首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All radiometric systems indicate that crust-mantle differentiation on the moon is dominated by events which occurred very early in lunar history. However, due to remaining uncertainties in model parameters and assumptions in the calculation of model ages, it is not yet possible to resolve the precise times of occurrence of these events nor the duration of the formation of the highlands crust. The strongest time constraints are offered by direct radiometric ages of samples formed during this earliest period. Two possible candidates for this material, norites 78236 and 73255,27,45, were examined utilizing the Sm-Nd radiometric system. Sm-Nd systematics of 78236 show post-crystallization disturbance but indicate that this norite crystallized in the lunar crust about 4.34 AE ago. Data for 73255,27,45 define an isochron and yield a crystallization age of 4.23 ± 0.05 AE. The initial Nd isotopic composition of both norites is within uncertainty of a “chondritic” reference reservoir at the time of their respective crystallizations. The implications for lunar crustal formation persisting over a time span of close to 350 m.y. are discussed.  相似文献   

2.
We report Sr, Nd, and Sm isotopic studies of lunar basalt 12038, one of the so-called aluminous mare basalts. A precise internal Rb-Sr isochron yields a crystallization age of 3.35±0.09 AE and initial87Sr/86Sr=0.69922?2 (2σ error limits, 1AE=109 years, λ(87Rb)=0.0139AE?1). An internal Sm-Nd isochron yields an age of 3.28±0.23AE and initial143Nd/144Nd=0.50764?28. Present-day143Nd/144Nd is less than the “chondritic” value, i.e. ?(Nd, 0)=?2.3±0.4 where ?(Nd) is the deviation of143Nd/144Nd from chondritic evolution, expressed as parts in 104. At the time of crystallization ?(Nd, 3.2AE)=1.5±0.6.We have successfully modeled the evolution of the Sr and Nd isotopic compositions and the REE abundances within the framework of our earlier model for Apollo 12 olivine-pigeonite and ilmenite basalts. The isotopic and trace element features of 12038 can be modeled as produced by partial melting of a cumulate mantle source which crystallized from a lunar magma ocean with a chondrite-normalized REE pattern of constant negative slope. Chondrite-normalized La/Yb=2.2 for this hypothetical magma ocean pattern. A plot of I(Sr) versus ?(Nd) for the Apollo 12 basalts clearly shows the influence of varying proportions of olivine, clinopyroxene, orthopyroxene, and plagioclase in the basalt source regions. A small percentage of plagioclase (~5%) in the 12038 source apparently is responsible for low I(Sr) and ?(Nd) in this basalt. Aluminous mare basalts from Mare Crisium (Luna 24) and by inference Mare Fecunditatis (Luna 16) occupy locations on the I(Sr)-?(Nd) plot similar to that of 12038, implying that some basalts from three widely separated lunar regions came from plagioclase-bearing source regions. A summary of model calculations for mare basalts shows a record of lunar mantle solidification during the period when REE abundances in the lunar magma ocean increased from ~20× chondritic to >100× chondritic. Although there is a general trend from olivine to clinopyroxene-dominated source regions with progressive magma ocean evolution, significant mineralogical heterogeneities in mantle composition apparently formed at any given stage of evolution, as evidenced in particular by the three Apollo 12 magma types.  相似文献   

3.
We report on a40Ar-39Ar study of the Apollo 16 breccia 67435 and present ages of five samples representing matrix, lithic clasts and plagioclase clasts. While the matrix age spectrum does not have a well-defined plateau, the two lithic clasts gave plateau ages of 3.96 and 4.04 AE. Since all samples had apparent ages of ~1 AE in the fractions ≤600°C extraction temperature, the breccia might have been assembled in a rather mild process at about that time or even more recently out of material with different metamorphic ages. The two plagioclase samples, of which one was a single 9-mg mineral clast and the other a 15-mg composite of several clasts, also have ages of ~1 AE in the low-temperature release fractions, but are apparently undisturbed by any ~4-AE events since they both have well-defined plateaux at 4.42 AE. The age of these strongly calcic plagioclase clasts, believed to be remnants of the anorthositic lunar crust, establishes a lower age limit to the end of the early lunar differentiation and thus places a strong constraint to the lunar evolution.  相似文献   

4.
Pristine samples from the lunar highlands potentially offer important information bearing on the nature of early crustal development on all the terrestrial planets. One apparently unique sample of this group of lunar crustal rocks, the feldspathic lherzolite 67667, was studied utilizing the Sm-Nd radiometric system in an attempt to define its age and the implications of that age for the evolution of the lunar highlands. Data for 67667 precisely define an isochron corresponding to an age of 4.18±0.07 AE. The observed lack of disturbance of the Sm-Nd system of this sample may suggest that this time marks its crystallization at shallow depth in the lunar crust. However, the possibility that this age, as well as those of other highland rocks, indicate the time of their impact-induced excavation from regions deep enough in the lunar crust to allow subsolidus isotopic equilibrium to be produced or maintained between their constituent minerals is also considered. Taken together, bulk rock Sm-Nd data for four “high-Mg” rocks, including 67667, indicate that the chemical characteristics of all their source materials were established 4.33±0.08 AE ago and were intimately associated with the parent materials of KREEP. This finding provides more support for the concept of a large-scale differentiation episode early in lunar history. The possible roles of the crystallization of a global magma ocean, endogenous igneous activity, and of planetesimal impact, in producing the observed geochemical and chronological aspects of lunar highland rocks are discussed.  相似文献   

5.
Sm-Nd and Rb-Sr analyses of tektites and other impactites can be used to place constraints on the age and provenance of target materials which were impact melted to form these objects. Tektites have large negative εNd(0) values and are uniform within each tektite group while the εSr(0) are large positive values and show considerable variation within each group. Chemical, trace element, and isotopic compositions of tektites are consistent with production by melting of sediments derived from old terrestrial continental crust. Each tektite group is characterized by a uniform Nd model age,TCHURNd, interpreted as the time of formation of the crustal segment which weathered to form the parent sediment for the tektites: (1) ~1.15 AE for Australasian tektites; (2) ~1.91 AE for Ivory Coast tektites; (3) ~0.9 AE for moldavites; (4) ~0.65 AE for North American tektites, and (5) ~0.9 AE for high-Si irghizites. Sr model ages,TURSr, are variable within each group reflecting Rb-Sr fractionation and in the favorable limit of very high Rb/Sr ratios, approach the time of sedimentation of the parent material which melted to form the tektites. Australasian tektites are derived from ~0.25 AE sediments, moldavites from ~0.0 AE sediments, Ivory Coast tektites from ~0.95 AE sediments. Possible parent sediments of other tektite groups have poorly constrained ages. Our data on moldavites and Ivory Coast tektites are consistent with derivation from the Ries and Bosumtwi craters, respectively. Irghizites are isotopically distinct from Australasian tektites and are probably not related. Sanidine spherules from a Cretaceous-Tertiary boundary clay have initial εNd ~ +2; εSr ~ +5 and are not derived from old continental crust or meteoritic feldspar. They may represent a mixture of basaltic oceanic crust and sediments, implying an oceanic impact. These isotopic results are also consistent with a volcanic origin for the spherules.  相似文献   

6.
The Shabogamo Intrusive Suite comprises numerous bodies of variably metamorphosed gabbro which intrude Archean and Proterozoic sequences at the junction of the Superior, Churchill, and Grenville structural provinces in western Labrador. Combined Sm-Nd and Rb-Sr systematics in two bodies, ranging from unmetamorphosed to lightly metamorphosed, document a crystallization age of about 1375 m.y., and suggest that both bodies crystallized from magmas with similar Nd and Sr isotopic compositions. This age is in accordance with the existence of a regional magmatic event in the Churchill Province at approximately 1400 m.y.Rb-Sr systematics in two bodies of amphibolite-grade gabbro suggest a regional metamorphic event at about 950 m.y., corresponding to the waning stages of Grenville activity. Sm-Nd systematics in these high-grade bodies are affected to a much lesser degree than Rb-Sr.Initial ratios for143Nd/144Nd and87Sr/86Sr are lower and higher, respectively, than bulk earth values at 1375 m.y. Both these displacements are in the direction of older crustal material at 1375 m.y., and a model is proposed to produce the Shabogamo magma by mixing a mantle-derived magma with a partial melt of crustal rocks (approximately 4: 1 by volume). Young volcanic rocks with anomalous Nd and Sr isotopic ratios, which have previously been taken as evidence for “enriched” mantle, may be interpreted similarly.  相似文献   

7.
Metasedimentary and metavolcanic rocks from the Archaean of West Greenland have been examined for evidence of crustal components greater than 3.8 Ga in age and for their compatibility with the presently adopted bulk Earth Sm-Nd parameters. Sm-Nd isotopic data have been obtained for the garbenschiefer metagabbro unit, metasediments from the Isua supracrustal belt, gneisses interior to the Isua belt and metasediments from the Malene supracrustal belt.Using estimates of emplacement age (T) of between 3.77 and 3.67 Ga for the parental volcanics to the garbenschiefer unit, initial143Nd/144Nd ratios yield positiveεNdT values between +1.0 and +3.1 (relative to the CHUR parameters) for seven out of eight samples. Model Sm-Nd ages for the Isua gneisses and metasediments are only compatible with their estimated stratigraphic ages if their sources were ca.+2εNd relative to CHUR at those times. Similarly, model Sm-Nd ages for the Malene samples are only compatible with stratigraphic age constraints when based on a source evolution with positiveεNdT. Implications of these results for the early development of the Earth's mantle are discussed.  相似文献   

8.
We report the results of thermal-release argon analyses of neutron-irradiated green glass spherules separated from lunar sample 15426. The gas-retention age, as determined by the40Ar39Ar method, is (3.38 ± 0.06) X 109yr. This age is similar to those of local mare basalts and distinct from the ages of Appenine Front samples recovered from the same region as 15426. Trapped argon is present in near-surface regions of the spherules, and can be resolved into at least two components requiring separate origins, a shallow (0.1 μ) component with40Ar/39Ar > 30, and a deeper (2 μ) component with 40Ar/36Ar= 2.9. The ratio of trapped40Ar to36Ar is higher than found in any lunar soil and suggests that the trapped gas was implanted early in the spherules' history. The cosmic-ray exposure age is 300 my.  相似文献   

9.
Major isotopic age discordances are found at the eastern margin of a terrane in SW Montana which underwent metamorphism 1.6 AE ago (1AE= 109years). In Portal Creek, a one-mile portion of a traverse across this margin yields: (1) discordant whole rock Rb-Sr ages which approximate 2.8 AE; (2) seven biotite Rb-Sr ages concordant at 1.68 AE; (3) fifteen biotite K-Ar ages which are highly discordant and range from 1.63 to 3.25 AE; (4) ten generally concordant hornblende K-Ar ages at 1.9 AE. It is concluded that there was a major resetting event for the hornblendes at 1.9 AE ago. This was followed by a milder (?) event at 1.6 AE when the biotites became open systems while the hornblende did not. During this time, the biotites lost all their radiogenic87Sr, but actually gained radiogenic40Ar in amounts up to 16.0 × 10−4 scc Ar/g biotite. There is clear evidence of the incorporation of87Sr into minor amphibolitic layers which occur occasionally in these generally quartzo-feldspathic rocks.  相似文献   

10.
The times of original fractionation of the Sm and Nd component of clastic sediments from a mantle source (≡ crustal residence age) have been estimated from Sm-Nd model ages calculated relative to a depleted mantle evolution. In this way the provenance and evolution of selected Precambrian and Phanerozoic sediments and metasediments from the British Isles have been examined. Whereas some Archaean and early Proterozoic sediments have Sm-Nd model ages that are close to their stratigraphic age, the Phanerozoic sediments analysed have model ages as much as 2.0 Ga in excess of their stratigraphic age.A more detailed study of Lower Palaeozoic sediments deposited on the northern margin of the Iapetus Ocean provides evidence for a marked change of provenance in the Ordovician after the deposition of the Dalradian Supergroup. A component with comparatively high143Nd/144Nd and Sm/Nd ratio (presumably basaltic) is present in the sediments throughout the accretionary prism. Crustal residence age estimates average about 1.5 Ga for both these Lower Palaeozoic sediments, and modern pelagic clays, and collectively fail to provide any evidence for significant continental growth during the Phanerozoic.  相似文献   

11.
Measurements of143Nd/144Nd and147Sm/144Nd are reported for whole rocks and mineral separates from granulites of the Napier Complex at Fyfe Hills. Charnockites, leuconorites and gabbros yield a whole rock SmNd isochron age of3060 ± 160m.y. and an initial143Nd/144Nd ratio of0.50776 ± 10 (?Nd(3060m.y.) = ?2.0 ± 1.8). The negative ?Nd value and the presence of geologically induced dispersion in the data suggest that the isochron age does not represent the time of primary crystallization of the complex but instead indicates a time of later redistribution of Sm and Nd and partial re-equilibration of143Nd/144Nd ratios. This probably occurred during the upper granulite facies metamorphism which has also been dated at~ 3100m.y. by RbSr and UPb zircon studies [1]. Coexisting clinopyroxene, apatite and total rock fractions in two adjacent samples define an approximately linear array corresponding to an age of 2300 ± 300 m.y. This array indicates that redistribution of Sm and Nd and re-equilibration of143Nd/144Nd ratios occurred on an intermineral scale during the upper amphibolite to lower granulite facies metamorphism at~ 2450m.y.Due to the resetting of the SmNd system on both whole rock and mineral scales, the primary crystallization age of the igneous protolith is not well constrained by the present data, although it is clearly3100m.y. If it is assumed that the complex was derived initially from a depleted mantle reservoir(?Nd(T) ? 2), evolution of the negative ?Nd value of ?2.0 with the observed Sm/Nd ratios requires a prehistory of~ 380m.y. This implies a primary age of~ 3480m.y. However, substantially older primary ages can be inferred if the source reservoirs had?Nd(T) > 2 and/or substantial reductions in the Sm/Nd ratio occurred in whole rocks during the granulite facies metamorphism at 3100 m.y. Such an inferred reduction in the Sm/Nd ratio may have been the result of preferential loss of Sm relative to Nd, or introduction of a low Sm/Nd fluid with?Nd ≥ 0 during granulite facies metamorphism.  相似文献   

12.
The Qinling Mountains in central China are the joint orogenic zone between the Sino-Korean (or North China) and the Yangtze craton blocks. The age and genesis of the Danfeng mafic volcanics in the north of the Shangzhou-Danfeng fault zone, i.e. the main suture zone in the Qinling orogenic belt, have been controverted for a long time because their age is closely related to the converged time of two blocks. The ages and the geochemical data of the Heihe pillow lavas for the Danfeng mafic volcanics in the Heihe River area in the Qinling orogen are reported in this paper. The obtained isochron age by the Sm-Nd isotopic data of the 13 whole-rock samples for the mafic pillow lavas is 963±130 () Ma, corresponding to INd = 0.51173±16 (),ɛ Nd(T)= +6.6, MSWD0.57. However, the Rb-Sr isotopic analytical results for the same samples as the Sm-Nd whole-rock ones are disperse. For the Sm-Nd isotopic systems were interfered during the later geological functions, the Sm-Nd isochron age for the whole-rock sample (Q9511WR) and the mineral phenocrystal samples: amphiboles (Hb) and plagioclases (Plag) presents the better uncertainty, whereas isochron ages of 930 Ma and 437 Ma are given if the WR-Plag and WR-Hb are calculated respectively, and their Rb-Sr isochron age is 268±47(2σ) Ma, Isr = 0.70475±11 (2σ), MSWD0.96. The major and trace elements for the lavas show that they were formed in the quasi-N-MORB setting.  相似文献   

13.
Some anomalous red features observed on the moon by Whitaker are examined in detail. Crater counts and regional stratigraphy suggest that ages for these features are comparable to that of lunar highland material. Initial gamma-ray spectrometry indicates higher than average native radioactivity is associated with certain red areas. A possible explanation for these observations is that the red objects are the surface manifestation of highly radioactive pre-mare basalts (Apollo 14/KREEP/norite material). Conclusive proof of the nature of these objects will depend on the study of returned samples, making them ideal candidates for future space missions, especially for unmanned vehicles such as the Soviet Union's Luna 20.  相似文献   

14.
The quartzo-feldspathic charnockitic orthogneisses within the Bamble sector of the so-called Sveconorwegian (1.2–0.9 b.y.) zone are highly fractionated in K and Rb such that they comprise two chemically contrasting zones — one highly K, Rb-deficient and the other with values of the same order as upper crustal lithologies.Eight series of samples, each collected from single outcrops, have yielded Rb-Sr total rock apparent ages in two distinct groups, at ~1540 and ~1060 m.y. Outcrops in both the K-deficient and normal-K suites have produced examples of each age. The older age relates to the high-grade charnockite event, and the younger to a superimposed low-grade event which occurred at the same time as the intrusion of undeformed granite sheets and pegmatite dikes; one of the granites has yielded an isochron age of 1063 ± 20 m.y. The low-grade event involved only the partial alteration of orthopyroxenes to chlorite and/or serpentine, coupled with some corrosion of biotite; the alterations were initiated along narrow, irregularly spaced, cracks and it was their development which facilitated open system behaviour of the total rock isotopic systems at some localities. The degree of rehomogenisation is a function of the intensity of the secondary alterations.Confirmation of resetting at ~1060 m.y. is given by four mineral + host rock isochrons all yielding ages within error of the age for the intrusive granite; two of these are from outcrops where the rocks retain the older ~1540-m.y. age.The secondary total rock isotopic homogenisation cannot be explained adequately by Rb mobility or by simple mixing with a fluid having its own initial87Sr/86Sr composition. The primary mineralogy may have determined whether individual localities and/or samples suffered net increases or net decreases in87Sr/86Sr.An important implication of the results is that in this, or any similar geological situation, there would be a very real possibility of drawing erroneous conclusions from regionally-collected samples, particularly if the full significance of the later, relatively minor P-T event remained undetected and/or the scale of isotopic (re-)homogenisation, were unknown. It is only because of the methods adopted that it can be stated that there is no isotopic evidence for a high grade Sveconorwegian (Grenvillian) event in this part of southern Norway.  相似文献   

15.
Sm-Nd isotopic evolution of chondrites   总被引:8,自引:0,他引:8  
The143Nd/144Nd and147Sm/144Nd ratios have been measured in five chondrites and the Juvinas achondrite. The range in143Nd/144Nd for the analyzed meteorite samples is 5.3 ε-units (0.511673–0.511944) normalized to150Nd/142Nd= 0.2096. This is correlated with the variation of 4.2% in147Sm/144Nd (0.1920–0.2000). Much of this spread is due to small-scale heterogeneities in the chondrites and does not appear to reflect the large-scale volumetric averages. It is shown that none of the samples deviate more than 0.5 ε-units from a 4.6-AE reference isochron and define an initial143Nd/144Nd ratio at 4.6 AE of0.505828 ± 9. Insofar as there is a range of values of147Sm/144Nd there is no unique way of picking solar or average chondritic values. From these data we have selected a new set of self-consistent present-day reference values for CHUR (“chondritic uniform reservoir”) of (143Nd/144Nd)CHUR0 = 0.511836and(147Sm/144Nd)CHUR0 = 0.1967. The new147Sm/144Nd value is 1.6% higher than the previous value assigned to CHUR using the Juvinas data of Lugmair. This will cause a small but significant change in the CHUR evolution curve. Some terrestrial samples of Archean age show clear deviations from the new CHUR curve. If the CHUR curve is representative of undifferentiated mantle then it demonstrates that depleted sources were also tapped early in the Archean. Such a depleted layer may represent the early evolution of the source of present-day mid-ocean ridge basalts. There exists a variety of discrepancies with most earlier meteorite data which includes determination of all Nd isotopes and Sm/Nd ratios. These discrepancies require clarification in order to permit reliable interlaboratory comparisons. The new CHUR curve implies substantial changes in model ages for lunar rocks and thus also in the interpretation of early lunar chronology.  相似文献   

16.
Ten whole-rock samples from the Tudor Gabbro, Grenville Province, Ontario, Canada have been dated by the KAr method. The ages calculated by the conventional method range from 900 m.y. to 2040 m.y. On an isochron plot, three samples from a sampling site near the northern border of the gabbro lie along a 670-m.y. isochron with an initial40Ar/36Ar ratio of about 17,300 whereas all other samples lie along another 670-m.y. isochron with an initial ratio of about 5000. Although it is not certain yet as to what geological event the isochron age represents, the results clearly demonstrate that the effect of initial argon can be significant even on old samples such as these.  相似文献   

17.
Isotopic ratios and trace element abundances were measured on samples of Ir-enriched clay at the Cretaceous-Tertiary boundary, and in carbonate and marl from 5 cm below and 3 cm above the boundary. Samples were leached with acetic acid to remove carbonate, and with hydrochloric acid. Leachates and residues were measured. The Sr, Nd, O and H isotopic compositions of the boundary clay residues are distinct from those of the stratigraphically neighboring materials. The data indicate that most of the clay material was derived from a terrestrial source with relatively low87Sr/86Sr and high143Nd/144Nd ratios. The δ18O data suggest that the detritus has been modified by submarine weathering. K-Ca and Rb-Sr systematics, as well as O isotope ratios of K-feldspar spherules within the boundary clay, suggest that they are predominantly authigenic and may have formed after the time of deposition. However, Sm-Nd and Rb-Sr isotopic data indicate that the spherules contain relict material that provides information on the nature of the original detritus. The isotopic evidence for foreign terrestrial detritus in the boundary clay, the low rare earth element concentrations and high Ni concentration, support the hypothesis of a terminal Cretaceous asteroidal impact that produced a global layer of fallout. The data are most easily explained if the impact site was on oceanic crust rather than continental crust, and if a substantial fraction of the fallout was derived from relatively deep within the lithosphere (>3 km). This would probably require a single large impactor.  相似文献   

18.
From geology and geochemistry studies on four typical large-superlarge nonmetal deposits in eastern Zhejiang Province, it is concluded that nonmetal mineralization is an in situ reduction process in which SiO2 and Fe2O3 are lost, and Al2O3 and K2O are enriched. Moreover, incompatible elements are depleted in zeolite but enriched in alunite. Rb-Sr isotopic age of zeolite and K-Ar isotopic age or micro-area40Ar-39Ar isochron age of alunite are coincident with their geological data. respectively. Comparison studies of various chronology methods indicate that K-Ar and Rb-Sr methods are effective for zeolite and alunite, but should be carefully used for pyrophyllite, dekite and illite. From isotopic ages of ore and wall rocks of zeolite and alunite, it could be deduced that the age difference of metallogenism and volcanism is about 10–20 Ma.  相似文献   

19.
Six samples of metamorphic rocks from three essentially coeval stratigraphic units, two of which contain Precambrian microfossils, have been analyzed by the Rb-Sr whole-rock radiometric method. Least-squares regression of the data yields an isochron date of 934 ± 80m.y. with initial 87Sr/86Sr= 0.7007 ± 0.0011. This date may reflect the approximate age of formation of these rocks or, alternately, a time of major metamorphism. Regardless, the date is significant in that it (a) is in agreement with the 900-m.y. date for rocks containing similar types of fossils from Bitter Springs, Australia, and (b) coupled with structural evidence, supports the time equivalence of these rocks with 1000-m.y. old rocks (“Kibaran cycle”) of Saudi Arabia.  相似文献   

20.
New isotopic analyses are presented for 3 plagioclase-rich fractions and one mafic fraction from ferroan anorthosite 60025. The observed206Pb/204Pb ratios vary between 52.5 and 60.5, all much higher than the ratio for terrestrial contamination. In a207Pb/206Pb204Pb/206Pb correlation diagram, the plagioclase data define a model PbPb age of 4.520 ± 0.007 AE using meteoritic primordial lead for the non-radiogenic component. In the concordia diagram the plagioclase data yield intersections at 4.503 ± 0.007 and 0.28 AE. The meaning of the lower intercept is obscure. The earlier 60025 analysis of Tera and Wasserburg [1], with an observed206Pb/204Pb of 23.0, agrees closely with the new plagioclase data in the isotope correlation and concordia diagrams. Since the apparent age does not correlate with the206Pb/204Pb ratios and U contents of the samples, it does not appear to be controlled by terrestrial lead contamination. The time-averaged μ values for the plagioclase leads are exceptionally low, 16–55, and agree within factors of 2 with the observed μ values in the samples. These are much lower than the values observed for mafic rocks or their sources, showing that the anorthosite lead has never been associated for a substantial length of time with any high μ source. In this way the 60025 data differ substantially from UPb data for two other lunar anorthosites, 15415 and 60015. The results suggest that the averaged model Pb ages of 4.51 ± 0.01 AE closely approximate the crystallization age for the plagioclase fraction of the anorthosite, and that it dates back to an early phase in lunar history. One sample from the mafic fraction of 60025 yields a younger model Pb age of 4.42 AE. The age may have been lowered by post-crystallization disturbances or perhaps this fraction is not coeval with the plagioclase fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号