首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Tomographic images of mantle structure beneath the region north and northeast of Australia show a number of anomalously fast regions. These are interpreted using a recent plate tectonic reconstruction in terms of current and former subduction systems. Several strong anomalies are related to current subduction. The inferred slab lengths and positions are consistent with Neogene subduction beneath the New Britain and Halmahera arcs, and at the Tonga and the New Hebrides trenches where there has been rapid rollback of subduction hinges since about 10 Ma. There are several deeper flat-lying anomalies which are not related to present subduction and we interpret them as former subduction zones overridden by Australia since 25 Ma. Beneath the Bird’s Head and Arafura Sea is an anomaly interpreted to be due to north-dipping subduction beneath the Philippines-Halmahera arc between 45 and 25 Ma. A very large anomaly extending from the Papuan peninsula to the New Hebrides, and from the Solomon Islands to the east Australian margin, is interpreted to be the remnant of south-dipping subduction beneath the Melanesian arc between 45 and 25 Ma. This interpretation implies that a flat-lying slab can survive for many tens of millions of years at the bottom of the upper mantle. In the lower mantle there is a huge anomaly beneath the Gulf of Carpentaria and east Papua New Guinea. This is located above the position where the tectonic model interprets a change in polarity of subduction from north-dipping to south-dipping between 45 and 25 Ma. We suggest this deep anomaly may be a slab subducted beneath eastern Australian during the Cretaceous, or subducted north of Australia during the Cenozoic before 45 Ma. The tomography also supports the tectonic interpretation which suggests little Neogene subduction beneath western New Guinea since no slab is imaged south of the New Guinea trench. However, one subduction zone in the tectonic model and many others, that associated with the Trobriand trough east of Papua New Guinea and the Miocene Maramuni arc, is not seen in the tomographic images and may require reconsideration of currently accepted tectonic interpretations.  相似文献   

2.
The West African Rift System has, for the last ten years, been thought to consist of five interconnected rifts extending from the Gulf of Guinea deep into the heart of Africa. Careful re-examination of the geophysical evidence makes it quite clear that there are only three interconnected rifts in West Africa; the Lower Benue Rift which extends to the northeast from the Gulf of Guinea to a triple junction near Chum, and the Gongola and Yola Rifts which extend to the north and east, respectively, from the Chum triple junction. These three rifts opened during the earlier part of the Mesozoic and were subsequently filled with Cretaceous sediments. The evidence for two further rifts, the Ati Rift and the Fort Archambault Rift which were thought to extend to the northeast and southeast, respectively, from a triple junction at the eastern end of the Yola Rift, does not stand up to re-examination.The “Ati Rift” was thought to follow a major linear positive gravity anomaly which had been mapped beneath the Quaternary sediments of the Chad Basin. The main gravity anomaly is separated from the Yola Rift by over 300 km and is probably due to a linear body of basic volcanic or volcano-clastic rocks associated with a suture of Pan-African age. Within the gap, between the main anomaly and the Yola Rift, there are three localised positive anomalies which relate to a gabbro of Precambrian age, a band of dense meta-sediments within the Basement Complex and an acid igneous complex of Palaeogene age. The anomaly as a whole is therefore a sequence of unrelated anomalies, none of which are due to features of Mesozoic age.The “Fort Archambault Rift” was thought to follow a major linear negative gravity anomaly which has been mapped beneath the Quaternary sediments of the Chad Basin. To a large extent the negative anomaly overlies the fosse de Baké-Birao (Baké-Birao Basin) which is itself part of a far larger structure that extends, parallel to the southern margin of the West African Rift System, from Douala on the Gulf of Guinea to Birao near the C.A.R. frontier with Sudan. The Douala-Birao Structure may possibly be loosely related to the West African Rift System in that it would appear to be a compressional structure formed at the same time as the Coniacian-Santonian phase of folding which is observed in the West African rifts. However, the two structures are clearly separated from each other and are quite different in character and to a lesser extent in age.  相似文献   

3.
New data are presented on the chemical composition and helium isotopes for the mantle xenoliths and enclosed Cenozoic basalts of the Pannonian Basin and Bohemian Massif. New data on the helium isotopes in the basalts and mantle xenoliths of the Pannonian Basin and Bohemian Massif, which have been obtained for the first time, show very low R/Ra ratios close to or slightly above the typical values of the atmosphere. This indicates that the mantle beneath the considered areas is strongly degassed. The fact that, according to seismic tomography, the mantle plumes beneath the regions of recent volcanism in Central Europe are not traced below 200 km points to the extensive spreading of the plume material beneath the lithosphere of Europe, due to which the plume tail is too thin to be detectable by the existing methods.  相似文献   

4.
A largely submarine avalanche amphitheatre that formed catastrophically in 1888 on Ritter volcano has been identified from a bathymetric survey. Collapse of the volcano in 1888 therefore is considered to have been caused by rapid, large-scale slope failure, rather than by cauldron subsidence, as previously supposed. Escarpments of pre-historic slope failures are common on other Papua New Guinea volcanoes. Directions of avalanching on some volcanoes in the Bismarck volcanic arc appear to be controlled by a regional stress pattern, and those for some volcanoes in the Fly-Highlands province on mainland Papua New Guinea point away from the regional centre of Pliocene uplift. Large amphitheatres such as at Doma Peaks in the Fly-High-lands province probably originated by multiple collapses.  相似文献   

5.
— The 1998 Papua New Guinea earthquake of M w 7.0 occurred near the Wewak trench where the North Bismarck plate is subducting beneath the Australian plate. Its mechanism is thrust-type, and one of the nodal planes is almost parallel to the plate interface. To determine which of the two nodal planes of the main shock is the fault plane, we relocated the main shock and aftershocks using a method of modified joint hypocenter determination. We combined and employed two types of data in this study. Firstly, we used data reported by the National Earthquake Information Center (NEIC) of the U.S. Geological Survey (USGS), which includes three stations at the northeastern edge of Irian Jaya and one station in northern Papua New Guinea, from which the epicentral distances are less than 2 degrees. Secondly, in addition to the above permanent-station data, we used data from temporary aftershock observations near the epicentral area around the Sissano Lagoon carried out by Tsuji et al. (1998). Using three-component seismometers, they carried out observations from August 2 to October 2, 1998 at three sites. Although the network did not record the main shock and immediate aftershocks, the data obtained by temporary observation sites can clearly assist in identifying their absolute locations, since it is possible to apply the joint hypocenter determination (JHD) method. Hypocenters were relocated between the coastline and the Wewak trench, distributed along a nodal plane dipping shallowly to the southwest. Therefore, we can conclude that this nodal plane is the main shock fault and that the 1998 Papua New Guinea earthquake was an interplate earthquake between the North Bismarck and Australian plates.  相似文献   

6.
2015年3月30日至5月15日,巴布亚新几内亚-新不列颠地区发生了一系列地震.为研究该地区的构造应力环境及孕震背景,本文基于Global CMT目录,对新不列颠区域浅部进行构造应力场反演,拟得到高精度的应力图像.反演结果显示:(1)沿着南、北俾斯麦块体边界的区域构造应力场呈走滑体系,最大主压应力轴方位呈SWW-NEE向.(2)所罗门海的NW和NE走向的海沟处于压缩状态,所罗门海块体向新不列颠和所罗门群岛俯冲的板块弯曲部分是局部拉张.(3)受俯冲带的北向推挤,南俾斯麦板块顺时针旋转的挤压,太平洋板块向西部运动汇聚作用,新不列颠岛东北部与新爱尔兰岛南部交汇区域呈现明显非均匀应力状态.(4)此次地震序列的大多数走滑型和逆冲型地震,可能是所罗门海块体俯冲运动,和南俾斯麦块体与太平洋板块的近EW向挤压作用共同引发.  相似文献   

7.
WONN  SOH  KAZUO  NAKAYAMA & TAKU  KIMURA 《Island Arc》1998,7(3):330-341
The Pleistocene Ashigara Basin and adjacent Tanzawa Mountains, Izu collision zone, central Japan, are examined to better understand the development of an arc–arc orogeny, where the Izu–Bonin – Mariana (IBM) arc collides with the Honshu Arc. Three tectonic phases were identified based on the geohistory of the Ashigara Basin and the denudation history of the Tanzawa Mountains. In phase I, the IBM arc collided with the Honshu Arc along the Kannawa Fault. The Ashigara Basin formed as a trench basin, filled mainly by thin-bedded turbidites derived from the Tanzawa Mountains together with pyroclastics. The Ashigara Basin subsided at a rate of 1.7 mm/year, and the denudation rate of the Tanzawa Mountains was 1.1 mm/year. The onset of Ashigara Basin Formation is likely to be older than 2.2 Ma, interpreted as the onset of collision along the Kannawa Fault. Significant tectonic disruption due to the arc–arc collision took place in phase II, ranging from 1.1 to 0.7 Ma in age. The Ashigara Basin subsided abruptly (4.6 mm/year) and the accumulation rate increased to approximately 10 times that of phase I. Simultaneously, the Tanzawa Mountains were abruptly uplifted. A tremendous volume of coarse-grained detritus was provided from the Tanzawa Mountains and deposited in the Ashigara Basin as a slope-type fan delta. In phase III, 0.7–0.5 Ma, the entire Ashigara Basin was uplifted at a rate of 3.6 mm/year. This uplift was most likely caused by isostatic rebound resulting from stacking of IBM arc crust along the Kannawa Fault which is not active as the decollement fault by this time. The evolution of the Ashigara Basin and adjacent Tanzawa Mountains shows a series of the development of the arc–arc collision; from the subduction of the IBM arc beneath the Honshu Arc to the accretion of IBM arc crust onto Honshu. Arc–arc collision is not the collision between the hard crusts (massif) like a continent–continent collision, but crustal stacking of the subducting IBM arc beneath the Honshu Arc intercalated with very thick trench fill deposits.  相似文献   

8.
This study examines runoff generated under simulated rainfall on Summerford bajada in the Jornada Basin, New Mexico, USA. Forty‐five simulation experiments were conducted on 1 m2 and 2 m2 runoff plots on grassland, degraded grassland, shrub and intershrub environments located in grassland and shrubland communities. Average hydrographs generated for each environment show that runoff originates earlier on the vegetated plots than on the unvegetated plots. This early generation of runoff is attributed to soil infiltration rates being overwhelmed by the rapid concentration of water at the base of plants by stemflow. Hydrographs from the degraded grassland and intershrub plots rise continuously throughout the 30 min simulation events indicating that these plots do not achieve equilibrium runoff. This continuously rising form is attributed to the progressive development of raindrop‐induced surface seals. Most grassland and shrub plots level out after the initial early rise indicating equilibrium runoff is achieved. Some shrub plots, however, display a decline in discharge after the early rise. The delayed infiltration of water into macropores beneath shrubs with vegetation in their understories is proposed to explain this declining form. Water yields predicted at the community level indicate that the shrubland sheds 150 per cent more water for a given storm event than the grassland. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
中国东北地区远震P波走时层析成像研究   总被引:20,自引:14,他引:6       下载免费PDF全文
利用中国东北流动和固定台网的234个宽频带地震仪记录的远震波形数据,采用波形相关方法拾取了57251个有效相对走时残差数据,进一步采用FMTT(Fast Marching Teleseismic Tomography)层析成像的方法,反演获取了研究区下方深达800 km的P波速度结构.结果显示:在长白山下方发现有一个高速异常结构,这可能就是俯冲到欧亚大陆板块下方的太平洋板块,由于板块的部分下沉,使得板块的形状并没有呈现出明显的板片状.长白山、阿尔山、五大连池火山下方都有低速异常体,长白山和阿尔山下的低速异常向下延伸至地幔转换带,可能与其上部的火山形成有关.五大连池火山下方的低速异常向下延伸至200 km左右,不同埋深的低速异常结构可能意味着五大连池与长白山和阿尔山有着不同的成因.松辽盆地呈现以高速异常为主导高低速异常混合分布的特性,暗示松辽盆地可能有岩石圈拆沉的过程,盆地南部下方的低速异常与长白山和阿尔山下的低速异常有连通性,可能是下地幔热物质上涌的一个通道.  相似文献   

10.
P-wave and S-wave receiver function analyses have been performed along a profile consisted of 27 broadband seismic stations to image the crustal and upper mantle discontinuities across Northeast China. The results show that the average Moho depth varies from about 37 km beneath the Daxing’anling orogenic belt in the west to about 33 km beneath the Songliao Basin, and to about 35 km beneath the Changbai mountain region in the east. Our results reveal that the Moho is generally flat beneath the Daxing’anling region and a remarkable Moho offset (about 4 km) exists beneath the basin-mountain boundary, the Daxing’anling-Taihang Gravity Line. Beneath the Tanlu faults zone, which seperates the Songliao Basin and Changbai region, the Moho is uplift and the crustal thickness changes rapidly. We interpret this feature as that the Tanlu faults might deeply penetrate into the upper mantle, and facilitate the mantle upwelling along the faults during the Cenozoic era. The average depth of the lithosphere-asthenosphere boundary (LAB) is ~80 km along the profile which is thinner than an average thickness of a continental lithosphere. The LAB shows an arc-like shape in the basin, with the shallowest part approximately beneath the center of the basin. The uplift LAB beneath the basin might be related to the extensive lithospheric stretching in the Mesozoic. In the mantle transition zone, a structurally complicated 660 km discontinuity with a maximum 35 km depression beneath the Changbai region is observed. The 35 km depression is roughly coincident with the location of the stagnant western pacific slab on top of the 660 km discontinuity revealed by the recent P wave tomography.  相似文献   

11.
中国东北地区远震S波走时层析成像研究   总被引:16,自引:10,他引:6       下载免费PDF全文
利用中国东北流动和固定台网的234个宽频带地震仪在2009年6月-2011年5月所记录的远震波形数据,采用波形相关方法拾取了10301个有效的S震相相对走时残差数据,进一步采用两种射线走时层析成像的方法,反演获取了研究区下方深达800 km的S波速度结构,不同射线走时层析成像方法的结果对本区的S波速度异常结构起到一定的约束作用.S波成像结果与我们先前开展的P波成像研究结果整体相似:在长白山下方发现有一个高速异常结构,这可能就是俯冲到欧亚大陆板块下方的太平洋板块,由于板块的部分下沉,使得板块的形状并没有呈现出明显的板片状.长白山、阿尔山、五大连池火山下方都有低速异常体,长白山和阿尔山下的低速异常向下延伸至地幔转换带附近,可能与其上部的火山形成有关.五大连池火山下方的低速异常向下延伸至200 km左右,不同埋深的低速异常结构可能意味着五大连池与长白山和阿尔山有着不同的成因.松辽盆地呈现以高速异常为主导、高低速异常混合分布的特性,暗示松辽盆地岩石圈地幔可能遭受了改造与破坏,可能有岩石圈拆沉的过程,盆地南部下方的低速异常与长白山和阿尔山下的低速异常有连通性,可能是下地幔热物质上涌的一个通道.S波和P波相似的成像结果从另一个角度展示了中国东北地区的上地幔速度异常结构,对我们认识此区的地下结构提供了重要的约束.  相似文献   

12.
Abstract   The Kurile Basin in the Okhotsk Sea, northwestern Pacific, is a back-arc basin located behind the Kurile Island Arc. It is underlain by oceanic crust and its origin has been attributed to back-arc spreading. Two models for the opening of the Kurile Basin exist, for which the spreading axis is oriented northeast–southwest and northwest–southeast, respectively. New data are presented here on the morphostructure of the slope of the northern Kurile Basin and of the central Kurile Basin which support a strike of the spreading axis in the latter direction. Bathymetric as well as single-channel and multichannel seismic reflection data demonstrate the existence of dominant northwest-striking normal faults on the northern slope of the Kurile Basin. In the central Kurile Basin a basement rise striking north-northwest–south-southeast (here named the Sakura Rise) was mapped. The rise morphology has the distinct imprint of a rift structure with symmetrical volcanic edifices on the rise axis and faulted blocks that tilt in opposite directions on the flanks. These data suggest that the Kurile Basin opened in a northeast–southwest direction. In the generally accepted plate tectonic reconstructions, northwest–southeast spreading associated with dextral strike–slip along the north–south-striking shear zone of Sakhalin and Hokkaido islands has been assumed. In the present model, spreading in the Kurile Basin was presumably connected with dextral displacement along a northeast-striking shear zone on the southern segment of the Okhotsk Sea.  相似文献   

13.
Seismic study on oceanic core complexes in the Parece Vela back-arc basin   总被引:1,自引:0,他引:1  
Yasuhiko  Ohara  Kyoko  Okino  Junzo  Kasahara 《Island Arc》2007,16(3):348-360
Abstract   In the present study the seismic structure of oceanic core complexes (OCC) in the Parece Vela Basin, Philippine Sea have been imaged. Together with recent work on the Atlantis Massif OCC on the Mid-Atlantic Ridge, including deep drilling, this work provides an unprecedented opportunity to advance our understanding of OCC internal structure. A continuous, strong and relatively smooth reflection that was ca 0.15 s (two way time) below the sea floor of an OCC in the Chaotic Terrain of the Parece Vela Basin was identified. This reflection, termed the D-reflector, is similar to that observed beneath Atlantis Massif. A faster P-wave velocity (>6 km/s) is observed very shallow beneath the Chaotic Terrain OCC, suggesting that the core of these OCC is dominantly gabbroic. The D-reflector might be common beneath OCC, owing to localized alteration along fractured zones within gabbro. We further observed a series of three detachment events in the Chaotic Terrain. The first and second detachments exhumed shallow basaltic crust to deeper gabbroic core, whereas the last one only exhumed shallow basaltic crust.  相似文献   

14.
山西断陷带地壳结构的接收函数研究   总被引:13,自引:5,他引:8       下载免费PDF全文
利用2006年8月到2008年3月北京大学在山西断陷带南部架设的两条东西向流动观测地震台阵记录的远震资料,提取各台站接收函数,然后进行倾斜叠加(Slant stack)和台阵偏移成像,获得了沿台阵横穿山西断陷带的地壳和上地幔的精细结构变化.研究结果显示,山西断陷带下面莫霍面存在明显不连续,莫霍面上隆约4~6 km,纵横波速比从两侧的1.75上升为山西断陷带内部2.0左右,且中、下地壳可能存在一个低速层.山西断陷带的构造模式沿相距140 km的两条剖面表现出明显差异:南端的临汾盆地为拉张作用下的纯剪切模式,向北转化为太原盆地的简单剪切模式.  相似文献   

15.
利用中国地震年报(1984~2004年)测定ML所用的54000余条区域地震最大振幅数据,采用二维层析成像方法反演中国大陆地壳介质品质因子Q0结构.反演结果表明,中国大陆地壳介质品质因子Q0平均为370,Q0横向变化量可达±200.在整个研究区解的分辨率能够达到3°×3°,大部分地区能够达到2°×2°.Q0的变化显示出与地质构造分区相关的特征:低衰减 (高Q0值) 异常区主要分布在塔里木盆地、四川盆地、鄂尔多斯高原及华南地区,鄂尔多斯高原北部Q0值最高;高衰减异常区(低Q0值)主要分布在青藏高原以东的川滇地区、华北平原、渤海湾,最低Q0值在渤海湾地区,天山、祁连山和汾渭地堑Q0也呈较低异常变化.总体看来,构造上稳定的克拉通地台的介质品质因子Q0较高,而构造上活动的地区往往Q0较低,显现出区域的衰减变化特征与地壳结构和区域构造之间的密切关系.  相似文献   

16.
天山造山带作为世界上陆内最大的造山带之一,现今地震活动频繁,造山运动强烈,是开展陆内造山和内陆地震活动研究的天然试验场.本文利用整个天山造山带地区国内及国际台网的108个地震台站连续三年的背景噪声资料,提取了8~50 s周期的瑞利面波相速度频散曲线,并构建了整个天山造山带地区的二维瑞利面波相速度与方位各向异性分布图像.结果表明:浅部结构与地表的地质构造单元具有较大的相关性.低波速异常主要分布于沉积层厚度较大的盆地地区,而高波速异常主要分布于构造活动比较活跃的山脉地区.东天山地区中下地壳存在比较弱的低波速异常,而塔里木盆地和准噶尔盆地汇聚边缘的上地幔区域则表现为明显的高波速异常,各向异性快波方向呈现近NS向的特征,暗示着塔里木盆地和准噶尔盆地的岩石圈已经俯冲至东天山的下方.中天山地区的中下地壳至上地幔区域均呈现为明显的低波速异常,且各向异性快波方向变化比较复杂,表明中天山地区的整个岩石圈结构已经弱化,热物质上涌可能对介质的方位各向异性有一定的影响.西天山及帕米尔高原的上地幔区域存在低波速异常,各向异性表现为NW-SE方向,可能与欧亚板块的大陆岩石圈南向俯冲有关.塔里木盆地内部存在相对弱的低波速异常,推测塔里木盆地可能已经受到上涌的地幔热物质的侵蚀和破坏.  相似文献   

17.
The three-dimensional(3-D)electrical structure of the upper-mantle was used to examine the deep origins of and relationship among the Cenozoic volcanoes located in Northeast China(NEC).High-quality,long-period magnetotelluric(LMT)full-impedance tensor data were collected in NEC and subjected to 3-D Gauss-Newton inversion in order to construct a resistivity model.The resulting model reveals the presence of multiple localized low-resistivity anomalies(LRAs)within the high resistivity lithosphere beneath NEC.These LRAs partially coincide with Cenozoic volcanoes on the surface.Three LRAs that form a larger,annular LRA were observed in the deep upper mantle beneath the Songliao Basin,whereas vein-like LRAs were found in the asthenosphere that connect the lithosphere and deep upper mantle.Petrophysical analyses suggest that the LRAs may have been caused by fluid-induced melting.Based on our electrical model,we propose that,following dehydration of the subducted Western Pacific slab into the mantle transition zone(MTZ)beneath NEC,the released water migrated upward and caused partial melting at the top of the MTZ beneath the Songliao Basin.Under the effect of buoyancy,the melted mantle formed a thermal upwelling that caused melting of asthenosphere before diapiring at the base of the dry lithosphere.The magma then penetrated structural boundaries(such as thinner,weaker,or activated suture zones)and finally reached the Earth's surface.This melting and upwelling of hot mantle materials may have resulted in large-scale volcanism in the region throughout the Cenozoic,including the eruption of Changbai Mountain and Halaha Volcanoes.Our results suggest that the Cenozoic NEC volcanoes may all share a similar mode of genesis,and probably originated from the annular LRA in the deep upper mantle.  相似文献   

18.
A well exposed, gently tilted, 400 m-high, earliest Pliocene-Latest Miocene, basaltic, pillow-lava pile in Northern Pentecost, New Hebrides contains two large rafts of sediment. These rafts are considered to be important in unravelling how such deep water, pillow-lavapiles develop. It is thought that after early laccolithic intrusion beneath a sediment cover, possibly only 10 m thick, that lava bulged the overlying sediment upwards budding off pillows at localities where upward bulging had created voids. Subsequently, when the pile was probably 100–150 m high, pillow lava was deposited on the upper slopes of the pile from a dyke-feeder. There was, then, two stages of development: an early stage of internal growth and a late stage of external growth. Pillow fragmentation is not necessarily due to gravitational collapse on the exterior of the pile as the bulging-up-process beneath early formed pillows may lead to breccia formation. Deep sea rudites, thus, are considered to be due to autoclastic processes and/or gravitational collapse.  相似文献   

19.
Widespread seagrass dieback in central Torres Strait, Australia has been anecdotally linked to the delivery of vast quantities of terrigenous sediments from New Guinea. The composition and distribution, and sedimentological and geochemical properties, of seabed and suspended sediments in north and central Torres Strait have been determined to investigate this issue. In northern Torres Strait, next to Saibai Island, seabed sediments comprise poorly sorted, muddy, mixed calcareous–siliciclastic sand. Seabed sediments in this region are dominated by aluminosilicate (terrigenous) phases. In central Torres Strait, next to Turnagain Island, seabed and suspended sediments comprise moderately sorted coarse to medium carbonate sand. Seabed sediments in this region are dominated by carbonate and magnesium (marine) phases. Mean Cu/Al ratios for seabed sediments next to Saibai Island are 0.01, and are similar to those found in New Guinea south coastal sediments by previous workers. Mean Cu/Al ratios for seabed sediments next to Turnagain Island are 0.02, indicating an enrichment of Cu in central Torres Strait. This enrichment comes from an exogenous biogenic source, principally from foraminifers and molluscs. We could not uniquely trace terrigenous sediments from New Guinea to Turnagain Island in central Torres Strait. If sediments are a factor in the widespread seagrass dieback in central Torres Strait, then our data suggest these are marine-derived sediments sourced from resuspension and advection from the immediate shelf areas and not terrigenous sediments dispersed from New Guinea rivers. This finding is consistent with outputs from recently developed regional hydrodynamic and sediment transport models.  相似文献   

20.
Crustal and lithospheric thicknesses of the southeastern Mediterranean Basin region were determined using 3D Bouguer and elevation data analysis. The model is based on the assumption of local isostatic equilibrium. The calculated regional and residual Bouguer anomaly maps were employed for highlighting both deep and shallow structures. Generally, the regional field in the area under study is considered to be mainly influenced by the density contrast between the crust and upper mantle. Use of the gravity and topographic data with earthquake focal depths has improved both the geometry and the density distribution in the 3-D calculated profiles. The oceanic-continental boundary, the basement relief, Moho depth and lithosphere-asthenosphere boundary maps were estimated. The results point to the occurrence of thick continental crust areas with a thickness of approximately 32 km in northern Egypt. Below the coastal regions, the thickness of crust decreases abruptly (transition zone). An inverse correlation between sediment and crustal thicknesses shows up from the study. Furthermore, our density model reveals the existence of a continental crustal zone below the Eratosthenes Seamount block. Nevertheless, the crustal type beneath the Levantine basin is typically oceanic; this is covered by sedimentary sequences more than 14 km thick. The modeled Moho map shows a depth of 28–30 km below Cyprus and a depth of 26–28 km beneath the south Florence Rise in the northern west. However, the Moho lies at a constant shallow depth of 22–24 km below the Levantine Basin, which indicates thinning of the crust beneath this region. The Moho map reveals also a maximum depth of about 33–35 km beneath both the northern Egypt and northern Sinai, both of which are of the continental crust. The resulting mantle density anomalies suggest important variations of the lithosphere-asthenosphere boundary (LAB) topography, indicating prominent lithospheric mantle thinning beneath south Cyprus (LAB ~90 km depth), followed by thickening beneath the Eratosthenes seamount, Florence Rise, Levantine Basin and reaching to maximum thickness below Cyprian Arc (LAB ~115–120 km depth), and further followed by thinning in the north African margin plate and north Sinai subplate (LAB ~90–95 km depth). According to our density model profiles, we find that almost all earthquakes in the study area occurred along the western and central segments of the Cyprian arc while they almost disappear along the eastern segment. The active subduction zone in the Cyprian Arc is associated with large negative anomalies due to its low velocity upper mantle zone, which might be an indication of a serpentinized mantle. This means that collision between Cyprus and the Eratosthenes Seamount block is marked by seismic activity. Additionally, this block is in the process of dynamically subsiding, breaking-up and being underthrusted beneath Cyprus to the north and thrusted onto the Levantine Basin to the south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号