首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rb and Sr concentrations and Sr isotopic composition have been measured in thermo-mineral waters from the Massif Central in France. Rocks and mineral fractions which are thought to be important Sr contributors were also analyzed. The results suggest the waters to be mixtures of two or three components from different reservoirs, which can be associated with possible source rock types like granite and syenodiorite occurring in the region. The strontium isotopic ratios found in the separated minerals of the syenodiorite stratum indicate no chemical fractionation during the water-rock interaction. A RbSr internal isochron age of(265 ± 10) × 106yr is inferred for the Roche d'Enval syenodiorite.  相似文献   

2.
Measurements of143Nd/144Nd and147Sm/144Nd are reported for whole rocks and mineral separates from granulites of the Napier Complex at Fyfe Hills. Charnockites, leuconorites and gabbros yield a whole rock SmNd isochron age of3060 ± 160m.y. and an initial143Nd/144Nd ratio of0.50776 ± 10 (?Nd(3060m.y.) = ?2.0 ± 1.8). The negative ?Nd value and the presence of geologically induced dispersion in the data suggest that the isochron age does not represent the time of primary crystallization of the complex but instead indicates a time of later redistribution of Sm and Nd and partial re-equilibration of143Nd/144Nd ratios. This probably occurred during the upper granulite facies metamorphism which has also been dated at~ 3100m.y. by RbSr and UPb zircon studies [1]. Coexisting clinopyroxene, apatite and total rock fractions in two adjacent samples define an approximately linear array corresponding to an age of 2300 ± 300 m.y. This array indicates that redistribution of Sm and Nd and re-equilibration of143Nd/144Nd ratios occurred on an intermineral scale during the upper amphibolite to lower granulite facies metamorphism at~ 2450m.y.Due to the resetting of the SmNd system on both whole rock and mineral scales, the primary crystallization age of the igneous protolith is not well constrained by the present data, although it is clearly3100m.y. If it is assumed that the complex was derived initially from a depleted mantle reservoir(?Nd(T) ? 2), evolution of the negative ?Nd value of ?2.0 with the observed Sm/Nd ratios requires a prehistory of~ 380m.y. This implies a primary age of~ 3480m.y. However, substantially older primary ages can be inferred if the source reservoirs had?Nd(T) > 2 and/or substantial reductions in the Sm/Nd ratio occurred in whole rocks during the granulite facies metamorphism at 3100 m.y. Such an inferred reduction in the Sm/Nd ratio may have been the result of preferential loss of Sm relative to Nd, or introduction of a low Sm/Nd fluid with?Nd ≥ 0 during granulite facies metamorphism.  相似文献   

3.
RbSr isotopic analyses of the intensely deformed Hebron gneiss, Labrador, yield an isochron of approximately 3.6 b.y. with an initial87Sr/86Sr ratio of 0.7044, and chemical analyses show these rocks to be granodioritic in composition. It is believed that the isochron reflects a metamorphic event and that the Hebron gneiss was either derived from a compositionally anomalous zone in the mantle or from previously existing sialic crustal material. The Hebron gneiss is compositionally similar to some of the oldest rocks in the Archean cratons of Labrador, West Greenland, Rhodesia, South Africa and Minnesota (U.S.A.).  相似文献   

4.
A precise87Rb-87Sr whole-rock isochron for H chondrites and an internal isochron for Tieschitz (H3) have been determined. The age and87Sr/86Sr initial ratio of the whole rocks are4.52 ± 0.05 b.y. and0.69876 ± 0.00040(λ(87Rb) = 1.42 × 10?11yr?1). For Tieschitz, whereas handpicked separates plot on a well-defined line, heavy liquid separates scatter in the87Rb/86Sr vs.87Sr/86Sr diagram. Leaching experiments by heavy liquids indicate that they might have a sizeable effect on Tieschitz minerals. The age and87Sr/86Sr initial ratio as determined by handpicked separates are4.53 ± 0.06 b.y. and0.69880 ± 0.00020, indistinguishable from the whole-rock isochron.These results are interpreted as “primitive isochrons” dating the condensation of chondrites from the solar nebula. The best value of this event is given by joining both isochrons together at4.518 ± 0.026 b.y. and87Sr/86Sr= 0.69881 ± 0.00016. The near identity of this initial ratio with the one of Allende white inclusions argues in favor of a sharp isochronism of condensation from a87Sr/86Sr homogeneous nebula. Data from Guaren?a [11] and Richardton [48] are interpreted as secondary internal isochrons, 100 m.y. after the condensation of the whole rocks.The data are then used to constrain a thermal evolution model of the H chondrite parent body. This body might have a 150–175 km radius, and might have been heated by26Al. An26Al/27Al ratio of 4–6 × 10?6 is enough for heating such a body. Further tests for this model are proposed.  相似文献   

5.
87Rb87Sr analyses of LL chondrites have been made in 10 whole rock meteorites, chondrules from Chainpur (LL3) and Soko Banja (LL4), density separates and chondrules from Guidder (LL5) and density separates from Jelica (LL6) and Ensisheim (LL6). Whole rocks define an isochron of age 4.486±0.020 Ga 87Rb=1.42×10?11a?1) and initial ratio (87Sr/86Sr)I=0.69887±0.00012. This is in agreement with the results for H- and E-type chondrites. Analyses for chondrules from Soko Banja yield a very good isochron of age 4.452±0.020 Ga and strontium initial ratio 0.69954±0.00024, and give an interval for metamorphism of (37±10)×106 a. A more poorly defined isochron is obtained for Jelica; the age is 4.423±0.041 Ga and the strontium initial ratio 0.69959±0.00029, indicating an interval for metamorphism of (70±60)×106 a. No isochron could be obtained for Chainpur. This could be due to terrestrial alteration or to a late isotopic disturbance of the meteorite. The87Rb-87Sr system is also disturbed in Guidder and Ensisheim, probably as a consequence of shock. These results are discussed in comparison with our former studies, and in relation with thermal metamorphism in the LL chondrite parent body(ies).  相似文献   

6.
Measurements are reported of K, Rb and Sr levels and Sr isotopic compositions in silicate inclusions in diamonds, and of U, Th and Pb levels and Pb isotopic compositions in sulphide inclusions in diamonds. Samples are from the Premier Mine (Transvaal), the Finsch Mine (northern Cape Province) and the Kimberley mines (northern Cape Province). The isotopic composition of Pb in sulphide inclusions indicates that the diamonds containing these inclusions are xenocrysts in the host kimberlite. Model Pb ages for the sulphide inclusions in the diamonds from Finsch and Kimberley are in excess of 2 b.y., although the host kimberlites are Cretaceous. The sulphide inclusions from Premier, however, have a model age similar to the emplacement age of the Premier kimberlites (approximately 1.2 b.y.).In addition, K, Rb, Sr, U and Pb concentrations and Sr and Pb isotopic compositions in clinopyroxenes from 14 mantle-derived xenoliths were measured. Samples were eclogites from the Roberts Victor Mine (Orange Free State), peridotites from the Matsoku Pipe (Lesotho) and diopside megacrysts from the four mines in Kimberley. The samples from the Roberts Victor Mine define a large spread in Sr and Pb isotopic composition. The slope of a regression line through the Pb data in the 207/204 vs. 206/204 plot defines an age of roughly 2.5 b.y. The Matsoku samples have87Sr/86Sr ratios around 0.704. One group of samples (“fertile peridotites”) shows uniform, anomalously radiogenic Pb isotopic compositions, and bears evidence of a young event involving isotopic homogenisation. Lead isotopic heterogeneity, indicating an old age, has persisted in another group (“common peridotites”). The megacrysts from the four Kimberley mines have87Sr/86Sr ratios around 0.704 and uniform, anomalously radiogenic Pb isotopic compositions, indicating a young age. Their Pb isotopic uniformity contrasts with the spread shown by kimberlites in Kimberley, and shows that the megacrysts did not crystallise in equilibrium with their host kimberlites.The similarity between the Pb isotopic data obtained on clinopyroxenes from xenoliths and the data obtained on sulphide inclusions in diamonds from Finsch and Kimberley suggests that these diamonds might be cogenetic with old rock provinces in the subcontinental mantle.  相似文献   

7.
RbSr measurements on the Yatsushiro granite and gneiss, which had been considered stratigraphically to be of possible Precambrian age, are reported. The whole rock isochron for the granite gives an age of 352 ± 8 my with a low initial87Sr/86Sr ratio of 0.7037 ± 0.0006. Data for constituent minerals of the granites are dispersed irregularly around the whole rock isochron (possibly by later tectonic events). For the gneiss, a metamorphic event around 410 my is indicated by the muscovite RbSr ages. The present results do not support the possibility that the Yatsushiro granite and gneiss are Precambrian in age.  相似文献   

8.
Field studies in the vicinity of Saglek Bay, Labrador, demonstrated that it was possible to subdivide the Archaean gneiss complex into distinct lithologic units and erect a geologic chronology similar to that recognized in Godthaabsfjord, West Greenland. The Uivak gneisses are the oldest quartzo-feldspathic suite in the area and are distinguished from a younger gneissic suite in the field, the undifferentiated gneisses, by the presence of porphyritic basic dykes (Saglek dykes) within the Uivak gneisses. The Uivak gneisses range in composition from tonalites to granodiorites, with the two chemically distinct suites recognized: a grey granodioritic suite and an iron-rich plutonic igneous suite which locally intrudes or grades into a grey gneiss which strongly resembles the grey Uivak gneiss. Rb-Sr isotopic studies indicate an age of 3622 ± 72 m.y. (2σ) and initial Sr isotopic composition of 0.7014 ± 0.0008 (2σ) for the Uivak gneiss suite, i.e. grey gneiss plus iron-rich suite (λRb = 1.39 × 10?11 yr?1). The grey Uivak gneiss suite, treated independently, defines a Rb-Sr isochron with an age of 3610 ± 144 m.y. (2σ) and initial Sr isotopic composition of 0.7015 ± 0.0014 (2σ) which is indistinguishable from the age and initial ratio of the total Uivak gneiss suite, grey gneisses plus iron-rich suite. The undifferentiated gneisses define a Rb-Sr isochron with an age of 3121 ± 160 m.y. (2σ), and initial Sr isotopic composition of 0.7064 ± 0.0012 (2σ). The isotopic data support field observations suggesting the undifferentiated gneisses were derived by local remobilization of the grey Uivak gneisses. The Uivak gneisses resemble the Amitsoq gneisses of Godthaabsfjord both chemically and isotopically. The interpretation of the initial Sr isotopic composition of the Uivak gneisses is interpreted as the time of regional homogenization rather than the initial ratio of the plutonic igneous parents of the Uivak gneisses as suggested for the Amitsoq gneisses. Although the undifferentiated gneisses are contemporaneous with the Nuk gneisses of West Greenland, they do not form a well-defined calc-alkaline suite and may not be associated with major crustal thickening in the Labrador Archaean.  相似文献   

9.
New strontium isotopic data of calc-alkaline Pliocene-to-Quaternary lavas (southern Peru) confirm their anomalous isotopic composition compared to those of calc-alkaline rocks from active margins where continental crust is not involved. Gradual enrichment of radiogenic Sr occurs during fractional crystallization of calc-alkaline magma. The variation of the isotopic composition of these lavas as well as87Sr/86Sr versus 1/(86Sr) diagrams form the basis for a model involving processes of fractional crystallization combined with mixing and addition of radiogenic Sr that originated in continental crust and was transported by a fluid phase.  相似文献   

10.
Clinopyroxenes separated from garnetiferous ultramafic rocks in the core zone of the Norwegian Caledonides have rubidium concentrations of 0.008 to 0.064 ppm, strontium concentrations of 23.5 to 421 ppm, and 87Sr/86Sr ratios of 0.7011 to 0.7029. The very low Rb/Sr ratios of the clinopyroxenes (less than 0.0004) suggest that their 87Sr/86Sr values have not varied significantly over geologic time and may approximate the initial 87Sr/86Sr of the eclogite-facies ultramafic mineral assemblages at their time of formation. The ultramafic rocks occur in a basement complex that yields Rb-Sr whole-rock and U-Pb zircon ages of about 1800 m.y. Garnetiferous ultramafic rocks are apparently lacking in younger (Sveconorwegian or Caledonian) sialic sequences, raising the possibility that the eclogite-facies metamorphism may have occurred at least 1800 m.y. ago. The Rb/Sr and 87Sr/86Sr ratios of the clinopyroxenes are as predicted for the ancient upper mantle under most evolutionary models. However, the data do not preclude the possibility that the eclogite-facies metamorphism occurred in the crust. The garnetiferous ultramafic rocks are generally enclosed by large volumes of dunite which could have shielded the eclogite-facies assemblages from contamination by fluids from the country rock during metamorphism.  相似文献   

11.
Nd isotopic characteristics of S- and I-type granites   总被引:1,自引:0,他引:1  
The initial Nd and Sr isotopic composition has been determined in S- and I-type granites from the Paleozoic Berridale and Kosciusko Batholiths of southeast Australia. The Nd and Sr isotopic variations form a strongly covariant array with S-types granites having a relatively restricted range inεNd values from ?6.1 to ?9.8 but a large range in initial87Sr86Sr of from 0.7094 to 0.7184. These characteristics are indicative of an~1400-m.y. sedimentary or metasedimentary source for S-types. I-types have variable initial Nd ranging from +0.4 to ?8.9, and a more limited range in initial87Sr86Sr of from 0.70453 to 0.7119. These isotopic characteristics are consistent with a two-component mixing model whereby a depleted mantle-like component (DMC) withεNd = +6 and87Sr86Sr= 0.703, is mixed with a crustal component (CC) havingεNd = ?9 and87Sr86Sr= 0.720. Although this two-component mixing model satisfies the isotopic constraints the source rock chemistry of the I-types is not compatible with the large proportion (up to 50%) of sedimentary material implied by the isotopic data. This indicates that more than two components are required to account for both the isotopic and chemical data. Both the chemical and isotopic data are consistent with I-type granites having been formed from source rocks of predominantly mantle derivation and obtained progressively from the mantle over a period of 1000 m.y. prior to granite formation.  相似文献   

12.
Six samples of metamorphic rocks from three essentially coeval stratigraphic units, two of which contain Precambrian microfossils, have been analyzed by the Rb-Sr whole-rock radiometric method. Least-squares regression of the data yields an isochron date of 934 ± 80m.y. with initial 87Sr/86Sr= 0.7007 ± 0.0011. This date may reflect the approximate age of formation of these rocks or, alternately, a time of major metamorphism. Regardless, the date is significant in that it (a) is in agreement with the 900-m.y. date for rocks containing similar types of fossils from Bitter Springs, Australia, and (b) coupled with structural evidence, supports the time equivalence of these rocks with 1000-m.y. old rocks (“Kibaran cycle”) of Saudi Arabia.  相似文献   

13.
40Ar/39Ar incremental heating experiments were applied to hornblendes, coarse-grained biotites and K-feldspars from 1400 m.y. old rocks near the contact with the ~60 m.y. old Eldora stock in the Front Range of Colorado. The aim was to distinguish, on the basis of argon isotopic data alone, a partially re-set K-Ar date from an undisturbed or a completely overprinted K-Ar date. In the laboratory heating of biotites the radiogenic argon (40Ar*) and potassium-derived39Ar (39Ar*) were released in two stages — in the range ~600–900°C and above ~900°C. The two biotites furthest from the contact and the one adjacent to the contact give well-defined apparent-age plateaus at ~1230 m.y. and 63 m.y. respectively for all argon released above ~600°C. The 1230-m.y. date may represent a thermal event or the end of a long cooling while the 63-m.y. date essentially represents the time of reheating. Partially overprinted biotites at intermediate distances have significantly anomalous plunges in apparent ages for argon released above ~900°C, thus distinguishing them from undisturbed and completely outgassed biotites.The bulk of the40Ar* and39Ar* in the hornblendes was released in the range ~950–1100°C. The hornblende furthest from the contact gives a well-defined plateau at 1400 m.y. for the 98% of the argon that was released above ~950°C. A partially overprinted hornblende from near the contact gives an apparent plateau at ~1050 m.y. The existence of such a false plateau precludes the distinction of partially overprinted K-Ar hornblende dates from undisturbed K-Ar hornblende dates without independent evidence. Reasonable estimates of the time of reheating are not recovered in the age spectra for partially overprinted hornblende and biotites.For the feldspars the bulk of the40Ar* and39Ar* was released in the laboratory heating between about 900°C and 1200°C, probably reflecting phase changes near these temperatures. The argon released below about 900°C records reasonable maximum dates for the time of the thermal overprinting. For the microcline 22500 (the sample number specifies the distance, in feet, from the contact) this effect is slight — a minimum date of 147 m.y. occurs in 2.3% of the total39Ar*. For samples 2400, 1070, and 85 the respective minimum dates are similar at 72, 81, and 68 m.y. and dramatically improve on the total or integrated dates of 238, 358 and 211 m.y. The high-temperature (>900°C) apparent ages for these three feldspars do not define plateaus and are geologically meaningless. The high-temperature apparent ages for the last 50% of the39Ar* released from 22500 do define a plateau, but the 1060-m.y. date is also probably geologically meaningless.  相似文献   

14.
Fourteen whole-rock samples from three traverses through the contact aureole of the Stillwater Complex were analyzed for Rb, Sr and87Sr/86Sr. Twelve of these samples yielded an age of 2750 ± 45m.y.; (87Sr/86Sr)0 = 0.705 ± 0.003 (2σ). In addition one whole rock and a biotite separate derived from it gave an age of 2544 m.y.; (87Sr/86Sr)0 = 0.714. These data support a minimum age of 2750 m.y. for the intrusion of the complex.  相似文献   

15.
The Shabogamo Intrusive Suite comprises numerous bodies of variably metamorphosed gabbro which intrude Archean and Proterozoic sequences at the junction of the Superior, Churchill, and Grenville structural provinces in western Labrador. Combined Sm-Nd and Rb-Sr systematics in two bodies, ranging from unmetamorphosed to lightly metamorphosed, document a crystallization age of about 1375 m.y., and suggest that both bodies crystallized from magmas with similar Nd and Sr isotopic compositions. This age is in accordance with the existence of a regional magmatic event in the Churchill Province at approximately 1400 m.y.Rb-Sr systematics in two bodies of amphibolite-grade gabbro suggest a regional metamorphic event at about 950 m.y., corresponding to the waning stages of Grenville activity. Sm-Nd systematics in these high-grade bodies are affected to a much lesser degree than Rb-Sr.Initial ratios for143Nd/144Nd and87Sr/86Sr are lower and higher, respectively, than bulk earth values at 1375 m.y. Both these displacements are in the direction of older crustal material at 1375 m.y., and a model is proposed to produce the Shabogamo magma by mixing a mantle-derived magma with a partial melt of crustal rocks (approximately 4: 1 by volume). Young volcanic rocks with anomalous Nd and Sr isotopic ratios, which have previously been taken as evidence for “enriched” mantle, may be interpreted similarly.  相似文献   

16.
The isotopic compositions of Sr, Nd and Pb together with the abundances of Rb, Sr, U and Pb have been determined for mafic and felsic potassic alkaline rocks from the young Virunga volcanic field in the western branch of the East African rift system.87Sr/86Sr varies from 0.7055 to 0.7082 in the mafic rocks and from 0.7073 to 0.7103 in the felsic rocks. The latter all come from one volcano, Sabinyo. Sabinyo rocks have negative εNdvalues ofεNd = ?10. Nd and Sr isotopic variations in the basic potassic rocks are correlated and plot between Sabinyo and previously reported [1] compositions (εNd = +2.5;87Sr/86Sr≈ 0.7047) for Nyiragongo nephelinites. The Pb isotopic compositions for Sabinyo rocks are nearly uniform and average206Pb/204Pb≈ 19.4,207Pb/204Pb= 15.79–15.84,208Pb/204Pb≈ 41.2. The basic potassic rocks have similar206Pb/204Pb values but range in207Pb/204Pb and208Pb/204Pb from the Sabinyo values to less radiogenic compositions.Excellent correlations of87Sr/86Sr with Rb/Sr, 1/Sr and207Pb/206Pb for Sabinyo rocks suggest these to be members of a hybrid magma series. However, the nearly uniform Pb compositions for this series points to radiogenic growth of87Sr in the magma source region following an event which homogenized the isotopic compositions but not Rb/Sr. The Rb-Sr age derived from the erupted Sabinyo isochron-mixing line is consistent with the ~500 Myr Pb-Pb age from Nyiragongo [1], which suggests that this event affected all Virunga magma sources. The event can again be traced in the Pb-Pb, Pb-Sr and Nd-Sr isotopic correlations for all Virunga rocks, including Nyiragongo, when allowances are made for radiogenic growth subsequent to this mixing or incomplete homogenization event. Inferred parent/daughter element fractionations point to a metasomatic event during which a mantle fluid invaded two lithospheric reservoirs: a +εNd reservoir sampled by the Nyiragongo nephelinites and suggested to be the subcontinental mantle and a ?εNd reservoir sampled by the mafic and felsic potasssic volcanism. Whether this ?εNd reservoir is the crust, continental crustal material in the mantle or anomalous mantle cannot be decided from the data. The simplest answer, that this reservoir is the continental crust, seems to be at variance with experimental evidence suggesting a subcrustal origin for basic potassic magmas. Partial melting of the ancient metasomatised lithospheric domains and ensuing volcanism seems to be entirely a response to decompression and rising geotherms during rifting and thinning of the lithosphere.  相似文献   

17.
We have investigated 24 whole rocks and mineral separates of five different rock types from the Cantal shield volcano in France, applying high-precision Rb-Sr techniques. The chemical and isotopic systematics suggest the distinction of two series throughout the different rock classes, one practically uncontaminated, the other seriously influenced by wall rock assimilation. The first group comprises basalts and intermediate rocks with87Sr/86Sr= 0.70340–0.70382. The second group in addition includes rhyolites and the corresponding87Sr/86Sr ratios vary between 0.70421 and 0.71270. The data of mineral separates support the hybridization hypothesis and possibly suggest an original87Sr/86Sr ratio of 0.7028 for the magma source region. Moreover they provide internal isochron ages which place a period of extensive volcanic activity at 8.1–8.8 m.y. ago in accord with K-Ar ages of volcanic rocks from the center of the Cantal volcano.  相似文献   

18.
Examples of positive correlations between initial 87Sr/86Sr and δ18O have now been shown to be very common in igneous rock series. These data in general require some type of mixing of mantle-derived igneous rocks with high-18O, high-87Sr crustal metamorphic rocks that once resided on or near the Earth's surface, such as sedimentary rocks or hydrothermally altered volcanic rocks. Mixing that involves assimilation of country rocks by magmas, however, is not a simple two-end-member process; heat balance requires appreciable crystallization of cumulates. In such cases, the isotopic compositions may strongly reflect this open-system behavior and indicate the process of assimilation, whereas the major element chemical compositions of the contaminated magmas will be largely controlled by crystal-melt equilibria and crystallization paths fixed by multicomponent cotectics. A variety of oxygen and strontium isotope “mixing” curves were therefore calculated for this process of combined assimilation-fractional crystallization. The positions and characteristics of the resultant curves on δ18O-87Sr/86Sr diagrams markedly diverge from simple two end-member mixing relationships. Based on the above, model calculations can be crudely fitted to two igneous rock suites (Adamello and Roccamonfina in Italy), but the shapes of the calculated curves appear to rule out magmatic assimilation as an explanation for most δ18O-87Sr/86Sr correlations discovered so far, including all of those involving calc-alkaline granitic batholiths and andesitic volcanic rocks. The isotopic relationships in such magma types must be inherited from their source regions, presumably reflecting patterns that existed in the parent rocks (or magmas) prior to or during melting.  相似文献   

19.
A87Rb-87Sr analysis of some enstatite meteorites has been made. Whole rocks plot on an isochron of age 4.508 ± 0.037b.y. and strontium initial ratio 0.69880 ± 0.00044 (2σ errors; λ87Rb= 1.42 × 10?11yr?1) . If the Norton County results are joined, we get an age of 4.516 ± 0.029b.y. and initial ratio of 0.69874 ± 0.00022. This result is indistinguishable from the whole rock isochron for H chondrites. It is interpreted as the age of condensation from the solar nebula. The identity of the87Sr/86Sr initial ratio with the ones for Allende white inclusions shows that this ratio was homogeneous in the solar nebula, and that the Rb-Sr fractionations observed between the different chondrite groups appeared only shortly before or during condensation accretion.Internal studies of the type-I enstatite chondrites Abee and Indarch and the intermediate-type Saint Mark's and Saint Sauveur have been done.Abee data scatter in the87Rb-87Sr diagram. For Indarch, Saint Mark's and Saint Sauveur, we obtained well-defined straight lines of “age” (T) and “initial ratio” (I): Indarch,T = 4.393 ± 0.043b.y.I = 0.7005 ± 0.0009; Saint Mark's,T = 4.335 ± 0.050b.y.I = 0.69979 ± 0.00022; Saint Sauveur,T = 4.457 ± 0.047b.y.I = 0.6993 ± 0.0014. Our result on Indarch agrees with the former result of Gopalan and Wetherill [5].A careful examination of the data shows that these straight lines are neither due to leaching effects by heavy liquids, nor result from terrestrial weathering. The “isochrons” for Indarch and Saint Sauveur can be mixing lines between enstatite and feldspar. The results are interpreted in terms of cosmochemical secondary effects: type-I and intermediate-type enstatite chondrites have been shocked 60–200 m.y. after their formation. This agrees with the idea of an early generalized bombardment of the inner solar system; this also indicates that type-I enstatite chondrites were rather situated in the outershells of their parent body and might be at the origin of the scatter of I-Xe ages of enstatite meteorites.Whole rock and enstatite from Bishopville, Cumberland Falls and Mayo Belwa have also been analysed. In these three aubrites, the87Rb-87Sr system is perturbed. Our Bishopsville sample might not be fresh and this makes the significance of our results uncertain. Cumberland Falls and Mayo Belwa probably suffered relatively recent shocks and open-system redistribution of Rb and Sr.  相似文献   

20.
Isotopic and major and trace element analysis of nine samples of eruptive products spanning the history of the Mt. St. Helens volcano suggest three different episodes; (1) 40,000–2500 years ago: eruptions of dacite with εNd = +5, εSr = ?10, variable δ18O,206Pb/204Pb ~ 18.76, Ca/Sr ~ 60, Rb/Ba ~ 0.1, La/Yb ~ 18, (2) 2500-1000 years ago: eruptions of basalt, andesite and dacite with εNd = +4 to +8, εSr = ?7 to ?22, variable δ18O (thought to represent melting of differing mantle-crust reservoirs), 206Pb/204Pb= 18.81?18.87, variable Ca/Sr, Rb/Ba, La/Yb and high Zr, (3) 1000 years ago to present day: eruptions of andesite and dacite with εNd = +6, εSr = ?13, δ18O~6‰, variable206Pb/204Pb, Ca/Sr ~ 77, Rb/Ba= 0.1, La/Yb ~ 11. None of the products exhibit Eu anomalies and all are LREE enriched. There is a strong correlation between87Sr/86Sr and differentiation indices. These data are interpreted in terms of a mantle heat source melting young crust bearing zircon and garnet, but not feldspar, followed by intrusion of this crustal reservoir by mantle-derived magma which caused further crustal melting and contaminated the crustal magma system with mafic components. Since 1000 years ago all the eruptions have been from the same reservoir which has displayed a much more gradual re-equilibration of Pb isotopic compositions than other components suggesting that Pb is being transported via a fluid phase. The Nd and Sr isotopic compositions lie along the mantle array and suggest that the mantle underneath Mt. St. Helens is not as depleted as MORB sources. There is no indication of seawater involvement in the source region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号