首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using thin elastic plate theory and neglecting horizontal applied forces, a universal deflection profile applicable to many oceanic trenches is derived. This theoretical profile is compared with bathymetric profiles from the central Aleutian, Kuril, Bonin, and Mariana trench-outer rise regions. The profiles were corrected for sediment thickness and age variation of the lithosphere. Good agreement between theory and observation is found. The distance from the first point of zero deflection seaward of the trench to the point of maximum height of the outer rise is directly related to the flexural rigidity of the lithosphere. The thickness of the elastic lithosphere is found to vary between 20 and 29 km for the trench profiles considered. The good agreement obtained shows that horizontal forces may be neglected and that the bending lithosphere behaves elastically in the cases considered. The analysis shows that only unreasonably large horizontal forces would affect the universal deflection curve. It is concluded that although the near-surface lithosphere may be subject to brittle fracture, the deeper lithosphere is capable of transmitting elastic stresses as high as 9 kbar.  相似文献   

2.
Leg 2 of the French-Japanese 1984 Kaiko cruise has surveyed the trench triple junction off central Japan, where the Japan, Izu-Bonin and Sagami Trenches intersect. The Izu-Bonin Trench is deeper than the Japan Trench and filled by a thick turbiditic series. Its anomalous depth is explained by the westward retreat of the edge of the northwestward moving Philippine Sea plate. On the contrary to what happens in the Japan Trench, horst and graben structures of the Pacific plate obliquely enters the Izu-Bonin Trench, suggesting that the actual boundary between these two trenches is located to the north of the triple junction. The inner wall of the Izu-Bonin Trench is characterized in the triple junction area by a series of slope basins whose occurrence is related to the dynamics of this area. The northernmost basin is overthrust by the edge of the fore-arc area of the Northeast Japan plate. The plate boundary is hardly discernible further east, which makes it impossible to locate precisely the triple junction itself. These features suggest that large intra-plate deformation occurs there due to the interaction of the plates involved in the triple junction and the weak mechanical strength of the wedge-shaped margin of the overriding plates.  相似文献   

3.
The problem of vibration isolation by rectangular open trenches in a plane strain context is numerically studied using a finite element code, PLAXIS. The soil media is assumed to be linear elastic, isotropic, and homogeneous subjected to a vertical harmonic load producing steady-state vibration. The present model is validated by comparing it with previously published works. The key geometrical features of a trench, i.e., its depth, width, and distance from the source of excitation, are normalized with respect to the Rayleigh wavelength. The attenuation of vertical and horizontal components of vibration is studied for various trench dimensions against trench locations varied from an active to a passive case. Results are depicted in non-dimensional forms and conclusions are drawn regarding the effects of geometrical parameters in attenuating vertical and horizontal vibration components. The screening efficiency is primarily governed by the normalized depth of the barrier. The effect of width has little significance except in some specific cases. Simplified regression models are developed to estimate average amplitude reduction factors. The models applicable to vertical vibration cases are found to be in excellent agreement with previously published results.  相似文献   

4.
Measurements of current velocity profiles during and after cresting of the Suwannee River in Northern Florida, USA, were used to investigate the effects of increased river discharge on subtidal flows near the estuarine transition with the Gulf of Mexico. Three moored velocity profilers were deployed across a lower estuary cross-section. The cross-section bathymetry consisted of a channel (∼5.5 m deep) near the western bank of the estuary that shoaled monotonically eastward. Two-layer gravitational exchange developed only in the deepest part of the cross-section during the river cresting and persisted for ∼20 days. After this ∼20-day period, the net flow decreased and was seaward throughout the water column. Net flows outside the channel were seaward throughout the observation period and were modulated by the river pulse. By comparing the estuarine response in the 5.5-m channel to theoretical responses driven by a dynamic balance between pressure gradient and stress divergence, a condition required for two-layered flow was proposed. Gravitational exchange flow should be expected when the ratio of density-driven flow to river-induced flow is greater than 0.23 to 0.28. Smaller values of this ratio should produce unidirectional, seaward flows after a river pulse. Two-layered flows restricted to the channel can be explained also with this ratio because of the sensitivity of density-driven flows to local depth and eddy viscosity. These findings need to be tested against observations in other systems affected by extreme freshwater pulses.  相似文献   

5.
傅容珊 《地球物理学报》1987,30(05):494-503
本文给出了在球层模型下,地球岩石层对表面荷载响应的解析解。计算了地球岩石层对圆盘形荷载和正弦型荷载的响应,及由此产生的重力异常。结果表明:1.岩石层弯曲不仅与其厚度有密切关系,而且与荷载尺度有关。当岩石层厚度与荷载尺度相比很小时,其弯曲与厚度关系不大,并呈现薄板效应。2.弹性模型岩石层在外加荷载下能承受数千巴的弯曲应力。3.弯曲应力在岩石层中的分布较为规则。由于大尺度荷载下岩石层出现薄板效应,传统的由弯曲刚度估算等效岩石层厚度的部分结果需要重新估价。  相似文献   

6.
本文给出了在球层模型下,地球岩石层对表面荷载响应的解析解。计算了地球岩石层对圆盘形荷载和正弦型荷载的响应,及由此产生的重力异常。结果表明:1.岩石层弯曲不仅与其厚度有密切关系,而且与荷载尺度有关。当岩石层厚度与荷载尺度相比很小时,其弯曲与厚度关系不大,并呈现薄板效应。2.弹性模型岩石层在外加荷载下能承受数千巴的弯曲应力。3.弯曲应力在岩石层中的分布较为规则。由于大尺度荷载下岩石层出现薄板效应,传统的由弯曲刚度估算等效岩石层厚度的部分结果需要重新估价。  相似文献   

7.
中国海-西太平洋莫霍面深度分布特征及其地质意义   总被引:4,自引:4,他引:0       下载免费PDF全文
中国海-西太平洋位于欧亚板块、印澳板块和太平洋板块的交汇处,构造运动剧烈,地质情况复杂,是认识板块运动、洋陆相互作用、物质交换和能量传递不可多得的窗口,而莫霍面深度对于研究壳幔结构以及深部动力过程有着重要的意义.本文使用最新的覆盖全球的重力和地形数据,收集了深地震测深、多道地震测深等剖面183条,数字化得到2982个控制点,使用带控制点的三维界面反演方法来约束反演过程,得到中国海-西太平洋莫霍面深度,由莫霍面形态分析可知大洋板块的俯冲和印澳板块与欧亚板块的碰撞对西太平洋边缘海的形成演化有着重要作用.结合地热、岩石圈厚度、地震活动等地质地球物理资料,分析得知研究区内各个海域莫霍深度和地壳性质的变化是处于不同构造演化阶段的表现.并在马里亚纳沟弧盆拟合一条重力2.5维剖面,结果表明热物质上涌导致了马里亚纳海槽处地幔密度减小,马里亚纳海槽以及帕里西维拉海盆到西马里亚纳海岭的下地壳高密度异常是由残留的岩浆岩引起的.  相似文献   

8.
We construct a viscoelastic FEM model with 3-D configuration of the subducting Philippine Sea plate in Southwest Japan to simulate recent 300-year kinematic earthquake cycles along the Nankai-Suruga-Sagami trough, based on the kinematic earthquake cycle model. This 300-year simulation contains a series of three great interplate earthquakes. The inclusion of viscoelasticity produces characteristic velocity field during earthquake cycles regardless of the assumed constant plate coupling throughout the interseismic period. Just after the occurrence of interplate earthquakes, the viscoelastic relaxation creates the seaward motion in the inland region. In the middle period, the seaward motion gradually decreases, and the resultant velocity field is similar to the elastic one. Later, just before the next interplate earthquake, displacements due to the interplate coupling in the viscoelastic material are distributed more broadly in the forearc region than in the purely elastic one, since the viscoelastic relaxation due to the previous earthquake mostly disappears. The effects of such interplate earthquake cycles on five major inland faults in southwest Japan, where large intraplate earthquakes occurred during this period, are quantitatively evaluated using the Coulomb failure function (CFF). The calculated change in CFF successfully predicts the occurrence of the 1995 Kobe earthquake (M~7). The occurrence of other inland earthquakes, however, cannot be explained by the calculated changes in CFF, and especially the 1891 Nobi earthquake (M~8), the largest inland earthquake in Japan, which occurred at the time close to the local minimum of CFF. This implies that further improvements are necessary for our FEM modeling, such as the modeling of steady east-west compressive force and stress interactions between the inland faults.  相似文献   

9.
An increasing number of seismological studies indicate that slabs of subducted lithosphere penetrate the Earth's lower mantle below some island arcs but are deflected, or, rather, laid down, in the transition zone below others. Recent numerical simulations of mantle flow also advocate a hybrid form of mantle convection, with intermittent layering. We present a multi-disciplinary analysis of slab morphology and mantle dynamics in which we account explicitly for the history of subduction below specific island arcs in an attempt to understand what controls lateral variations in slab morphology and penetration depth. Central in our discussion are the Izu-Bonin and Mariana subduction zones. We argue that the differences in the tectonic evolution of these subduction zones—in particular the amount and rate of trench migration—can explain why the slab of subducted oceanic lithosphere seems to be (at least temporarily) stagnant in the Earth's transition zone below the Izu-Bonin arc but penetrates into the lower mantle below the Mariana arc. We briefly speculate on the applicability of our model of the temporal and spatial evolution of slab morphology to other subduction zones. Although further investigation is necessary, our tentative model shows the potential for interpreting seismic images of slab structure by accounting for the plate-tectonic history of the subduction zones involved. We therefore hope that the ideas outlined here will stimulate and direct new research initiatives.  相似文献   

10.
Using bathymetry and altimetric gravity anomalies, a 1° 9 1° lithospheric effective elastic thickness(Te) model over the Louisville Ridge and its adjacent regions is calculated using the moving window admittance technique. For comparison, three bathymetry models are used: general bathymetric charts of the oceans, SIO V15.1,and BAT_VGG. The results show that BAT_VGG is more suitable for calculating T e than the other two models. T e along the Louisville Ridge was re-evaluated. The southeast of the ridge has a medium Te of 10–20 km, while Te increases dramatically seaward of the Tonga-Kermadec trench as a result of the collision of the Pacific and IndoAustralian plates.  相似文献   

11.
日本俯冲带与IBM俯冲带位于太平洋板块、菲律宾海板块和欧亚板块三者的交汇地带,是典型的"俯冲工厂"地区,具有重要的研究意义.本文利用震源分布资料与卫星重力数据对日本俯冲带与IBM俯冲带进行了研究.通过空间重力异常反映了俯冲带地区的区域构造形态,在此基础上基于艾利模式计算了均衡异常以反映地壳均衡特征.利用震源分布资料,分别从垂直俯冲带走向与沿俯冲带走向划定了横截剖面(cross-sections)进行了地震提取,讨论了俯冲带地区的Wadati-Benioff带形态特征,并借助于俯冲带地震等深线图直观描述了俯冲带的俯冲形态.在日本俯冲带与伊豆-小笠原俯冲带各选取了一条典型剖面进行了重力2.5D反演,研究了俯冲带地区的壳幔结构特征.研究结果表明,九州-帕劳海脊与IBM岛弧在均衡异常上存在差异,前者已逐渐趋向于地壳均衡.IBM的Wadati-Benioff带存在明显的南北差异,反映出伊豆-小笠原俯冲板片停留在了660 km转换带中,而马里亚纳俯冲板片很可能垂直穿过了这一转换带,造成这种南北差异的原因与板块相对运动、岩石圈黏性和年龄差异以及俯冲板片的重力效应等因素有关.在IBM的中部和南部存在板片撕裂现象.日本俯冲带的俯冲洋壳密度随俯冲深度变化较小,洋幔存在一定程度的蛇纹岩化,地幔楔蛇纹岩化作用不典型,海沟处有一范围较小的含水畸变带;伊豆-小笠原俯冲带俯冲洋壳密度随深度增大而明显增大,洋幔蛇纹岩化程度较日本俯冲带低,地幔楔蛇纹岩化作用强烈,板块交汇处存在明显的蛇纹岩底辟.日本俯冲带与IBM俯冲带一线自北向南板片俯冲变陡,两侧板块耦合度降低,与俯冲带两侧的板块运动速率差异有关.  相似文献   

12.
— In September 1999, we collected seven high resolution seismic reflection profiles along the northern continental margin of Papua New Guinea, which targeted the source region of the 1998 tsunami that inundated Sissano Lagoon. We utilized swath bathymetry collected by the JAMSTEC/SOPAC groups in January 1999. The seismic profiles image several faults, bottom simulating reflectors, and a large rotational slump. The slump has a head scarp of 100 m vertical extent, coinciding with the headwall and tension cracks observed previously by submersible at the southern edge of the amphitheater. The central, back-rotated part of the slump is coherent with parallel reflections. The interpreted basal failure plane has a maximum depth of 760 m below the seafloor, and it crops out at a steep escarpment, about 100 meters high, located 4.5 km north of the head scarp. This escarpment separates the slide toe from a series of seafloor-parallel, coherent reflections that are top-lapped by basin deposits at the foot of the amphitheater to the north. The cross-sectional area of the displaced mass is 2.3 km2. From the bathymetry, the width is approximately 2.5–3 km, yielding a total volume (assuming parabolic shape) of 3.8–4.6 km3. Based on these interpretations, the slump was restored to its undeformed position. This technique yields a center of mass vertical drop of 380 m, horizontal movement of 840 m and slip of 980 m along the slide plane.  相似文献   

13.
Non erosive margins are characterized by heavily sedimented trenches which obscure the morphological expression of the outer rise; a forebulge formed by the bending of the subducting oceanic lithosphere seaward of the trench. Depending on the flexural rigidity (D) of the oceanic lithosphere and the thickness of the trench sedimentary fill, sediment loading can affect the lithospheric downward deflection in the vicinity of the trench and hence the amount of sediment subducted. We used seismic and bathymetric data acquired off south central Chile, from which representative flexural rigidities are estimated and the downward deflection of the oceanic Nazca plate is studied. By flexural modeling we found that efficient sediment subduction preferentially occurs in weak oceanic lithosphere (low D), whereas wide accretionary prisms are usually formed in rigid oceanic lithosphere (high D). In addition, well developed forebulges in strong oceanic plates behaves as barrier to seaward transportation of turbidites, whereas the absence of a forebulge in weak oceanic plates facilitates seaward turbidite transportation for distances >200 km.  相似文献   

14.
SeaBeam multibeam bathymetry obtained during cruise SO-69 of research vessel (R/V) Sonne defines the segmentation and structure of ∼ 300 km of the Mariana back-arc spreading center south of the Pagan fracture zone at 17°33'N. Eight ridge segments, ranging from 14 to 64 km in length, are displaced as much as 2.7–14.5 km by both right- (predominantly) and left-lateral offsets and transform faults. An axial ridge commonly occupies the middle portion of the rift valley and rises from 200 to 700 m above the adjacent sea floor, in places shoaling to a water depth of 3200 m. An exception is the 60-km-long segment between 16°58' and 17°33'N where single peaks only a few tens of meters high punctuate the rift axis. Photographic evidence and rock samples reveal the presence of mostly pillow lavas outcropping on the axial ridges or peaks whereas the deeper parts of the rift valley floor (max. depth 4900 m) are heavily to totally sedimented. Abundant talus ramps along fault scarps testify to ongoing disruption of the crust. Lozenge-shaped collapse structures are covered by layers of sediment up to tens of centimeters thick on the rift valley floor. The presence of discrete volcanic ridges in the southern Mariana back-arc spreading region suggests that emplacement of oceanic crust at this slow spreading center occurs by `multi-site' injection of magma. Along-axis variations in length, crestal depth, and size of the axial ridges can be best explained by different stages in the cyclicity of magma supply along-axis.  相似文献   

15.
Syntheses of the regional stress fields of the Japanese islands   总被引:4,自引:0,他引:4  
The principal stresses in northern Honshu and in central-southwest Japan are synthesized on the basis of the ridge push, slab pull and across-arc variation of differential forces due to crust/plate structural variation. Assuming a more compressive north–south horizontal stress in central Japan-northern Honshu than that of southwest Japan, the calculated principal stress profiles explain the observed stress fields in these areas: namely, a strike–slip fault type for southwest-central Japan and a reverse fault type for northern Honshu, both having east–west σHmax. Kyushu is characterized by the gradient of horizontal stresses both in the east–west and north–south directions, which cannot be explained by simple plate interactions or by crust/plate structural variation. Combined with other lines of evidence for existence of mantle upwelling in the East China Sea west of Kyushu, it is proposed that the stress gradient is produced by the viscous drag exerted by the flow spread laterally from the upwelling plume. The eastward movement of Kyushu and southwest Japan relative to Eurasia revealed by the recent Global Positioning System measurements conducted by the Geographical Survey Institute of Japan would be partly explained by this basal drag.  相似文献   

16.
This paper advances new evidence for elastic anisotropy in the continental subcrustal lithosphere in southern Germany. The range of petrological models compatible with the observed azimuthal variation of seismic P-wave velocity is explored. The azimuthal distribution of amplitudes of mantle phases and the observed increase of P velocity with depth both indicate a continuation of anisotropy with depth together with an increase of preferred orientation. Even depletion of the upper mantle in basaltic components, as suggested by mantle xenoliths from various parts of Germany, cannot explain the velocity-depth and azimuthal amplitude observations without an increase of anisotropy with depth.Preferred orientation of olivine is the most likely mechanism for the observed phenomena. Its fast a-axis at the Moho level is directed towards N22.5°E. The b-axis is also required to be horizontal; i.e., the b-plane, one of the preferred glide planes of olivine, is vertical, with a strike of N22.5°E. Therefore, this preferred glide plane of olivine practically coincides with the plane of maximum horizontal shear stress deduced from fault-plane solutions of earthquakes in western Germany. This is a strong indication that the preferred orientation of olivine is formed in the recent West European crustal stress field leaking into the upper mantle. The distribution of velocities to a depth of at least 50 km requires slight horizontal rotation of the a-axis with depth by ~ 10° towards N32°E, and a change in the modal composition towards a depletion increasing with depth compatible with the composition of mantle xenoliths from western Germany. Further experiments are needed to substantiate this suggestion, which could lead to a better understanding of the interaction of crustal and upper-mantle stress-strain fields.  相似文献   

17.
The densities of silicate liquids with basic, picritic, and ultrabasic compositions have been estimated from the melting curves of minerals at high pressures. Silicate liquids generated by partial melting of the upper mantle are denser than olivine and pyroxenes at pressures higher than 70 kbar, and garnet is the only phase which is denser than the liquid at pressures from 70 kbar to at least 170 kbar. In this pressure range, garnet and some fraction of liquid separate from ascending partially molten diapirs. It is therefore suggested that aluminium-depleted komatiite with a high Ca/OAl2O3 ratio may be derived from diapirs which originated in the deep upper mantle at pressures from 70 kbar to at least 140 kbar (200–400 km in depth), where selective separation of pyropic garnet occurs effectively. On the other hand, aluminium-undepleted komatiite is probably derived from diapirs originating at shallower depths (< 200 km). Enrichment of pyropic garnet is expected at depths greater than 200 km by selective separation of garnet from ascending diapirs. The 200-km discontinuity in the seismic wave velocity profile may be explained by a relatively high concentration of pyropic garnet at depths greater than 200 km.  相似文献   

18.
The relation between the horizontal profiles of the subsurface resistivity and surface magnetotelluric data can be described by the input and output of a moving-average filter. The impulse response of this spatial filter, which characterizes the averaging process of the magnetotelluric measurements, is given by the sensitivity profile. Thus, the sensitivity analysis can provide insight into the characteristics of the measurements and hence the mechanism of the static effects. The sensitivity analysis presented here consists of constructing the vertical section of the sensitivity distribution using the finite-element method and then Fourier transforming the selected horizontal profiles. When the dipole is assumed for measuring the electric field, the static effects can be explained by the high-pass filter characteristics for the near-surface. When the electrode separation is taken into account, the sensitivity can be obtained by averaging the sensitivities for the dipoles over the horizontal distance equal to the electrode separation. Therefore, the higher-frequency components at each depth decrease with increasing electrode separation. Thus, although the static effects can be reduced simply by increasing the electrode separation, information on the resistivity variation at depth is also lost. However, such an adverse effect can be reduced by making the EMAP-type measurements followed by the spatial filtering of the profile data using the tapered weighting function.  相似文献   

19.
Emiko  Ikeda  Yasufumi  Iryu  Kaoru  Sugihara  Hideo  Ohba  Tsutomu  Yamada 《Island Arc》2006,15(4):407-419
Abstract Investigations were conducted on bathymetry, reef biota and sediments on the Hirota Reef, Tane‐ga‐shima, North Ryukyus, near the northern limit for coral‐reef formation. A bathymetric profile from shore to the reef edge was depicted along an approximately 420‐m transect on the Hirota Coast of this island. A total of 20 quadrats (1 m × 1 m) were analyzed along the profile at 10‐ or 20‐m intervals to clarify distribution of macrobenthos inhabiting the reef. The Hirota Reef is divided into four geomorphologic zones according to their depth, gradient, surface roughness, substrate and characteristic macrobenthos. They are, from shore to offshore, shallow lagoon, seaward reef flat, reef edge and reef slope. The shallow lagoon comprises a shoreward depression (∼160 m wide on the transect) with a sand/gravel bottom that inclines gently toward offshore, and a seaward patch zone (∼70 m wide). The patches (<2 m high) are covered with fleshy algae, coralline algae and hermatypic corals. The seaward reef flat (∼190 m wide) is a flat plane that is constructed by biogenic carbonates and is covered with turf algae, with hermatypic corals scattered. Although the seaward reef flat of the Hirota Reef cannot be differentiated into different geomorphologic zones, similar seaward reef flat areas in the Central and South Ryukyus can be clearly subdivided into inner reef flat, reef crest and outer reef flat. This difference may be attributed to a lower reef growth rate and/or the later reef formation of the Hirota Reef in Holocene time than the southern examples. The coral fauna on the Hirota Reef is delineated by low diversity and characterized by taxa typical of high‐latitude, non‐reefal communities. The algal flora consists of tropical to subtropical species associated with warm‐temperate species. These faunal and floral characteristics may be related largely to lower water temperature in Tane‐ga‐shima than those in typical coral‐reef regions.  相似文献   

20.
We try to find how often, and in what regions large earthquakes (M≥7.0) occur within the shallow portion (20-60 km depth) of a subducting slab. Searching for events in published individual studies and the Harvard University centroid moment tensor catalogue, we find twenty such events in E. Hokkaido, Kyushu-SW, Japan, S. Mariana, Manila, Sumatra, Vanuatu, N. Chile, C. Peru, El Salvador, Mexico, N. Cascadia and Alaska. Slab stresses revealed from the mechanism solutions of these large intraslab events and nearby smaller events are almost always down-dip tensional. Except for E. Hokkaido, Manila, and Sumatra, the upper plate shows horizontal stress gradient in the arc-perpendicular direction. We infer that shear tractions are operating at the base of the upper plate in this direction to produce the observed gradient and compression in the outer fore-arc, balancing the down-dip tensional stress of the slab. This tectonic situation in the subduction zone might be realized as part of the convection system with some conditions, as shown by previous numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号