首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From Middle-Upper Jurassic volcanics at the western margin of the Maranha?o Basin (6.4°S, 47.4°W) 15 sites (121 samples) have a mean magnetization directionD = 3.9°,I = ?17.9° withα95 = 9.3°,k = 17.9 after AF cleaning (all sites have normal polarity). This yields a pole (named SAJ2) at 85.3°N, 82.5°E (A95 = 6.9°) which is near to the other known Middle Jurassic South American pole. For 21 sites (190 samples) from Lower Cretaceous basalt intrusions from the eastern part of the Maranha?o Basin (6.5°S, 42°W) the mean direction isD = 174.7°,I = +6.0° withα95 = 2.8°,k = 122 (all sites have reversed polarity) yielding a pole (SAK9) at 83.6°N, 261°E (A95 = 1.9°) in agreement with other Lower Cretaceous pole positions for South America. Comparing Mesozoic pole positions for South America and Africa in the pre-drift configuration after Bullard et al. [13] one finds a significant difference (with more than 95% probability) for the Lower Cretaceous and Middle Jurassic poles and also a probable difference for the mean Triassic poles indicating a small but probably stationary separation of the two continents from the predrift position in the Mesozoic until Lower Cretaceous time which may be due to an early rifting event.  相似文献   

2.
One hundred samples from nine sites in Upper Cretaceous volcanics (K/Ar age 85–99 m.y.) of the magmatic province of Cabo de Santo Agostinho, Pernambuco (8.4°S, 35.0°W) yield a mean direction of magnetizationD = 0.4°, I = ?20.6°withα95 = 4.8°, k = 114 after AF cleaning. All sites have normal polarity with a mean pole, named SAK10, at 87.6°N, 135°E withA95 = 4.5° which is close to other Upper Cretaceous poles for South America. These poles are compared with Upper Cretaceous poles of Africa for various reconstructions of the two continents.  相似文献   

3.
The palaeomagnetism of Middle Triassic (224 ± 5 m.y.) igneous rocks from the Ischigualasto-Ischichuca Basin (67°40′W, 30°20′S) was investigated through 86 oriented hand samples from 11 sites. At least one reversal of the geomagnetic field has been found in these rocks. Nine sites yield a palaeomagnetic pole at 239°E, 79°S (α95 = 15°, k = 13).The K-Ar age determinations of five igneous units of the Puesto Viejo Formation give a mean age of 232 ± 4 m.y. (Early Triassic). The palaeomagnetism of six igneous units of the Puesto Viejo Formation (68°W, 35°S) was investigated through 60 oriented samples. These units, two reversed relative to the present magnetic field of the Earth and four normal, yield a pole at 236°E, 76°S (α95 = 18°, k = 14).Data from the Puesto Viejo Formation indicate, for the first time on the basis of palaeomagnetic and radiometric data, that the Illawarra Zone, which defines the end of the Kiaman Magnetic Interval, extends at least down to 232 ± 4 m.y. within the Early Triassic. The palaeomagnetic poles for the igneous rocks of the Ischigualasto-Ischichuca Basin and Puesto Viejo Formation form an “age group” with the South American Triassic palaeomagnetic poles (mean pole position: 239°E, 77°S; α95 = 6.6°, k = 190). The Middle and Upper Permian, Triassic and Middle Jurassic palaeomagnetic poles for South America would define a “time group” reflecting a quasi-static interval (mean pole position: 232°E, 81°S; α95 = 4°, k = 131).  相似文献   

4.
Palaeomagnetic study of Middle Liassic siltstones shows a stable magnetization with a mean direction of D = 12.3°, I = 64.6° (N = 60, k = 26, α95 = 3.9°) corresponding to a palaeomagnetic pole at 79.8°N, 125.6°E, similar to that for southern Germany and confirming predictions based on palaeogeographic reconstructions using North American data. Sideritic concretions of Lower Liassic age show a higher magnetic stability with a mean direction of D = 12.6°, I = 61.4° (N = 125, k = 50, α95 = 1.8°) which is not significantly different from the siltstones. This confirms the sedimentological evidence that suggests that such concretions grew very shortly after deposition, i.e. within the Liassic, and suggests that similar concretions of other ages could thus be used for palaeomagnetic studies. Although the Liassic palaeomagnetic pole (76.9°N, 134.7°E), based on this work, appears valid it is still not possible to evaluate a sensible Mesozoic polar wandering curve for the North Atlantic bordering continents.  相似文献   

5.
The Precambrian basement of the British region south of the Caledonian orogenic belt is only observed in a few small inliers; this paper reports a detailed paleomagnetic study of four of these inliers. The Stanner-Hanter amphibolitised gabbro-dolerite complex of uncertain age yields a mean direction of magnetisation D = 282°, I = 51° (15 sites,α95 = 11.4°) after AF and thermal cleaning. Uriconian lavas and tuffs (~700-600 m.y.) of the Pontesford and Wrekin inliers require both thermal and AF cleaning for complete analysis of NRM. The former region (Western Uriconian) yields a mean of D = 136°, I = ?25° (6 sites,α95 = 15.3°) and the latter region (Eastern Uriconian) a mean of D = 78°, I = 17° (9 sites, α95 = 12.8°); the Eastern Uriconian shows a marked improvement in precision after a two-stage fold test, and the palaeomagnetic data suggest that some apparent polar movement took place between eruption of the two sequences. The Uriconian rocks in both areas were intruded by dolerites which yield a mean direction of magnetisation D = 72°, I = 54° (11 sites,α95 = 13.2°).The collective data give palaeomagnetic poles related to Upper Proterozoic metamorphic episodes (Stanner-Hanter Complex and Rushton Schist) which are in close agreement with earlier studies of the Malvernian metamorphic rocks, and to the late Precambrian Uriconian volcanic/hypabyssal igneous episode. All of these magnetisations are probably confined to the interval 700-600 m.y., and are indicative of appreciable polar movement during this interval. The palaeomagnetic poles define an apparent polar wander path for this crustal block between Late Precambrian and Lower Cambrian times and show that cratonic Britain south of the Caledonian suture is unrelated to the Baltic Shield.  相似文献   

6.
The major Proterozoic igneous intrusions in the Swedish sector of the Baltic Shield are the Ragunda complex (1293 m.y., palaeomagnetic pole 165°E, 54°N) and the Nordingrågabbro-granite-anorthosite complex (1385 ± 30 m.y.). The latter body has been partially remagnetised by later post-Jotnian dolerites (1254 m.y.), and sites influenced by the dolerites have a stable magnetisation with a mean direction D = 45°, I = ?39°, (α95 = 4.3°). Elsewhere, the gabbro-anorthosite facies have a magnetisation of dual polarity predating the dolerite and recoverable at various stages of thermal and/or a.f. cleaning with a mean of D = 48°, I = 37° (α95 = 5.3°); medium and high coercivity remanence resides in large magnetite grains and fine, predominantly hematite, rods in feldspar megacrysts. The Nordingrårapakivi granite yields a mean, also including dual polarities, of D = 221°, I = ?25° (α95 = 13°), and the Gävle granite yields a mean of D = 26°, I = 17° (α95 = 13°).New data define the a.p.w. path for the Baltic Shield after final uplift and cooling of the ca. 1800 m.y. Svecofennian mobile belt and prior to intrusion of the post-Jotnian dolerites at 1250 m.y.; this (ca. 1500–1200 m.y.) path defines a double loop similar in size and shape to the contemporaneous path for the Laurentian Shield and the paths can be superimposed to define relative positions of the shields. They were in juxtaposition prior to 1200 m.y. with the optimum reconstruction obtained by rotation of approximately 64° about a Euler pole at 1°E, 36°N. Pre-1500 m.y. palaeomagnetic data are also shown to fit this same unique reconstruction. The main geological correlations are an alignment of the Lower/Middle Proterozoic major strike-slip zones, the structural trends within the pre-1700 m.y. mobile belts, and the Grenville and Sveconorwegian (ca. 1100 m.y.) mobile belts. The anorogenic magmatism characteristic of Proterozoic times became gradually more restricted to one active margin of the continental reconstruction as temperature gradients decreased and the crust consolidated. All of these Proterozoic tectonic/magmatic trends are parallel to the long axis of the continental reconstruction.  相似文献   

7.
Early Carboniferous (Viséan to possibly earliest Namurian) sedimentary rocks of the Deer Lake Group of western Newfoundland rest unconformably on Grenvillian basement rocks of the Canadian Shield which form the western border of the Early Palaeozoic Appalachian orogen. In addition to magnetically soft magnetizations directed along the present field, three families of magnetization directions are found. Two of them (referred to as N (north) and S (south)) are antiparallel and prefolding, and were probably acquired during the depositional process. N and S are roughly of equal frequency. They have a mean direction irrespective of sign of 0.7°, ?35.2°, k = 40, α95 = 8.9°, and a palaeopole 21.5°N, 121.8°E (10.3°, 6.0°) corresponding to a palaeolatitude of 20 ± 6°S. This agrees with the palaeolatitude (17 ± 5°S) determined from the somewhat older Early Carboniferous (Tournaisian) Terenceville Formation of the Avalon Platform on the eastern side of the Appalachian orogen in Newfoundland. The third magnetization, referred to as H (roughly horizontal), has a mean direction 156.8°, ?13.3°, k = 37, α95 = 10.1°, and a palaeopole 45.4°N, 140.3°E (10.3°, 5.3°) corresponding to a palaeolatitude of 7 ± 4°N; we interpret this to be an early Kiaman (latest Carboniferous to early Permian) overprint probably acquired chemically. The palaeolatitude determined from the H overprint agrees with that determined from Early Carboniferous rocks of cratonic North America west of the Appalachians. Therefore, we argue, Early Carboniferous palaeofield determinations for cratonic North America have been strongly biased by unremoved Kiaman overprints. Because of this, and because of the good agreement between Early Carboniferous palaeolatitudes obtained from opposite margins of the Appalachian orogen, we suggest that there is, at present, no palaeomagnetic evidence for the previously proposed 1500 km displacement from the south of an eastern portion of the Appalachians (“Acadia”) relative to cratonic North America during the Carboniferous.  相似文献   

8.
The mean palaeomagnetic pole position obtained from Upper Cretaceous rocks in west Sicily is at 21°N, 100°E (A95 = 15°), and at 38°N, 67°E (A95 = 31°) obtained from Middle Jurassic rocks. These pole positions are completely different from comparable pole positions for southeast Sicily and Africa and imply a clockwise rotation of west Sicily since the Upper Cretaceous of about 90° relative to southeast Sicily and Africa and also a clockwise rotation of about 60° relative to “stable” Europe. The sense of rotation of west Sicily is opposite to any known rotation of other crustal blocks in the central Mediterranean.  相似文献   

9.
Paleomagnetic studies have been made of certain constituents of the Bay St. George sub-basin. Specifically, results are reported from the Spout Falls Formation (Tournaisian), the Jeffreys Village Member of the Robinsons River Formation (Visean), and the Searston Formation (Namurian-Westphalian). The following magnetizations have been isolated: Spout Falls A (Tournaisian) with D = 343.5°, I = ?22.7°, k = 61.2, α95 = 7.1° and the corresponding pole at 28.6°N, 139.5°E (4.5°, 8.5°); Spout Falls B (Kiaman) with D = 166.7°, I = 12.2°, k = 51.7, α95 = 10.7° and the corresponding pole at 34.5°S, 42.7°W (5.5°, 10.9°); Jeffreys Village A (Visean) with D = 351.2°, I = ?27.3°, k = 54.0, α95 = 7.6° and the corresponding pole at 26.5°N, 130.7°E (4.5°, 8.3°); Searston A (Namurian) with D = 161.7°, I = 11.7°, k = 107, α95 = 7.4° and the corresponding pole at 33.9°S, 37.2°W (3.8°, 7.5°); and Searston C with D = 111.6°, I = ?13.8°, k = 28.8, α95 = 14.5° and the corresponding pole at 19.6°S, 19.0°E (7.6°, 14.8°). After comparison with paleopoles of similar ages derived from eastern and western Newfoundland rocks, from constituents of the east coast basin and for interior North America, it is concluded that: (1) it is unlikely that any large scale relative motion took place since the Early Carboniferous between eastern and western Newfoundland; (2) it is unlikely that any north-south relative motion took place between the east coast basin and the Bay St. George sub-basin; and (3) the Bay St. George sub-basin results do not support the earlier proposed displaced terrane hypothesis of the northern Appalachians in as much as the motions during the Carboniferous are not supported. There is evidence of the northward motion of the Appalachians and North America as a whole during the Carboniferous. The magnetostratigraphic horizon marker in the Carboniferous separating a dominant normal and reversed magnetization on the older side and an entirely reversed (Kiaman) magnetization on the younger side may be placed in the Bay St. George sub-basin at the base of the Searston Formation.  相似文献   

10.
The natural remanent magnetization of 22 out of a total of 31 oriented cores from the layered series of the Skaergaard gabbroic intrusion (age: 55 m.y.) in East Greenland shows good stability in thermal and AF testing. The average direction of 22 AF and 9 thermally treated specimens isD = 170°,I = ?59°,α95 = 4.2 before correction for tilt. The mean directions after rotation around strike to horizontal and after rotation to original attitudes suggested by others yields poorer population statistics. It is therefore concluded that flexuring took place between solidification and acquisition of remanent magnetization, a range in temperature of about 500°C which may represent an interval of somewhat less than 250,000 years. No evidence for secular variation is observed which may also suggest slow cooling through the blocking temperature range. The polarity is reversed and the pole position without “tilt correction” is 165°E, 61°N,dm = 6.2,dp = 4.6, which is similar to pole positions reported by others for the overlying slightly older basalt.  相似文献   

11.
The eastern segment of the Appalachian orogen is largely underlain by late Precambrian (Hadrynian) rocks affected by the Avalonian, Acadian and possibly Alleghenian orogenies. The provenance of the Avalon Zone of Newfoundland is uncertain. The region investigated in this segment consists of porphyrite stocks and sills (laccoliths) intrusive into the sedimentary, tuffaceous and volcanic rocks of the Harbour Main Group and rhyolite sills intrusive into the porphyrites. Some 55 oriented samples (148 specimens) collected at 11 sites were thermally (20–650°C) and AF (0.05–100 mT) demagnetized. Three components of magnetization were isolated: C (311°, +48°, α95 = 11°, k = 21, 10 sites), A (13°, +37°, α95 = 14°, k = 22, 6 sites), and B (67°, +45°, α95 = 15°, k = 27,5 sites). Based on coercivity spectra, unblocking temperatures, frequency distribution and precision parameters of the respective components, it is suggested that component C is older than component A which is turn is older than component B. The palaeopoles of components C, A and B are: 211°E, 48°N (dp = 9.8°, dm = 14.7°); 101°E, 61°N (dp = 9.6°, dm = 16.4°); 33°E, 34°N (dp = 12°, dm = 19°), respectively. Component C is most probably primary. Component A is secondary and its pole is near that of Carboniferous and Early Permian North America poles, indicating that the porphyrites and the rhyolites were remagnetized in the late Palaeozoic. Component B remains unexplained; it is possible that it is an unresolved pseudo-component but it is more likely an overprint. There are few palaeomagnetic results for the late Precambrian period in Avalon terrane(s). The preliminary results of this study suggest the presence of a separate plate from North American at that time. These results will prove useful for the palaeoreconstruction of the continents (North Africa, northeast Europe) in the late Precambrian period.  相似文献   

12.
Palaeomagnetic measurements on the pre-Miocene carbonatite volcanics of Tororo, S.E. Uganda, have yielded a pole at 75.8°N, 195.5°E with A95 = 9.4°. Along with the Tertiary poles from East African rift systems, the Eocene-Oligocene pole from Ethiopia and the mean Mesozoic pole from the rest of Africa, a polar wander path for Africa fromMesozoic to present is suggested.  相似文献   

13.
The Sulitjelma Gabbro situated at 67.2°N, 15.4°E was intruded close to the Late Ordovician climax of regional metamorphism in the northern Scandinavian Caledonides. Magnetic properties have been examined from samples collected at seven localities in the south western part of this body. Total NRM directions show a tendency to be aligned near the present earth's magnetic field direction in this region. Stability to a.f. demagnetisation is low and commensurate with low Koenigsberger ratios (0.001–0.16) and the presence of unoxidised magnetite as the principal remanence carrier. After cleaning the site mean directions no longer show an alignment near the present earth's field and of six statistically significant sites three are approximately reversed with respect to remainder. The combined mean direction after cleaning isD = 195°,I = 15° (precision parameterk = 6) and the derived virtual geomagnetic pole is at 0°E, 14°S (α95 = 23°). This pole is close to poles of comparable age from the British Isles and suggests that Britain and Norway were part of the same crustal plate in Ordovician times. Discrepancies between Siluro-Devonian results from the two regions may be due to inadequate age coverage of present results.  相似文献   

14.
Paleomagnetic results are reported from 13 sites of red beds of Early Devonian age from Central Iran. Detailed paleomagnetic analyses were carried out. Two types of partial progressive demagnetization were applied, one using alternating magnetic fields, the other heating. These procedures resulted in the detection of the characteristic remanences with a mean direction with D = 24.2°, I = 1.3°95 = 10.1°). The paleomagnetic pole is located at 51.3°N, 163.7°W. If one shifts the Iranian landmass to its most likely position in the Gondwana configuration, then the position of the paleomagnetic pole coincides with the alternative polar wander path [14,15] which crossed South America in early Middle Paleozoic times.  相似文献   

15.
Three components of magnetization have been observed in ninety-six samples (twelve sites) of amygdaloidal basalts and “sedimentary greenstones” of the Unicoi Formation in the Blue Ridge Province of northeast Tennessee and southwest Virginia. These components could be isolated by alternating field as well as thermal demagnetization. One component, with a direction close to that of the present-day geomagnetic field is ascribed to recent viscous remanent magnetizations; another component, with intermediate blocking temperatures and coercivities, gives a mean direction of D = 132°, I = +43°,α95 = 9° for N = 10 sites before correction for tilt of the strata. This direction and the corresponding pole position are close to Ordovician/Silurian data from the North American craton and we infer this magnetization to be due to a thermal(?) remagnetization during or after the Taconic orogeny. This magnetization is of post-folding origin, which indicates that the Blue Ridge in our area was structurally affected by the Taconic deformation. The third component, with the highest blocking temperatures and coercivities, appears to reside in hematite. Its mean direction, D = 276°, I = ?17°,α95 = 13.8° for N = 6 sites (after tilt correction) corresponds to a pole close to Latest Precambrian and Cambrian poles for North America. The fold test is inconclusive for this magnetization at the 95% confidence level because of the near-coincidence of the strike and the declinations. We infer this direction to be due to early high-temperature oxidation of the basalts, and argue that its magnetization may have survived the later thermal events because of its intrinsic high blocking temperatures. A detailed examination of the paleomagnetic directions from this study reveals that the Blue Ridge in this area may have undergone a small counterclockwise rotation of about 15°.  相似文献   

16.
A preliminary collection of 43 palaeomagnetic samples (10 sites) from the miogeosynclinal and supposedly autochthonous Umbrian sequence in the Northern Apennines, Italy, was analysed by means of alternating magnetic fields and thermal demagnetization studies. The older group of samples, taken from the upper part of the Calcari Diasprini (Malm), the Fucoid Marls (Albian/Cenomanian) and from the basal part of the Scaglia Bianca (Early Late Cretaceous), all showed normal polarity directions and resulted in a mean site direction:D = 290.5°,I = +51.5°,α95 = 11°,k = 74,N = 4.The younger group of samples, taken throughout the Scaglia Rossa sequence (Latest Cretaceous/Middle Eocene) showed normal and reversed polarity directions. In contrast to the older group, the magnetic analysis of these samples resulted in a considerably less dense grouping of site mean directions. This presumably is due to inaccuracies introduced with the very large bedding tilt corrections that had to be applied to the samples of some sites. A tentative mean site direction for these Scaglia Rossa samples was computed as:D = 351°,I = +52.5°,α95 = 23.5°,k = 11.5,N = 5.Despite the low precision of the Scaglia Rossa result, the significant deviation between this Latest Cretaceous/Early Tertiary direction and the Late Jurassic/Early Late Cretaceous direction indicates a counterclockwise rotation of more than forty degrees. This rotation can be dated as Late Cretaceous.How far these data from the Northern Apennines apply to other parts of the Italian Peninsula has yet to be established. The timing of this rotation is not at variance with the data from other parts of Mediterranean Europe (Southern Alps, Iberian Peninsula) and from Africa. However, taking into account the preliminary nature of the results, the amount of rotation of the Northern Apennines seems to surpass the rotation angle which is deduced from the palaeomagnetic data for Africa.  相似文献   

17.
This palaeomagnetic study is centered on agglomerates and volcanic rocks from the western margin of the Appalachian belt in the Drummondville-Actonvale-Granby area, Quebec (long.: 72°30′W, lat.: 46°00′N). It involves a total of 36 oriented samples (111 speciments) distributed over eleven sites. Both thermal and AF cleaning techniques were used to isolate residual remanent components. The dispersion of the directions is slightly reduced after AF cleaning and thermal treatment.The palaeopole position obtained is 191°E, 6°N (dm = 14°, dp = 7°) after thermal treatment and 164°E, 19°N (dm = 11°, dp = 6°) after AF cleaning. The polarity of most of the sites (two exceptions) are reversed. The thermal-treated data appear to be relatively stable and an approximate value of the primary magnetization is extracted from them. The palaeopole obtained does not lie close to the tentatively defined position of the Cambrian and Ordovician poles from rocks of the North American plate; it is located near the Upper Cambrian and Lower Ordovician poles from eastern Newfoundland and the Lower Ordovician pole from the Caledonides in Europe.  相似文献   

18.
Some 50 oriented samples (120 specimens) have been collected on eight sites of volcanic rocks from the Lower Devonian Dalhousie Group of northern New Brunswick and Devonian andesitic to basic dykes from central New Brunswick. Univectorial and occasional multivectorial components were extracted from the various samples. Results after AF and thermal demagnetization compare relatively well. In the volcanics and tuffs, two components of magnetization have been isolated: A (D = 33°, I = ?58°, α95 = 7.3°, K = 236) for four sites and B (D = 66°, I = +53°) for three sites. The grouping of component A is improved after tilt correction but the fold test is not significantly positive at the 95% confidence level. Component A is interpreted as being primary while component B is unresolved and appears to be the resultant magnetization of a Late Paleozoic and a recent component. The pole position obtained for tilt corrected component A is 268°E, 1°S, dp = 6.5°, dm = 8.8°. The paleolatitude calculated for component A is 39°S. The paleopole of in situ component A is located close to those of the Early-Middle Devonian formations from Quebec, New Brunswick and New England states while the paleopole of tilt-corrected component A is similar to Lower Devonian poles of rock units from the Canadian Arctic Archipelago. If component A is primary (as we believe it to be), then the western half of the northern Appalachians had already docked onto the North American Craton by Early Devonian time. Alternatively, if component A is secondary the same conclusion applies but the juxtaposition took place in Middle Devonian time.  相似文献   

19.
A system of aligned vertical fractures produces azimuthal variations in stacking velocity and amplitude variation with offset, characteristics often reported in seismic reflection data for hydrocarbon exploration. Studies of associated attenuation anisotropy have been mostly theoretical, laboratory or vertical seismic profiling based. We used an 11 common‐midpoint‐long portion of each of four marine surface‐seismic reflection profiles, intersecting each other at 45° within circa 100 m of a common location, to measure the azimuthal variation of effective attenuation, Q−1eff and stacking velocity, in a shallow interval, about 100 m thick, in which consistently orientated vertical fracturing was expected due to an underlying salt diapirism. We found qualitative and quantitative consistency between the azimuthal variation in the attenuation and stacking velocity, and published amplitude variation with offset results. The 135° azimuth line showed the least apparent attenuation (1000 Q−1eff= 16 ± 7) and the fastest stacking velocity, hence we infer it to be closest to the fracture trend: the orthogonal 45° line showed the most apparent attenuation (1000Q−1eff= 52 ± 15) and slowest stacking velocity. The variation of Q−1eff with azimuth φ is well fitted by 1000Q−1eff = 34 − 18cos[2(φ+40°)] giving a fracture direction of 140 ± 23° (±1SD, derived from ‘bootstrapping’ fits to all 114 combinations of individual common‐midpoint/azimuth measurements), compared to 134 ± 47° from published amplitude variation with offset data. The effects of short‐window spectral estimation and choices of spectral ratio bandwidth and offset ranges used in attenuation analysis, individually give uncertainties of up to ±13° in fracture direction. This magnitude of azimuthal variation can be produced by credible crack geometries (e.g., dry cracks, radius 6.5 m, aspect ratio 3 × 10−5, crack density 0.2) but we do not claim these to be the actual properties of the interval studied, because of the lack of well control (and its consequences for the choice of theoretical model and host rock physical properties) and the small number of azimuths available here.  相似文献   

20.
The Banda Sea earthquake of November 4, 1963 (h = 100 km, mB = 7.8) is probably one of the largest intermediate-depth shocks to have occurred worldwide this century. The mechanism of this earthquake is studied in detail on the basis of P-wave first motion, surface wave and aftershock data. From the analysis of long-period multiple surface waves, a seismic moment of 3.1 × 1028 dyn-cm is obtained, which is the largest reported so far for any intermediate or deep focus shock. This value, together with the estimated fault area of 90 × 70 km2, gives an average dislocation of 7.0 m and a stress drop of 120 bar. This event represents an oblique thrust movement on a plane with dip direction N170°E, dip 48° and rake 52°. A geometrical consideration for the fault plane and the configuration of the inclined seismic zone beneath the Banda arc suggests, almost definitely, that the large-scale faulting took place within the subducted plate and offset it. Further repetition of such large-scale faulting might eventually break the subducted plate. The 1963 Banda Sea earthquake thus represents a seismological manifestation of the large-scale deformation of the subducted plate in the mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号