ?, CO3 ?(H2O), NO3 ?(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2–4, NO+(N2), and NO+(CO2) at D-region altitudes of the ionosphere is studied. A numerical one-dimensional time-dependent neutral atmospheric composition model has been developed to estimate this influence. The model simulations are carried out for the geomagnetically quiet time period of 15 October 1998 at moderate solar activity over the Boulder ozonesonde. If the solar zenith angle is not more than 90° then the strongest influence of atmospheric solar radiation absorption on photodestruction of ions is found for photodissociation of CO4 ? ions when CO3 ? ions are formed. It follows from the calculations that decreases in the photodestruction rate coefficients of ions under consideration caused by this influence are less than 2 % at 70 km altitude and above this altitude if the solar zenith angle does not exceed 90°.  相似文献   

16.
Photochemistry of Ions at D-region Altitudes of the Ionosphere: A Review   总被引:2,自引:2,他引:0  
The current state of knowledge of the D-region ion photochemistry is reviewed. Equations determining production rates of electrons and positive ions by photoionization of atmospheric neutral species are presented and briefly discussed. Considerable attention is given to the progress in the chemistry of O+(4S), O+(2D), O+(2P), N+, N2 +, O2 +, NO+, N4 +, O4 +, NO+(N2), NO+(CO2), NO+(CO2)2, NO+(H2O) n for n = 1–3, NO+(H2O)(N2), NO+(H2O)2(N2), NO+(H2O)(CO2), NO+(H2O)2(CO2), O2 +(H2O), H3O+(OH), H+(H2O) n for n = 1–8, O?, O2 ?, O3 ?, O4 ?, OH?, CO3 ?, CO4 ?, NO2 ?, NO3 ?, ONOO?, Cl?, Cl?(H2O), Cl?(CO2), HCO3 ?, CO3 ?(H2O), CO3 ?(H2O)2, NO3 ?(H2O), NO3 ?(H2O)2, OH?(H2O), and OH?(H2O)2 ions. The analysis of the D-region rocket ion mass spectrometer measurements shows that, among these ions, O2 +, NO+, NO+(H2O), and H+(H2O) n for n = 1–7 can make the main contribution to the total positive ion number density, and O?, O2 ?, Cl?, OH?(H2O), CO3 ?, HCO3 ?, NO3 ?, ONOO?, CO4 ?, NO3 ?(H2O), NO3 ?(H2O)2, and 35Cl?(CO2) ions can be responsible for the main contribution to the total negative ion number density. Photodetachment of electrons from O?, Cl?, O2 ?, O3 ?, OH?, NO2 ?, and NO3 ?, dissociative electron photodetachment of O4 ? and OH?(H2O), and photodissociation of O3 ?, O4 ?, CO3 ?, CO4 ?, ONOO?, HCO3 ?, CO3 ?(H2O), NO3 ?(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2–4, NO+(N2), and NO+(CO2) are studied, and the photodetachment and photodissociation rate coefficients are calculated using the current state of knowledge on the cross sections of these processes and fluxes of solar radiation.  相似文献   

17.
The edifice of Mount Rainier, an active stratovolcano, has episodically collapsed leading to major debris flows. The largest debris flows are related to argillically altered rock which leave areas of the edifice prone to failure. The argillic alteration results from the neutralization of acidic magmatic gases that condense in a meteoric water hydrothermal system fed by the melting of a thick mantle of glacial ice. Two craters atop a 2000-year-old cone on the summit of the volcano contain the world's largest volcanic ice-cave system. In the spring of 1997 two active fumaroles (T=62°C) in the caves were sampled for stable isotopic, gas, and geochemical studies.Stable isotope data on fumarole condensates show significant excess deuterium with calculated δD and δ18O values (−234 and −33.2‰, respectively) for the vapor that are consistent with an origin as secondary steam from a shallow water table which has been heated by underlying magmatic–hydrothermal steam. Between 1982 and 1997, δD of the fumarole vapor may have decreased by 30‰.The compositions of fumarole gases vary in time and space but typically consist of air components slightly modified by their solubilities in water and additions of CO2 and CH4. The elevated CO2 contents (δ13CCO2=−11.8±0.7‰), with spikes of over 10,000 ppm, require the episodic addition of magmatic components into the underlying hydrothermal system. Although only traces of H2S were detected in the fumaroles, most notably in a sample which had an air δ13CCO2 signature (−8.8‰), incrustations around a dormant vent containing small amounts of acid sulfate minerals (natroalunite, minamiite, and woodhouseite) indicate higher H2S (or possibly SO2) concentrations in past fumarolic gases.Condensate samples from fumaroles are very dilute, slightly acidic, and enriched in elements observed in the much higher temperature fumaroles at Mount St. Helens (K and Na up to the ppm level; metals such as Al, Pb, Zn Fe and Mn up to the ppb level and volatiles such as Cl, S, and F up to the ppb level).The data indicate that the hydrothermal system in the edifice at Mount Rainier consists of meteoric water reservoirs, which receive gas and steam from an underlying magmatic system. At present the magmatic system is largely flooded by the meteoric water system. However, magmatic components have episodically vented at the surface as witnessed by the mineralogy of incrustations around inactive vents and gas compositions in the active fumaroles. The composition of fumarole gases during magmatic degassing is distinct and, if sustained, could be lethal. The extent to which hydrothermal alteration is currently occurring at depth, and its possible influence on future edifice collapse, may be determined with the aid of on site analyses of fumarole gases and seismic monitoring in the ice caves.  相似文献   

18.
We present a comparison of the observed behavior of the F-region ionosphere over Millstone Hill during the geomagnetically quiet and storm periods of 6–12 April 1990 with numerical model calculations from the IZMIRAN time-dependent mathematical model of the Earths ionosphere and plasmasphere. The major enhancement to the IZMIRAN model developed in this study is the use of a new loss rate of O+(4S) ions as a result of new high-temperature flowing afterglow measurements of the rate coefficients K1 and K2 for the reactions of O+(4S) with N2 and O2. The deviations from the Boltzmann distribution for the first five vibrational levels of O2(v) were calculated, and the present study suggests that these deviations are not significant. It was found that the difference between the non-Boltzmann and Boltzmann distribution assumptions of O2(v) and the difference between ion and neutral temperature can lead to an increase of up to about 3% or a decrease of up to about 4% of the calculated NmF2 as a result of a respective increase or a decrease in K2. The IZMIRAN model reproduces major features of the data. We found that the inclusion of vibrationally excited N2(v > 0) and O2(v > 0) in the calculations improves the agreement between the calculated NmF2 and the data on 6, 9, and 10 April. However, both the daytime and nighttime densities are reproduced by the IZMIRAN model without the vibrationally excited nitrogen and oxygen on 8 and 11 April better than the IZMIRAN model with N2(v > 0) and O2(v > 0). This could be due to possible uncertainties in model neutral temperature and densities, EUV fluxes, rate coefficients, and the flow of ionization between the ionosphere and plasmasphere, and possible horizontal divergence of the flux of ionization above the station. Our calculations show that the increase in the O+ + N2 rate factor due to N2(v > 0) produces a 5–36% decrease in the calculated daytime peak density. The increase in the O+ + O2 loss rate due to vibrationally excited O2 produces 8–46% reductions in NmF2. The effects of vibrationally excited O2 and N2 on Ne and Te are most pronounced during the daytime.  相似文献   

19.
Based on snow- and ice-thickness measurements at >11 000 points augmented by snow- and icecore studies during 4 expeditions from 1986 - 92 in the Weddell Sea, we describe characteristics and distribution patterns of snow and meteoric ice and assess their importance for the mass balance of sea ice. For first-year ice (FY) in the central and eastern Weddell Sea, mean snow depth amounts to 0.16 m (mean ice thickness 0.75 m) compared to 0.53 m (mean ice thickness 1.70 m) for second-year ice (SY) in the northwestern Weddell Sea. Ridged ice retains a thicker snow cover than level ice, with ice thickness and snow depth negatively correlated for the latter, most likely due to aeolian redistribution. During the different expeditions, 8, 15, 17 and 40% of all drill holes exhibited negative freeboard. As a result of flooding and brine seepage into the snow pack, snow salinities averaged 4‰. Through 18O measurements the distribution of meteoric ice (i.e. precipitation) in the sea-ice cover was assessed. Roughly 4% of the total ice thickness consist of meteoric ice (FY 3%, SY 5%). With a mean density of 290 kg/m3, the snow cover itself contributes 8% to total ice mass (7% FY, 11% SY). Analysis of 18O in snow indicates a local maximum in accumulation in the 65 to 75^S latitude zone. Hydrogen peroxide in the snow has proven useful as a temporal tracer and for identification of second-year floes. Drawing on accumulation data from stations at the Weddell Sea coast, it becomes clear that the onset of ice growth is important for the evolution of ice thickness and the interaction between ice and snow. Loss of snow to leads due to wind drift may be considerable, yet is reduced owing to metamorphic processes in the snow column. This is confirmed by a comparison of accumulation data from coastal stations and from snow depths over sea ice. Temporal and spatial accumulation patterns of snow are shown to be important in controlling the sea-ice cover evolution.  相似文献   

20.
Summary Effects of mechanical shocks of about 0.5 msec in duration on the remanent magnetization of igneous rocks are experimentally studied. The remanent magnetization acquired by applying a shock (S) in the presence of a magnetic field (H), which is symbolically expressed asJ R (H+S Ho), is very large compared with the ordinary isothermal remanent magnetization (IRM) acquired in the same magnetic field.J R (H+S Ho) is proportional to the piezo-remanent magnetization,J R (H+P+Po Ho).The effect of applyingS in advance of an acquisition of IRM is represented symbolically byJ R (S H+ Ho).J R (S H+ Ho) can become much larger than the ordinary IRM, and is proportional to the advance effect of pressure on IRM,J R(P+ P0 H+ H0).The effect of shockS applied on IRM in non-magnetic space is represented by the shock-demagnetization effect,J R(H+ H0 S), which also is proportional toJ R(H+ H0 P+ P0).Because, the duration of a shock is very short, a single shock effect cannot achieve the final steady state. The effect ofn-time repeated shocks, is represented byJ 0+J *(n), whereJ 0 means the immediate effect and J *(n) represent the resultant effect of repeating, which is of mathematical expression proportional to [1–exp {–(n–1)}].
Zusammenfassung Die Effekte des mechanischen Stosses mit der Dauer von etwa 0.5 ms auf der remanenten Magnetisierung wurden experimentell nachgesucht. Das erworbene Remanenz der Magnetisierung nach dem Stoss (S) unter dem magnetischen Feld (H), das hier symbolisch alsJ R(H+ SH0) bezechnet wird, ist sehr stark im Vergleich mit der normalen isothermischen remanenten Magnetisierung (IRM) unter demselben magnetischen Feld.J R(H+ S H0) ist im Verhältnis zur piezoremanenten Magnetisierung,J R(H+ P+ P0 H0).Der Effekt vom Stoss vor der Erwerbung von IRM wird symbolisch alsJ R(S H+ H0) bezeichnet.J R(S H+ H0) kann viel stärker als die normale IRM werden, im verhältnis zum Effekt des vorausgegebenen Drucks auf IRMJ R(P+ P0 H+ H0).Der Effekt des Stosses auf IRM im Raum ohne magnetisches Feld wird mit dem Stossentmagnetisierungseffekt dargestellt,J R(H+ H0 S), der auch proportional zuJ R(H+ H0 P+ P0) ist.Da die Dauer einzelnen Stosses sehr kurz ist, kann der Effekt des einmaligen Stosses den endgültigen stabilen Zustand nicht erreichen. Der Effekt nachn-maligen wiederholten Stossen wird alsJ 0+J *(n) bezeichnet, wobeiJ 0 den unverzüglichen Effekt bedeutet, und J *(n) beschreibt den resultanten Effekt der Stosswiederholung, dessen mathematische Darstellung proporational zu [1–exp {–(n–1)}] ist.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号