首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detailed stratigraphic survey and paleontological study (mollusks, corals, foraminifera and ostracods) of four low-level, ~3 m, marine terrace sections: Punta Canoas, Manzanillo del Mar, Playa de Oro, and Tierra Bomba Island, from the Cartagena region, southern Caribbean, supplemented with 22 radiocarbon dates, reveals that the northern terraces were deposited as parasequences in a clastic depositional system compared to the Tierra Bomba Island succession that was deposited in a carbonate depositional system between ~3600 and ~1700 cal yrs BP. Drier conditions and the southern location of the ITCZ at about 3 ka triggered stronger easterly Trades and more dynamic southwestward sediment drift fed by the Magdalena River mouth, thus promoting the formation of sand spits that ultimately isolated the Cienaga de Tesca coastal lagoon from the Caribbean Sea. Our estimates support the hypothesis that the present position of the terraces is the product of neotectonism rather than a higher 3 ka, sea-level. Upheaval of the terraces varies between ~3.8 mmyr?1 at Punta Canoas and ~2.2 mmyr?1 at Tierra Bomba to ~1.5 mmyr?1 at Manzanillo del Mar and Playa de Oro terraces. Our study corroborates previous contentions on the role of mud diapirism and the dynamics of the Dique Fault as late Holocene upheaval mechanisms.  相似文献   

2.
We investigated whether within wetland environmental conditions or surrounding land cover measured at multiple scales were more influential in structuring regional vegetation patterns in estuarine tidal wetlands in the Pacific Northwest, USA. Surrounding land cover was characterized at the 100, 250, and 1,000 m, and watershed buffer scales. Vegetation communities were characterized by high species richness, lack of monotypic zonation, and paucity of invasive species. The number of species per site ranged between 4 and 20 (mean?±?standard deviation?=?10.2?±?3.1). Sites supported a high richness (mean richness of native species 8.7?±?2.8) and abundance of native macrophytes (mean relative abundance 85 %?±?19 %). Vegetation assemblages were dominated by a mix of grasses, sedges, and herbs with Sarcocornia pacifica and Distichlis spicata being common at sites in the oceanic zone of the estuary and Carex lyngbyei and Agrostis stolonifera being common at the fresher sites throughout the study area. The vegetation community was most strongly correlated with salinity and land cover within close proximity to the study site and less so with land cover variables at the watershed scale. Total species richness and richness of native species were negatively correlated with the amount of wetland in the buffer at all scales, while abundance of invasive species was significantly correlated to within wetland factors, including salinity and dissolved phosphorus concentrations. Landscape factors related to anthropogenic disturbances were only important at the 100-m buffer scale, with anthropogenic disturbances further from the wetland not being influential in shaping the vegetation assemblage. Our research suggests that the traditional paradigms of tidal wetland vegetation structure and environmental determinants developed in east coast US tidal wetlands might not hold true for Pacific Northwest wetlands due to their unique chemical and physical factors, necessitating further detailed study of these systems.  相似文献   

3.
Coastal plains are amongst the most densely populated areas in the world. Many coastal peatlands are drained to create arable land. This is not without consequences; physical compaction of peat and its degradation by oxidation lead to subsidence, and oxidation also leads to emissions of carbon dioxide (CO2). This study complements existing studies by quantifying total land subsidence and associated CO2 respiration over the past millennium in the Dutch coastal peatlands, to gain insight into the consequences of cultivating coastal peatlands over longer timescales. Results show that the peat volume loss was 19.8 km3, which lowered the Dutch coastal plain by 1.9 m on average, bringing most of it below sea level. At least 66 % of the volume reduction is the result of drainage, and 34 % was caused by the excavation and subsequent combustion of peat. The associated CO2 respiration is equivalent to a global atmospheric CO2 concentration increase of ~0.39 ppmv. Cultivation of coastal peatlands can turn a carbon sink into a carbon source. If the path taken by the Dutch would be followed worldwide, there will be double trouble: globally significant carbon emissions and increased flood risk in a globally important human habitat. The effects would be larger than the historic ones because most of the cumulative Dutch subsidence and peat loss was accomplished with much less efficient techniques than those available now.  相似文献   

4.
基于生态工程的海岸带全球变化适应性防护策略   总被引:2,自引:0,他引:2  
在全球变化导致的海平面上升和灾害性气候等压力下,我国海岸带风暴潮、海岸侵蚀、地面沉降等灾害发生频率和强度正在增加,对海岸防护体系的需求日益提高。传统海岸防护工程维护成本高,更新困难,而且可能造成地面沉降、水质恶化、生态退化、渔业资源衰退等后果。基于生态工程的海岸防护提供了抵御海岸带灾害的新理念。修复和重建沙滩、红树林、沼泽湿地、珊瑚礁等海岸带生态系统,可以起到消浪、蓄积泥沙、抬升地面的作用,有效应对全球变化引发的灾害风险,形成更可持续的海岸防护体系。通过分析不同海岸防护技术的优势和限制,认为以生态工程为核心理念构建和管理我国海岸防护体系,才能起到保障社会经济发展和维持生态健康的最佳效果。  相似文献   

5.
The logical structure of species richness determinations is outlined in order to explain how their accuracy is affected by nonrandomly distributed populations. The transformation of a species-area curve to a species-range curve is discussed in general terms and conditions required for accurate species richness determinations are given. Applications of the approach to scleractinid coral and pine-tree communities illustrate the method.  相似文献   

6.
Using coupled terrestrial and coastal zone models, we investigated the impacts of deglaciation and anthropogenic inputs on the CO2–H2O–CaCO3 system in global coastal ocean waters from the Last Glacial Maximum (LGM: 18,000 year BP) to the year 2100. With rising sea level and atmospheric CO2, the carbonate system of coastal ocean water changed significantly. We find that 6 × 1012 metric tons of carbon were emitted from the coastal ocean, growing due to the sea level rise, from the LGM to late preindustrial time (1700 AD) because of net heterotrophy and calcification processes. This carbon came to reside in the atmosphere and in the growing vegetation on land and in uptake of atmospheric CO2 through the weathering of rocks on land. It appears that carbonate accumulation, mainly, but not exclusively, in coral reefs from the LGM to late preindustrial time could account for about 24 ppmv of the 100 ppmv rise in atmospheric CO2, lending some support to the “coral reef hypothesis”. In addition, the global coastal ocean is now, or soon will be, a sink of atmospheric CO2. The temperature rise of 4–5°C since the LGM led to increased weathering rates of inorganic and organic materials on land and enhanced riverine fluxes of total C, N, and P to the coastal ocean of 68%, 108%, and 97%, respectively, from the LGM to late preindustrial time. During the Anthropocene, these trends have been exacerbated owing to rising atmospheric CO2, due to fossil fuel combustion and land-use practices, other human activities, and rising global temperatures. River fluxes of total reactive C, N, and P are projected to increase from late preindustrial time to the year 2100 by 150%, 380%, and 257%, respectively, modifying significantly the behavior of these element cycles in the coastal ocean, particularly in proximal environments. Despite the fact that the global shoal water carbonate mass has grown extensively since the LGM, the pHT (pH values on the total proton scale) of global coastal waters has decreased from ~8.35 to ~8.18 and the carbonate ion concentration declined by ~19% from the LGM to late preindustrial time. The latter represents a rate of decline of about 0.028 μmol CO3 2? per decade. In comparison, the decrease in coastal water pHT from the year 1900 to 2000 was about 8.18–8.08 and is projected to decrease further from about 8.08 to 7.85 between 2000 and 2100, according to the IS92a business-as-usual scenario of CO2 emissions. Over these 200 years, the carbonate ion concentration will fall by ~120 μmol kg?1 or 6 μmol kg?1 per decade. This decadal rate of decline of the carbonate ion concentration in the Anthropocene is 214 times the average rate of decline for the entire Holocene. Hence, when viewed against the millennial to several millennial timescale of geologic change in the coastal ocean marine carbon system, one can easily appreciate why ocean acidification is the “other CO2 problem”.  相似文献   

7.
This study was conducted to identify the availability of coastal groundwater discharge (CGD), subsurface fluids flowing from inland through the coastal area to sea, as an alternative water resource for a large-scale reclaimed land. The behaviors of stable isotopes indicated that groundwater originated from inland precipitation and traveled as CGD along the coast line. Most of the groundwater samples collected from domestic wells installed along the old coast line were considered to be relatively fresh from the correlation analysis among chemical constituents. The average electrical conductivity (EC) values of the samples were identified as averaging 1,125–1,297 μS cm?1, corresponding to appropriate crop growth. A weathered-rock layer in a small catchment within the reclaimed land was proved to be a main CGD pathway, with electrical resistivity anomalies ranging from 7 to 14 Ω m. Five monitoring wells were placed in this catchment to delineate the occurrence of CGD. Long-term vertical EC profiling results for the monitoring wells indicated that CGD occurs within a depth of 30 m below the ground surface. Annual monitoring data for groundwater level and EC demonstrated that the water quality of CGD was improved by introducing fresh terrestrial groundwater. A remarkable improvement in water quality (EC decrease of 900–1,600 μS cm?1) of CGD was observed during the saline water pumping test that explains how CGD could be an alternative water resource for the reclaimed land.  相似文献   

8.
Recent studies have suggested that large rivers play important roles in mobilizing and transporting black carbon (BC) from land to the ocean. However, the influence of the Changjiang and Huanghe, the two largest rivers in China, on the fate of BC has not been determined. In this paper, we present measurements of BC in both the dissolved and particulate phases in the Changjiang and Huanghe Rivers and in the coastal waters of the East China Sea (ECS). Our results show that dissolved black carbon (DBC) accounted for 3.0 ± 0.4 % and 4.8 ± 3.6 % of the total DOC pool in the Changjiang and Huanghe Rivers and 3.4 ± 0.6 % of the DOC pool in the coast of the ECS. In addition, particulate black carbon (PBC) accounted for 13 ± 0.9 % and 22 ± 11 % of the POC pool in the Changjiang and Huanghe Rivers, respectively. We calculate that the Changjiang and Huanghe transported 4.7 × 1010 gC and 1.7 × 109 gC of DBC, and 2.0 × 1011 gC and 1.2 × 1010 gC of PBC to the ECS and Bohai Sea in 2015. The large amounts of BC transported by the two rivers represent a major sink of anthropogenically derived organic carbon and could have a significant impact on the ecosystem and carbon cycling in China’s marginal seas.  相似文献   

9.
While many studies of non-native species have examined either soft-bottom or hard-bottom marine communities, including artificial structures at docks and marinas, formal comparisons across these habitat types are rare. The number of non-indigenous species (NIS) may differ among habitats, due to differences in species delivery (trade history) and susceptibility to invasions. In this study, we quantitatively compared NIS to native species richness and distribution and examined community similarity across hard-bottom and soft-sediment habitats in San Francisco Bay, California (USA). Benthic invertebrates were sampled using settlement panels (hard-bottom habitats) and sediment grabs (soft-bottom habitats) in 13 paired sites, including eight in higher salinity areas and five in lower salinity areas during 2 years. Mean NIS richness was greatest in hard-bottom habitat at high salinity, being significantly higher than each (a) native species at high salinity and (b) NIS richness at low salinity. In contrast, mean NIS richness in soft-bottom communities was not significantly different from native species richness in either high- or low-salinity waters, nor was there a difference in NIS richness between salinities. For hard-bottom communities, NIS represented an average of 79% of total species richness per sample at high salinity and 78% at low salinity, whereas the comparable values for soft bottom were 46 and 60%, respectively. On average, NIS occurred at a significantly higher frequency (percent of samples) than native species for hard-bottom habitats at both salinities, but this was not the case for soft-bottom habitats. Finally, NIS contributed significantly to the existing community structure (dissimilarity) across habitat types and salinities. Our results show that NIS richness and occurrence frequency is highest in hard-bottom and high-salinity habitat for this Bay but also that NIS contribute strongly to species richness and community structure across each habitat evaluated.  相似文献   

10.
A new classification of coastal wetlands along the coast of China has been generated that is compatible with the Ramsar Convention of 1971. The coastal wetlands have been divided into two broad categories with overall nine subcategories. On this basis, a series of coastal wetland maps, together covering the coast of mainland China, have been produced based on topographic maps acquired in the 1970s and satellite images acquired in 2007. These document substantial wetland losses over this period. In the 1970s, the total coastal wetland area in China was 5.76?×?104?km2, whereas in 2007, it was 5.36?×?104?km2, indicating a loss of 7 %. Over this approximately 40-year period, the area of natural coastal wetlands decreased from 5.74?×?104 to 5.09?×?104?km2, while that of artificial coastal wetlands increased from 240 to 2,740 km2. Due to shoreline and sea-level changes, newly formed coastal wetlands amounted to 2,460 km2, while coastal wetland loss amounted to 6,310 km2 in the period from the 1970s to 2007. When excluding shallow coastal waters (depths between 0 and ?5 m), nearly 16 % of Chinese coastal wetlands have been lost between the 1970s and 2007.  相似文献   

11.
Environmental degradation resulting from desertification often accelerates biodiversity loss and alters carbon (C) and nitrogen (N) stocks within grassland ecosystem. In order to evaluate the effect of desertification on plant diversity and carbon (C) and nitrogen (N) stocks, species compositions and C and N contents in plants and soil were investigated along five regions with different degrees of desertification in the northeastern margin of the Qinghai-Tibetan Plateau (control, light, moderate, severe and very severe stages). The study showed: (1) species composition and richness changed significantly with the development of grassland desertification; (2) the aboveground biomass C and N contents in the control were 101.60 and 4.03 g m?2, respectively. Compared to the control, the aboveground tissue C and N contents significantly decreased from light, moderate, severe to very severe stages. (3) The root C and N contents in the control in 0–40 cm depth are 1,372.83 and 31.49 g m?2, respectively, while the root C and N contents in 0–40 cm were also declining from the control, light, moderate, severe to very severe stages. (4) Compared to the plant, the soil made a greater contribution for C and N distribution, in which the soil organic C and total N contents in 0–40 cm depth in the control are 20,386.70 and 3,587.89 g m?2, respectively. At the same time, soil organic C and N contents also decreased significantly from the control to very severe stages. These results suggest that grassland desertification not only alters species compositions and leads to the loss of plant diversity, but also results in greater loss of organic C and N in alpine meadow, in which there is a negative effect on reducing greenhouse gas emission.  相似文献   

12.
This paper identified 37 mining sites in ten gold mining communities of Ijesaland, Nigeria; examined the forms, levels and extent of land degradation resulted from mining activities; analyzed spatial pattern of land use and finally assessed the effects of mining on livelihood of the people. The study utilized global positioning system receiver to obtain geographic coordinates of mining sites. The forms of land degradation were captured through field observations and photographs while the levels and extent of the degraded lands were measured with measuring tape and the values were determined using mathematical formula for calculating area of a circle. Landsat datasets were used to analyze spatial pattern of land use and the effects of mining activities were examined through questionnaire administration on two hundred heads of household who were randomly selected. Focus group discussions (FGD) were organized among adult men and women to complement information obtained from questionnaire survey. The study discovered 354 mining pits as major form of land degradation, which ranges in sizes and depths. The average depth of mining pits was 3.4 m while an estimate of 25.8 ha. of land was degraded in the entire mining sites. There was a consensus among FGD participants and respondents of questionnaire survey that mining activities introduced adverse effects into their communities and attracted socio-economic benefits at the same time. The results of this study underscore the need for close monitoring of mining operations to reduce the negative impact of mining activities on the environment.  相似文献   

13.
Resource subsidy regimes, which range from presses to pulses, are common structuring forces in communities, yet research contrasting their effects is lacking. Many coastal marine ecosystems, including estuaries and coral reefs, have experienced increased nutrient subsidies while concurrently shifting to macroalgal dominance; however, the role of subsidy regime in transitions remains unknown. We created concentration–frequency distributions of nutrients in Cook’s Bay, Moorea, French Polynesia, and Carpinteria Salt Marsh Reserve, CA, USA. Both showed relatively high pulses interspersed by press concentrations. We grew dominant macroalgae alone and together in microcosms approximating these subsidy regimes to quantify individual performance and competitive outcomes. Subsidy regime changed growth and competitive abilities of macroalgae from both ecosystems but with divergent effects. In nutrient-limited reefs, different species were favoured under each enrichment regime, suggesting a fluctuating nutrient environment enhances diversity. In contrast, in eutrophic estuaries, enrichment of both regimes facilitated a single competitive dominant, suppressing diversity. Functional form groups did not predict responses to subsidy regime, likely because classifications ignore temporal variability in resource supplies. Because climate change will alter rainfall patterns globally, further accelerating nutrient subsidies from land to sea, understanding species’ responses to nutrient subsidy regimes is key to predicting the fate of coastal communities.  相似文献   

14.
In many coastal regions throughout the world, there is increasing pressure to harden shorelines to protect human infrastructures against sea level rise, storm surge, and erosion. This study examines waterbird community integrity in relation to shoreline hardening and land use characteristics at three geospatial scales: (1) the shoreline scale characterized by seven shoreline types: bulkhead, riprap, developed, natural marsh, Phragmites-dominated marsh, sandy beach, and forest; (2) the local subestuary landscape scale including land up to 500 m inland of the shoreline; and (3) the watershed scale >500 m from the shoreline. From 2010 to 2014, we conducted waterbird surveys along the shoreline and open water within 21 subestuaries throughout the Chesapeake Bay during two seasons to encompass post-breeding shorebirds and colonial waterbirds in late summer and migrating and wintering waterfowl in late fall. We employed an Index of Waterbird Community Integrity (IWCI) derived from mean abundance of individual waterbird species and scores of six key species attributes describing each species’ sensitivity to human disturbance, and then used this index to characterize communities in each subestuary and season. IWCI scores ranged from 14.3 to 19.7. Multivariate regression model selection showed that the local shoreline scale had the strongest influence on IWCI scores. At this scale, percent coverage of bulkhead and Phragmites along shorelines were the strongest predictors of IWCI, both with negative relationships. Recursive partitioning revealed that when subestuary shoreline coverage exceeded thresholds of approximately 5% Phragmites or 8% bulkhead, IWCI scores decreased. Our results indicate that development at the shoreline scale has an important effect on waterbird community integrity, and that shoreline hardening and invasive Phragmites each have a negative effect on waterbirds using subestuarine systems.  相似文献   

15.
Chemical proxies are useful analogs for reconstructing physical properties of sea water, such as sea surface temperature (SST) and sea surface salinity (SSS). Time series of these inferred properties would allow for reconstructions of past El Niño–Southern Oscillation (ENSO) events, where no instrumental records exist. In this study, a monthly oxygen isotope record from a Porites coral is used to explain how past ENSO events are recorded in the coral skeletons. The sample covers a 12 year period and was collected from Nanwan Bay, Taiwan. During El Niño events the coral skeleton is shown to produce a δ18O–SST correlation with a slope of −0.12 ± 0.04‰ °C−1. During other times, this value is significantly different, with a slope of −0.21 ± 0.04‰ °C−1. Coral that grew during El Niño summers have δ18O values which are enriched by ∼0.2‰, relative to other times. A possible mechanism to explain this difference may be enhanced penetration of Kuroshio Current waters into the South China Sea during summer. The observed contrast in the correlation of δ18O–SST variability in this sample supports the influence of El Niño in eastern Asia.  相似文献   

16.
Spatial patterns of estuarine biota suggest that some nearshore ecosystems are functionally linked to interacting processes of the ocean, watershed, and coastal geomorphology. The classification of estuaries can therefore provide important information for distribution studies of nearshore biodiversity. However, many existing classifications are too coarse-scaled to resolve subtle environmental differences that may significantly alter biological structure. We developed an objective three-tier spatially nested classification, then conducted a case study in the Alexander Archipelago of Southeast Alaska, USA, and tested the statistical association of observed biota to changes in estuarine classes. At level 1, the coarsest scale (100–1000’s km2), we used patterns of sea surface temperature and salinity to identify marine domains. At level 2, within each marine domain, fjordal land masses were subdivided into coastal watersheds (10–100’s km2), and 17 estuary classes were identified based on similar marine exposure, river discharge, glacier volume, and snow accumulation. At level 3, the finest scale (1–10’s km2), homogeneous nearshore (depths <10 m) segments were characterized by one of 35 benthic habitat types of the ShoreZone mapping system. The aerial ShoreZone surveys and imagery also provided spatially comprehensive inventories of 19 benthic taxa. These were combined with six anadromous species for a relative measure of estuarine biodiversity. Results suggest that (1) estuaries with similar environmental attributes have similar biological communities, and (2) relative biodiversity increases predictably with increasing habitat complexity, marine exposure, and decreasing freshwater. These results have important implications for the management of ecologically sensitive estuaries.  相似文献   

17.
Summary The severity of damage to Mexico City as a result of the 19 September 1985 Michoacan earthquake was unusual given the city's distance (350 km) from the zone of seismic energy release. To explain the damage many authors have suggested that unusual source or transmission path characteristics contributed to enhanced ground motion in Mexico City. The purpose of this paper is to present a summary of results obtained from data recorded during the earthquake related to possible anomalous source characteristics.It is concluded that although the Michoacan earthquake was a large earthquake indeed, in terms of energy output, spectral content, geometry and source mechanics it was not remarkable or anomalous relative to other subduction zone earthquakes in Mexico or elsewhere. In fact the future may well see a larger earthquake generated along the Guerrero seismic gap which is significantly closer to Mexico City.  相似文献   

18.
The importance of the El Niño-Southern Oscillation (ENSO) on regional-scale climate variability is well recognized although the associated effects on local weather patterns are poorly understood. Little work has addressed the ancillary impacts of climate variability at the community level, which require analysis at a local scale. In coastal communities water quality and public health effects are of particular interest. Here we describe the historical influence of ENSO events on coastal water quality in Tampa Bay, Florida (USA) as a test case. Using approximate randomized statistics, we show significant ENSO influences on water quality particularly during winter months, with significantly greater fecal pollution levels during strong El Niño winters and significantly lower levels during strong La Niña winters as compared to neutral conditions. Similar significant patterns were also noted for El Niño and La Niña fall periods. The success of the analysis demonstrates the feasibility of assessing local effects associated with large-scale climate variability. It also highlights the possibility of using ENSO forecasts to predict periods of poor coastal water quality in urban region which local agencies may use to make appropriate prepations.  相似文献   

19.
Analysis of coral reef species enables characterization of the coral reefs and the degree to which human activities influence the reef composition. Geochemical characteristics, X-ray diffraction, and natural radionuclides analyses of four common coral reef species representing the branching and massive forms were conducted at the three areas under threat (Quseir Harbor, Safaga Harbor, and El-Esh area) along the Red Sea coast. Branching recorded higher carbonates and lower organic matter than the massive forms. Stylophora pistillata at Safaga Harbor and El-Esh area and Acropora humilis at Qusier Harbor recorded the highest carbonate percentages (96.88, 96.24, and 96.89%, respectively) meanwhile Platygyra daedalea at Safaga Harbor recorded the highest organic matter contents (5.07 and 4.91%). The highest Ca contents were observed in S. pistillata and Porites solida (65.87 and 64.87%), the highest Mg was in Acropora humilis and P. daedalea (1.06 and 0.88%) at Qusier Harbor, whilst the highest Sr was in S. pistillata and P. daedalea at Safaga Harbor. Then highest value of 226Ra recorded in A. humilis and P. solida (71 ± 3.5 Bq/kg and 63 ± 3.1 Bq/k) and 232Th in S. pistillata at El-Esh area may attribute to petroleum exploration activities. A. humilis and P. daedalea at Safaga Harbor recorded significant high 40K values (505 ± 30 and 472 ± 13 Bq/kg, respectively) relative to the other localities. The low Ca and High Sr as well as the highest averages of 232Th and 40K at Safaga Harbor indicated that the coral reef communities were highly affected by the terrestrial inputs from phosphate shipments.  相似文献   

20.
Ten years after the Indian Ocean tsunami in 2004 and following a long process of rehabilitation and reconstruction, Aceh has finally recovered. After the tsunami, Aceh experienced a dramatic migration of its coastal population away from the city; however, after 10 years, the population has mostly recovered. As new houses have been built and new economic activities commenced in the coastal areas, there is now concern regarding potential future tsunami risks for the city. The initial rehabilitation and reconstruction plan sought to prevent the construction of any new houses 500 m from the coastline; however, this failed to happen. This paper elucidates the reasons why these new coastal communities chose their new housing areas and examines the coastal land use changes around Banda Aceh 10 years after the Indian Ocean tsunami. Questionnaires were distributed to 457 respondents, and multiple logistic regressions were used to examine the reasons for household location selection and whether a possible future tsunami was a deciding factor. To examine the coastal land use changes, a series of aerial images from the Banda Aceh coastal area were digitised. It was found that tsunami history was not a major factor in new household selection; rather, rents and land prices, distance from work, and family connections were the top three reasons motivating households to select new living places. These changes and new settlements have given the city’s disaster management agency the challenge of building more emergency infrastructure in the coastal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号