首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight L- and one LL-group chondrites were selected for a major and trace element content study of their metals by instrumental neutron activation techniques. The elements Ni, Co, Fe, Cu, As, Ga, W, Au and Ir were determined. For each meteorite three metallic fractions were analyzed: (1) coarse, >100 mesh; (2) intermediate, 100–200 mesh; (3) fine, <200 mesh. The composition of the metals varies considerably with grain size, as a result of a preferential concentration of kamacite in the coarse and of taenite in the intermediate and fine fractions.A third metallic component, consisting of very fine plessitic inclusions, was observed in chondrules of equilibrated chondrite types 5 and 6. This component is probably responsible for the decrease of Ni, Cu, Ga and Au observed in the fine metallic fractions of the equilibrated chondrite types.W, as well as Ga, increases in the bulk metals with the petrologic type, suggesting that a substantial amount of this element, as already observed for Ga by previous authors, is not in the metal, but in some silicate phases in the lower metamorphic petrologic types 3 and 4.Ir is always concentrated in the fine metallic fractions of all meteorites, independent of petrologic type, suggesting the presence of a fine-grained metallic component enriched in this element.  相似文献   

2.
3.
Microprobe analyses of 33 melt pocket glasses in five L6d and L6e chondrites show them to be chemically varied but typically enriched in the constituents of plagioclase relative to the host meteorites. This enrichment appears to increase with the degree of melting (0–6.5 vol.%), but other chemical variations among the glasses (sodium depletion, reduction of ferrous iron) appear to be unrelated to shock intensity and melt abundance.Chemical trends for melt pocket glasses differ sharply from those reported for chondrules in ordinary chondrites. Thus partial shock melting of chondritic material is an inadequate explanation for the chemical properties of chondrules.  相似文献   

4.
Measured Pb-Pb whole meteorite data for the Bruderheim L6 chondrite scatter slightly about a line passing above Can?on Diablo lead and yielding an age of 4.482 + 0.017 Ga, using the terrestrial238U/235U ratio of 137.88. The measured U isotopic composition for Bruderheim, using the dissolution procedures employed for these U-Pb studies, is near the terrestrial composition. In the concordia diagram the U-Pb data chiefly plot above the concordia curve and define a line which intersects the concordia curve at 4.536 + 0.006 Ga and 0.495 Ga, but the data for Bruderheim cannot be understood at all in terms of the more usual two- or three-stage episodic U-Pb models involving a fixed μ-value in the first stage. Most samples show an apparent excess of radiogenic lead for single-stage (closed system) evolution when Can?on Diablo troilite is used for the initial lead composition. Evidence is presented to show that the apparent excess radiogenic lead cannot be explained by terrestrial contamination alone.A different U-Pb model is presented which describes qualitatively and quantitatively most features of the U-Pb data for Bruderheim. If this model correctly describes the U-Pb evolution of Bruderheim then the “formation” age is given as 4.536 Ga by both U-Pb and Pb-Pb data, the meteorite U-Pb system was disturbed by a later (shock?) event at about 500 Ma ago, and the data are consistent with (though do not require) a Can?on Diablo initial lead composition. This interpretation suggests that the classical phenomenon of apparent excess radiogenic lead reflects the application of a single-stage model to a meteorite that has evidently experienced at least a two-stage history. The explanation of the observation that in the concordia diagram most meteorite samples (corrected for Can?on Diablo lead) plot in the lead excess region remains obscure, though this may be due to the wrong choice of initial lead for Bruderheim.  相似文献   

5.
Bulk abundances of Na, Mg, Al, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, La, Sm, Eu, Yb, Lu, Ir, and Au were determined by neutron activation analysis of chondrules separated from unequilibrated H-, L-, and LL-chondrites (Tieschitz, Hallingeberg, Chainpur, Semarkona) and correlated with chondrule petrographic properties. Despite wellknown compositional differences among the whole-rock chondrites, the geometric mean compositions of their respective chondrule suites are nearly indistinguishable from each other for many elements. Relative to the condensible bulk solar system (approximated by the Cl chondrite Orgueil), chondrules are enriched in lithophile and depleted in siderophile elements in a pattern consistent with chondrule formation by melting of pre-existing materials, preceded or attended by silicate/metal fractionation. Relative to nonporphyritic chondrules, porphyritic chondrules are enriched in refractory and siderophile elements, suggesting that these two chondrule groups may have formed from different precursor materials.  相似文献   

6.
We studied the fine-grained matrices (< 150 μm) of 14 gas-rich ordinary chondrite regolith breccias in an attempt to decipher the nature of the lithification process that converted loose regolith material into consolidated breccias. We find that there is a continuous gradation in matrix textures from nearly completely clastic (class A) to highly cemented (class C) breccias in which the remaining clasts are completely surrounded by interstitial, shock-melted material. We conclude that this interstitial material formed by shock melting in the porous regolith. In general, the abundances of solar-wind-implanted 4He and 20Ne are inversely correlated with the abundance of interstitial, shock-melted, feldspathic material. Chondrites with the highest abundance of interstitial, melted material (class C) experienced the highest shock pressures and temperatures and suffered the most extensive degassing. It is this interstitial, feldspathic melt that lithifies and cements the breccias together; those breccias with very little interstitial melt (class A) are the most porous and least consolidated.  相似文献   

7.
Hydrogen isotopic compositions in seven carbonaceous chondrites lie in the range ?70 to +771‰ relative to SMOW. These values decrease, to a range from ?145 to +219‰, after low-temperature oxidation in an oxygen plasma. Deuterium enrichment is therefore concentrated in the organic matter, the hydrous silicates probably lying close to the terrestrial range for such material. Calculated values for δD of the organic fraction are +450 ‰ for Orgueil and Ivuna and up to +1600‰ for Renazzo. These enrichments, at least for Orgueil and Ivuna, suggest equilibration with protosolar hydrogen at very low temperatures. Assuming a value of 2.5 × 10?5 for the protosolar D/H ratio, nominal equilibration temperatures of 230°K for silicates and 180°K for organic matter may be derived.  相似文献   

8.
In ordinary chondrites tungsten displays both lithophile and siderophile characteristics. Its concentration in the metal phase is positively correlated with petrologic type, and with the distribution coefficientKD =W in metal/W in silicates plus troilite. The oxidation-reduction reactions involved are temperature-dependent and the recrystallization temperature recorded on the basis of the partition of W between coexisting metal and silicate plus troilite fractions are950° ± 100°C for equilibrated chondrites (types 5 and 6), and800° ± 50°C for type 4, while Shaw (L7) records the highest recrystallization temperature (>1200°C).The different metallic content of the three groups of ordinary chondrites has been attributed to a metal-silicate fractionation process. Such a process appears to have fractionated W and Ir, but not W and Fe as these elements were partly oxidized when the fractionation process took place.  相似文献   

9.
The textures and chemical compositions of the constituent minerals of the fine-grained aggregates (FGA's) of L3 chondrites were studied by the backscattered electron image technique, electron probe microanalysis, and transmission electron microscopy. Plagioclase and glass in the interstices between fine grains of olivine and pyroxene indicate that the FGA's once partly melted. Compositional zoning and decomposition texture of pyroxenes are similar to those observed in chondrules, indicating a common cooling history of the FGA's and chondrules. Therefore, the mechanism that caused melting of the FGA's is considered to be the same as for chondrules. Bulk compositions of the FGA's are within the range of those of chondrules, so some chondrules probably were produced by complete melting of the same precursor materials as those of the FGA's. The precursor materials must have included fine olivine and other grains that probably are condensates.  相似文献   

10.
The contents of the moderately volatile elements Ga, Ge, Cu and Sb in ordinary chondrites give us some clues with regard to the metal-silicate fractionation process. Their concentration in coexisting magnetic and non-magnetic portions of members of each ordinary chondrite group will be discussed. Germanium and Sb are mostly siderophilic, but Ga is strongly lithophilic in unequilibrated chondrites; its partition coefficient between magnetic and non-magnetic portions is positively correlated with petrologic type in L and LL chondrites, but not in H4–6 chondrites. From 25 to 50% of the total Cu is found in the non-magnetic fraction of chondrites, but there is no correlation between Cu content and petrologic type. The abundances of Ga, Cu and Sb (relative to Si) are constant in ordinary chondrites, independent of the amount of metal present, indicating that these elements were not in solid solution in the metal phase of chondrites when the metal-silicate fractionation process occurred. Germanium, which is the most volatile among the four elements analyzed, is more abundant in H than in L and LL chondrites, indicating that it was fractionated by this process. Nebular oxidation processes can be responsible for the behavior of Ga if this element was in oxidized form when loss of metal occurred, but cannot explain the results for Cu and Sb which are predicted to condense as metals and accrete mostly in metallic form. It is possible that Cu and Sb, upon condensation, did not form solid solutions with metallic Ni-Fe until after the separation of metal from silicates took place.  相似文献   

11.
Sm-Nd isotopic evolution of chondrites   总被引:8,自引:0,他引:8  
The143Nd/144Nd and147Sm/144Nd ratios have been measured in five chondrites and the Juvinas achondrite. The range in143Nd/144Nd for the analyzed meteorite samples is 5.3 ε-units (0.511673–0.511944) normalized to150Nd/142Nd= 0.2096. This is correlated with the variation of 4.2% in147Sm/144Nd (0.1920–0.2000). Much of this spread is due to small-scale heterogeneities in the chondrites and does not appear to reflect the large-scale volumetric averages. It is shown that none of the samples deviate more than 0.5 ε-units from a 4.6-AE reference isochron and define an initial143Nd/144Nd ratio at 4.6 AE of0.505828 ± 9. Insofar as there is a range of values of147Sm/144Nd there is no unique way of picking solar or average chondritic values. From these data we have selected a new set of self-consistent present-day reference values for CHUR (“chondritic uniform reservoir”) of (143Nd/144Nd)CHUR0 = 0.511836and(147Sm/144Nd)CHUR0 = 0.1967. The new147Sm/144Nd value is 1.6% higher than the previous value assigned to CHUR using the Juvinas data of Lugmair. This will cause a small but significant change in the CHUR evolution curve. Some terrestrial samples of Archean age show clear deviations from the new CHUR curve. If the CHUR curve is representative of undifferentiated mantle then it demonstrates that depleted sources were also tapped early in the Archean. Such a depleted layer may represent the early evolution of the source of present-day mid-ocean ridge basalts. There exists a variety of discrepancies with most earlier meteorite data which includes determination of all Nd isotopes and Sm/Nd ratios. These discrepancies require clarification in order to permit reliable interlaboratory comparisons. The new CHUR curve implies substantial changes in model ages for lunar rocks and thus also in the interpretation of early lunar chronology.  相似文献   

12.
Ultrafine matrix material has been concentrated by sieving and filtering disaggregated samples of six ordinary chondrites of different classes. This component(s), “Holy Smoke” (HS), is enriched in both volatile, e.g. Na, K, Zn, Sb, and Pb, as well as refractory elements, e.g. W and REE; however, the element ratios vary greatly among the different chondrites. SEM studies show that HS contains fragile crystals, differing in composition, and apparently in gross disequilibrium not only among themselves but also with the major mineral phases and consequently thermodynamic equilibration did not occur. Thus HS must have originated from impacting bodies and/or was inherent in the “primitive” regolith. Subsequent impact brecciation and reheating appears to have altered, to varying degrees, the original composition of this ultrafine matrix material. Recent “cosmic dust” studies may indicate that HS still exists in the solar system. Survival of such delicate material must be considered in all theories for the origin of chondrites.  相似文献   

13.
High-voltage electron microscope observations are reported for specimens of the meteorites Hedjaz, Parnallee, Chainpur and Weston. Clastic matrix in Weston and Chainpur is distinguished from non-clastic material found in the other two specimens and in dark rims around chondrules in Chainpur. The variety of grain-size distributions and porosities found in this type of matrix is interpreted in terms of grain growth during the aggregation of the meteorite, and incipient solid-state recrystallization of aggregates (metamorphism). The formation of fine-grained non-clastic aggregates with low porosity was not accompanied by sufficient diffusion within the aggregates to equilibrate the mineral assemblages.  相似文献   

14.
The concentration of 10 to 15 siderophile elements was determined in the magnetic and non-magnetic portions of Abee (E4) and Hvittis (E6). The results indicate that, with the exception of Cu, W and Fe, all elements are strongly concentrated in the metal phase. Unlike ordinary chondrites, the metal phase of Abee and Hvittis consists exclusively of kamacite, which is very homogeneous and shows no systematic variation in composition with grain size.Differences in siderophile element content between Abee and Hvittis can be accounted for exclusively by differences in metal content and composition. These differences reflect different degrees of refractory siderophile loss, metal-silicate fractionation and loss of moderately volatile elements. The Ir/Ni ratio is 25% lower in Abee than in Hvittis, indicating that more Ir (Os, Pt, etc.) was lost from Abee during the refractory element fractionation. Abee and the other E4–5 members have also lost no metal and are not depleted in moderately volatile elements. In Abee the non-refractory elements Fe to Ge are present in CI ratios, and this meteorite has also Ir/Re ratios ?CI.These differences, which are recorded in the composition of the metal phase, make a straightforward genetic relationship between the two enstatite chondrite groups difficult to accept. In particular, the different Ir/Ni ratios, which were established very early in the chemical history of these chondrites, at the time of the refractory element fractionation, force us to conclude that E4–5 and E6 chondrites evolved from two different reservoirs, and that exchange of material among them never occurred. However, members of both groups have similar cosmic ray exposure ages suggesting derivation from the same parent body, which poses some interesting problems.  相似文献   

15.
The narrow size distributions of silicate and metal particles in 19 unequilibrated ordinary chondrites and other textural properties of these meteorites strongly suggest that chondritic material was sorted before or during its accumulation in parent bodies. Gravitational sorting during accretion is possible, but the conditions which it requires are implausible. Aerodynamic sorting - exclusion of small and/or low-density particles from a planetesimal moving through a mixture of gas and dust - can account for the textures of ordinary chondrites. It may also explain observed variations of siderophile element contents among and within the three groups of ordinary chondrites.  相似文献   

16.
The occurrence of γ-phase, a high-pressure polymorph of olivine (α-phase), in the shock veins of Sixiangkou chondrite was due to a greater cooling rate (> 10 000°C·s-1) in the veins. Because γ-phase partially reverted to β-phase and no back-transformation from β-phase to α-phase took place, the shock veins of Peace River chondrite with a cooling rate of 1 000–2 000δC·s-1 contain a great amount of β-phase. In the shock veins of Mbale chondrite with a cooling rate of <500°C·s-1, the majority of γ-phase reverted to α-phase. The heat dissipation in shock veins took place after a stage of shock compression of chondrite parent body, and the parent body was broken into fragmental pieces. Cooling rate in the shock veins constrained the back-transformations of (Mg, Fe)2SiO4 high-pressure polymorphs. Project of Chen and Xie supported by the National Natural Science Foundation of China (Grant No. 496720981, Natural Science Foundation of Guangdong Province (Grant No. 960500), and the Science Foundation of Academia Sinica for the returned scholars.  相似文献   

17.
Incipient motion was investigated for four gravel substrate materials in a bottomless arch culvert and a rectangular flume.Different methods for calculating Shields parameter at incipient motion(θ_c) based upon local flow parameters were explored.An incipient motion region for bottomless arch culverts in fully turbulent flow was defined with two bounding curves on Shields diagram.The variation ofθ_c as a function of relative roughness was examined.Also,a method that utilizes measured flow velocities to determine stable substrate particle diameters for bottomless arched culverts is presented as an alternative to the Shields diagram.  相似文献   

18.
We have observed natural remanent magnetizations (NRM), ranging from 10−3 to 10−5 Gauss cm3/g, at least two orders of magnitude greater than 10−7, the noise level of our spinner magnetometer, in the carbonaceous chondrites, Orgueil, Cold Bokkeveld, Nogoya and Mighei. Preliminary alternating field demagnetization of two samples of Orgueil showed a moderate sized stable component of 10−4 Gauss cm3/g. Microscopic study reveals that a grey spinel oxide, Ni-Fe and an Fe sulphide are the principal opaque minerals in both Cold Bokkeveld and Orgueil; the oxide phase predominates in both, while the Ni-Fe is more visible in the former. Coercive force determinations in Orgueil and Cold Bokkeveld indicate single domain particles as the NRM carrier. These meteorites are suitable for the determination of the magnetic field intensity in the primary solar nebula.  相似文献   

19.
Thermal histories of chondrite parent bodies are calculated from an initial state with material in a powder-like form, taking into account the effect of consolidation state on thermal conductivity. The very low thermal conductivity of the starting materials makes it possible for a small body with a radius of less than 100 km to be heated by several hundred degrees even if long-lived radioactive elements in chondritic abundances are the only source of heat. The maximum temperature is determined primarily by the temperature at which sintering of the constituent materials occurs. The thermal state of the interior of a chondrite parent body after sintering has begun is nearly isothermal. Near the surface, however, where the material is unconsolidated and the thermal conductivity is much lower, the thermal gradient is quite large. This result contradicts the conventional “onion-shell” model of chondrite parent bodies. But because the internal temperature is almost constant through the whole body, it supports a “multiple-parent bodies” model, according to which each petrologic type of chondrite comes from a different parent body.  相似文献   

20.
The ranges of δ18O and δ17O in components of the Murchison (C2) chondrite exceed those in all other meteorites analyzed. Previous authors have proposed that C2 chondrites are the products of aqueous alteration of anhydrous silicates. A model is presented to determine whether the isotopic variations can be understood in terms of such alteration processes. The minimum number (two) of initial isotopic reservoirs is assumed. Two major stages of reservoir interaction are required: one at high temperature to produce the16O-mixing line observed for the anhydrous minerals, and another at low temperature to produce the matrix minerals. The isotopic compositions severely constrain the conditions of the low-temperature process, requiring temperatures < 20°C and volume fractions of water > 44%. Extension of the model to the data on C1 chondrites requires aqueous alteration in a warmer, wetter environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号