首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Denchai Basalt of northern Thailand is part of a large continental alkalic basaltic province extending through Thailand into Laos, Kampuchea, and Vietnam. It covers an area of about 70 km2 and consists of seven flows, all with reversed magnetic polarity. The uppermost flow has yielded an age of 5.64 ± 0.28 Ma by the K-Ar method. During the igneous activity, magmas were apparently erupted from only one vent area, but changed in chemical composition from “hawaiite” (transitional to continental tholeiite) to true hawaiite and then to basanite. The basanite is the probable source of gem-quality zircon and sapphire mined from placer deposits associated with the basalts.  相似文献   

2.
Among the various types of rocks, basalts are by far most suitable for palaeomagnetic studies. However, the magnetic parameters of basaltic rocks vary over a wide range and so also the magnetic stability. These features have been studied extensively for samples from Deccan and Rajmahal traps. The implications of the results on the palaeomagnetism of these formations in particular and that of basalts in general are discussed.  相似文献   

3.
4.
The results of palacomagnetic studies made on the Deccan Traps by various workers are reviewed in the light of the recent palaeomagnetic data on these rocks and the general geological information. It is suggested that: (a) the earlier altitude-polarity classification of the Deccan Traps, suggesting that the flows below the general elevation of 2000±200 feet above mean sea level are of reversed magnetic polarity while those above this horizon are normal, is not without exceptions; (b) the geomagnetic field reversed its polarity several times during the eruption of these lavas; (c) the Deccan Trap eruptions probably consisted of several phases of volcanicity over a protracted period; and (d) the phases of Deccan Trap volcanism, the phases of Himalayan upheaval, and the northward drift of the Indian landmass were rather concrescent events.  相似文献   

5.
Permo-Triassic and Precambrian dolerites have been collected for palaeomagnetic research in Suriname (South America) at 24 sites (280 oriented cores). After A.F. or thermal demagnetization, consistent directions were obtained for the following groups: Permo-Triassic (227 × 106 y), 10 sites, 90 samples, D = 358°, I = −7°, pole 82° S, 40° W; Precambrian (around 1.550−1.650 × × 109 y), 2 sites, 17 samples, D = 277°, I = +35°, pole position 8° S, 53° E; Precambrian (about 1.750 × 109 y), 2 sites, 30 samples, D = 314°, I = +3°, pole 44° S, 30° E. Precambrian pole positions for South America, Africa, North America and Europe are discussed.  相似文献   

6.
Palaeomagnetic data from the “newer granites” of Foyers and Strontian show similar directions of magnetization with southerly declinations and horizontal to intermediate, mostly downward dipping, inclinations. These palaeomagnetic directions which accord with previous data from the Helmsdale granite are thought to be of Siluro-Devonian age. The present results are not sufficiently precise to justify discussion of possible lateral displacements along the Great Glen Fault of the order of a few hundred kilometres, but it is clear that the recent idea of a c. 15–20° latitudinal offset along the Fault in the Carboniferous has to be disregarded.  相似文献   

7.
8.
Detailed records of palaeomagnetic directions from two Upper Cretaceous Umbrian sections are compared with the composite section compiled by Van den Berg et al. [1]. In addition to these sections, fifty-one geographically distributed sites have been studied magnetically and palaeontologically. The Late Miocene-Pliocene fold belt of the Umbrian Apennines is arcuate in outcrop, being convex toward the east. The fold axes are generally tangential to the Umbrian arc, which can be divided into a northern northwestern-trending part and a southern northeastern-trending part. Sites from the north have more westerly declinations than those from the south. The differences are significant at the 95% probability level and most probably reflect the bending of originally straight fold axes or the development of fold axes with initial curvature. The palaeomagnetic directions from Umbria provide important information concerning the Umbrian tectonic deformation, but are not applicable to the Italian autochthon.  相似文献   

9.
The Duncansby volcanic neck, intruding the Middle Devonian red beds of north Caithness, Scotland, has revealed two significantly different axes of magnetization, yielding pole positions at 149°E, 24°N and 126.5°E, 60°N, respectively. The first pole, which is interpreted as corresponding to the oldest magnetization, is in perfect agreement with Devonian polar estimates from west of the Great Glen Fault. It is tentatively suggested therefore that the Duncansby neck correlates with the Late Devonian volcanism in the nearby Orkney Islands though palaeomagnetism allows an upper age estimate of around Middle Carboniferous. The data support an earlier proposition of there being a palaeomagnetic discordance across the Great Glen Fault that can be interpreted in terms of a large-scale late- or post-Devonian transcurrent movement along this fracture zone. The original (? Late Devonian) magnetization has been nearly completely erased by the second phase of magnetization which, according to its pole position, most likely dates from about the Middle Jurassic. The latter magnetization is thought to be a consequence of burial, the coastal districts of Caithness having participated in the general subsidence of the North Sea area in late Palaeozoic and Mesozoic times. The burial magnetization, involving VPTRM and or TCRM processes, is considered to have been “frozen-in” as a result of uplift in connection with the well-documented mid-Jurassic tectonic phase that affected the northern North Sea basin, including the adjacent Moray Firth area. K/Ar analyses of the Duncansby intrusion give apparent ages ranging from 258 to 239 Ma. These dates, which lie between the two geological events inferred from palaeomagnetism, are not seen as true rock ages but rather as the result of a partial Ar loss during burial reheating.  相似文献   

10.
Crater frequency distributions determined for surfaces in the Taurus-Littrow region of the Moon and compared with crater counts and radiometric age dates for Apollo 11, 12 and 14 landing sites indicate that the surface of the proposed Apollo 17 landing site was formed between 2.5 and 2.8 by ago.  相似文献   

11.
Detailed alternating field demagnetisation of Upper Llandovery volcanics of the Mendip Hills and Gloucestershire has isolated remanence directions interpreted as primary from each of five sites. Well-defined high-coercivity secondary magnetisation is present in six samples of one site and low-coercivity secondary remanence is present in all samples from another site; the former component was apparently acquired in Permo-Triassic times. Primary directions of magnetisation show marked improvement in precision after correction for penecontemporaneous folding, and show a late Llandovery reversal in the sense R → N.The group mean directions of magnetisation isD = 243.5°,I = 47.5° (precision parameterk = 29). Petrographic examination confirms observations from magnetic properties that relict titanomagnetite (oxidation classes 3 to 5) is the remanence carrier in most samples. Hematite, probably mostly late magmatic in origin, is widely developed in all samples, but only the principal remanence carrier where it has thoroughly replaced the titanomagnetite. Low-coercivity remanence is apparently caused by weathering effects but there is no clear visible cause for secondary high-coercivity remanence carried by some samples.The mean virtual geomagnetic pole position is close to Upper Silurian/Lower Devonian pole positions from other parts of Britain and defines a minimum apparent polar shift of 60° between late Ordovician and Upper Llandovery times. Reference to absolute age dates suggests that this shift took place between ca. 447 and 434 m.y. followed by slight polar movement between ca. 434 and 394 m.y.  相似文献   

12.
Palaeomagnetic results are reported from eight sites in an Upper Devonian basic intrusion (the Msissi norite) in southeast Morocco. Specimens from one site are suspected of having been affected by lightning, but results from the other seven sites indicate the presence of a less-stable component, probably of viscous origin. The pole position corresponding to the stable component(0.5°S, 25°E, A95 = 16.5) is interposed between the Middle Cambrian/Ordovician pole and the Lower Carboniferous pole on the African polar wander curve. When the southern continents are reassembled on the Smith/Hallam reconstruction of Gondwanaland the new Moroccan Devoniån pole is in excellent agreement with the corresponding portion of the main Australian polar-wander curve. This places additional constraints on the possible date of fusion of the separate Southeast Australian plate with the rest of Gondwanaland, postulated recently on palaeomagnetic grounds by M.W. McElhinny and B.J.J. Embleton (1974). The combined African/Australian polar-wander curve is compared with the South American curve, and two possible interpretations of available data are discussed, one involving possible relative tectonic motion between South America and the rest of Gondwanaland during the Lower and Middle Palaeozoic, and the other, favoured here, requiring a reassessment of the ages of several South American pole determinations.  相似文献   

13.
The mean palaeomagnetic pole position obtained from Upper Cretaceous rocks in west Sicily is at 21°N, 100°E (A95 = 15°), and at 38°N, 67°E (A95 = 31°) obtained from Middle Jurassic rocks. These pole positions are completely different from comparable pole positions for southeast Sicily and Africa and imply a clockwise rotation of west Sicily since the Upper Cretaceous of about 90° relative to southeast Sicily and Africa and also a clockwise rotation of about 60° relative to “stable” Europe. The sense of rotation of west Sicily is opposite to any known rotation of other crustal blocks in the central Mediterranean.  相似文献   

14.
Magnetic properties of minerals may be sensitive indicators of provenance. Remanence-bearing minerals (RBM) such as iron–titanium oxides, and matrix-forming minerals such as paramagnetic phyllosilicate or diamagnetic calcite yield different clues to provenance, strain history and tectonics, and are essential supplements for the full interpretation of palaeomagnetic data. Moreover, mineral magnetic properties provide magnetic-petrofabric indicators of tectonic strain, determine the suitability of sites for palaeomagnetism, and permit the restoration of palaeomagnetic vectors in some strained rocks. In the Cretaceous Troodos ophiolite (~88 Ma) magnetic properties are dictated by the relative importance of mafic silicates and largely primary, ophiolite-derived RBM. In its cover of deformed pelagic sedimentary rock, magnetic properties are dictated by the balance of clastic RBM versus matrix calcite and in some cases clay. The two larger Cretaceous ophiolite outcrops (Troodos & Akamas) share a common orientation of their plutonic flow fabrics, determined by magnetic methods. The dike complex shows fabrics indicating plume-like feeders spaced along and perpendicular to the spreading axis, with longevities >0.5 Ma. South of the ophiolite, its Cretaceous-Miocene limestone cover possesses ubiquitous tectonic petrofabrics inferred from anisotropy of magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent susceptibility (AARM). Its foliation and maximum extension dip and plunge gently northward, sub-parallel to a common but previously unreported North-dipping stylolitic cleavage. In well-known localized areas, there are S-vergent thrusts and overturned folds. The S-vergent deformation fabrics are due to Late Miocene (pre-Messinian ~8 Ma) deformation. The structures are geometrically consistent with overthrusting of the Cretaceous Troodos-Akamas ophiolite, and its sedimentary cover, onto the underlying Triassic Mamonia terrane. The northern limit of pre-Messinian tectonic fabrics, the Troodos-Mamonia terrane boundary and the Arakapas-Transform fault form an approximate E–W composite boundary that we term the Troodos Tectonic Front. Miocene deformation remagnetized the ophiolite and its sedimentary cover in many places and also affects the Mamonia terrane to the SW, with which the Troodos terrane docked in the late Cretaceous. Magnetic mineralogy, particularly of the RBM traces the progressive un-roofing of the ophiolite during the deposition of its sedimentary cover. During the submarine exposure and erosion of the ophiolite, the contribution of RBM clasts to the overlying sedimentary cover changed qualitatively and quantitatively. Thus, magnetic mineralogy of the sedimentary rock cover records the progressive denudation of the ophiolite from lavas, down through dikes, to gabbros and deeper mantle rocks. Palaeomagnetic studies previously revealed the anticlockwise rotation of the Troodos terrane and its northwards migration. Characteristic remanent magnetism (ChRM) is most reliable for lavas and dikes although it is usually carried by recrystallized RBM. These correspond to the age of greenschist facies ocean-floor metamorphism, perhaps 7–15 Ma after igneous crystallization with an extent and depth dependent on depth and degree of hydrothermal circulation. The gabbros and mantle rocks commonly bear young (<12 Ma) remanences probably acquired (or re-acquired) during uplift of the Troodos terrane. In the cover of pre-Messinian deformed limestone (>8 Ma), the remagnetizing effects of penetrative strain have been under-estimated. Where strain has occurred, un-tilting procedures produce erroneous restorations for the remanence vectors, and thus for the associated paleopoles. We find that de-straining of limestone sites most appropriately restores ChRM vectors to their original orientation. The best-determined and restored ChRMs define an apparent polar wander path (APWP). Since the APWP terminates at the present N-pole, we inverted it to determine the true plate-motion of the Troodos-terrane. Thus, in present-day coordinates, Troodos rocks moved ~1,000 km South; then ~4,500 km East and finally ~900 km North at an approximate rate of 75 km/Ma [1 km/Ma = 1 mm/a]. This true motion path commenced ~88 Ma ago and rates of motion since 65 Ma may be too high due to the limited precision of strain-corrections of the ChRM orientations in limestone. This true motion path is compatible with the eastward and then northward rotation of Africa relative to Europe although other workers show relative motion paths.  相似文献   

15.
Precambrian amphibolite and hyperite rocks from the Bamble and Kongsberg areas in SE Norway, and amphibolite rocks from SW Sweden were investigated for evidence of remagnetization by the Sveconorwegian metamorphic episode. The similarity of the characteristic natural remanent magnetization directions, shown by the various rocks from the Bamble and Kongsberg areas, indeed supports the idea of remagnetization on a regional scale. Therefore the average pole position at 3°S, 153°W, determined from six sites in these areas, is considered to reflect the average virtual pole position for the post-Sveconorwegian period of uplift and cooling (1,120–975) · 106 year ago. The pole positions determined from the characteristic natural remanent magnetization directions of amphibolite rocks in SW Sweden are indicative of being somewhat younger.In addition, two hyperite dikes were studied near Karlshamn in SE Sweden. Their characteristic natural remanent magnetization is consistent with that of the hyperite dikes in central south Sweden (Mulder, 1971).The Precambrian apparent polar wandering path for Europe is reconstructed on the basis of twenty-three pole positions from the Baltic Shield and three pole positions from Great Britain. This pole path requires an average angular rate of apparent polar wandering of 0.2–0.3° per 106 year.  相似文献   

16.
From Upper Cretaceous volcanic rocks of Southeast Sicily 107 cores from 19 sites were collected giving a mean palaeomagnetic pole position at 62°N, 223°E, A95 = 5.4° after AF-cleaning. This pole agrees with the Upper Cretaceous pole of Northern Africa indicating that no large post-Cretaceous relative motion has occurred between Africa and Sicily.  相似文献   

17.
Summary Directions of natural remanent magnetization aftermagnetic cleaning of specimens from monzonite porphyry at Milton are given. Thermal and alternating magnetic field stability tests indicate that the resultant direction is that of the earth's magnetic field at the time of cooling. Comprison of the pole position calculated from this result with other pole positions from rocks of known age confirms the probable Permian age of the intrusion and the wide divergence of Australian from European and North American pole positions of this age.  相似文献   

18.
This palaeomagnetic study is centered on agglomerates and volcanic rocks from the western margin of the Appalachian belt in the Drummondville-Actonvale-Granby area, Quebec (long.: 72°30′W, lat.: 46°00′N). It involves a total of 36 oriented samples (111 speciments) distributed over eleven sites. Both thermal and AF cleaning techniques were used to isolate residual remanent components. The dispersion of the directions is slightly reduced after AF cleaning and thermal treatment.The palaeopole position obtained is 191°E, 6°N (dm = 14°, dp = 7°) after thermal treatment and 164°E, 19°N (dm = 11°, dp = 6°) after AF cleaning. The polarity of most of the sites (two exceptions) are reversed. The thermal-treated data appear to be relatively stable and an approximate value of the primary magnetization is extracted from them. The palaeopole obtained does not lie close to the tentatively defined position of the Cambrian and Ordovician poles from rocks of the North American plate; it is located near the Upper Cambrian and Lower Ordovician poles from eastern Newfoundland and the Lower Ordovician pole from the Caledonides in Europe.  相似文献   

19.
A palaeomagnetic pole is established at 25.1°N 273.9°E (dp = 10.6°, dm = 14.3°) from the norite-charnockite complex at Angmagssalik, emplaced at 1800 Ma. A somewhat older palaeomagnetic pole at 4.2°S 246.7°E (dp = 4.2°, dm = 8.3°) is obtained from Archaean gneisses close to the northern boundary of the Nagssugtoqidian mobile belt; reversals of magnetization are present here. Both magnetizations were imposed during slow cooling following the (late) Nagssugtoqidian metamorphism.In general the gneisses, dyke amphibolites and granite of the Nagssugtoqidian mobile belt are unstably magnetized; their magnetization is attributable to the Earth's present field, and is often extremely weak.A pseudotachylyte within the Archaean gneisses has had a long cooling history. A fragment of the remanence reflects the magnetization characteristic of the Archaean gneisses, whereas most of the magnetization corresponds to a palaeomagnetic pole near that of the Angmagssalik complex. The pseudotachylyte is much older than its magnetizations.An apparent polar wander path is presented for Greenland at ca. 1750 Ma based on the above results and data from west Greenland.  相似文献   

20.
The present study summarizes the results of palaeomagnetic investigations of Carboniferous to Cretaceous rocks with respect to global-tectonic interpretations of Eurasia. Normal and reverse directions of stable remanence components were found for the Carboniferous to Cretaceous rocks within single outcrops, sometimes even within individual samples. Triassic, Permian and Carboniferous pole positions for Mongolia are strikingly different from those of the Siberian platform. The conclusion about the different palaeogeographical development of Mongolia with respect to the Siberian platform is well seen from differences in palaeolatitudes (up to 50°) and palaeorotations (up to 150°). The apparent polar wander paths for Mongolia and the north China block are almost identical since the Carboniferous. This way, palaeomagnetic and palaeogeographical data are contributing to the global-tectonics model of the regions under study. During the Carboniferous, Permian and Triassic, the regions of Mongolia investigated were not part of Eurasia. Together with the north China block, they show a palaeogeographical affinity with the Pacific Plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号