首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The problem of strong polarization of the zebra-type fine structure in solar radio emission is discussed. In the framework of the plasma mechanism of radiation at the levels of the double plasma resonance, the polarization of the observed radio emission may be due to a difference in rates of plasma wave conversion into ordinary and extraordinary waves or different conditions of escaping of these waves from the source. In a weakly anisotropic plasma which is a source of the zebra-pattern with rather large harmonic numbers, the degree of polarization of the radio emission at twice the plasma frequency originating from the coalescence of two plasma waves is proportional to the ratio of the electron gyrofrequency to the plasma frequency, which is a small number and is negligible. Noticeable polarization can therefore arise only if the observed radio emission is a result of plasma wave scattering by ions (including induced scattering) or their coalescence with low-frequency waves. In this case, the ordinary mode freely leaves the source, but the extraordinary mode gets into the decay zone and does not exit from the source. As a result, the outgoing radio emission can be strongly polarized as the ordinary mode. Possible reasons for the polarization of the zebra pattern in the microwave region are discussed.  相似文献   

2.
W. N.-C. Sy 《Solar physics》1974,34(2):427-431
Plasma radiation arising from non-linear coupling of upper hybrid plasma waves and Bernstein waves is examined as a possible explanation (Rosenberg, 1972) for the fine structures observed in some wide-band solar radio bursts. This radiation is found to be weakly polarized and therefore it cannot account for the fine structures, which are strongly polarized. The difficulties encountered in explaining several bands of radiation at comparable intensities are indicated.  相似文献   

3.
L. Mollwo  K. Sauer 《Solar physics》1977,51(2):435-458
The investigated model supposes Bernstein waves emerging from Harris instabilities at a definite coronal level. The nonlinear process is considered for a higher region, where the quasimonochromatic waves forming the primary spectrum are reflected. Spatial dispersion takes place corresponding to the decreasing magnetic field. Thus each quasimonochromatic wave can be treated separately. According to the nonlinear resonance condition there result electromagnetic waves of twice the primary frequency, the power density of which is calculated. Assuming a coherence time of 480 periods and an oscillation velocity of the electrons of 10-3 times the thermal velocity the effective radiation temperature 1011 K of a type IVmA-burst is obtained at about 180 MHz, if the range of the nonlinear interaction is about 3.9 km long. In the discussion the interpretation of occurring zebra patterns is treated.  相似文献   

4.
This paper presents general relations for the intensity of the resonant transition radiation (RTR) and their detailed analysis. This analysis shows that the spectrum amplitude of the x-mode at some frequencies for high-energy electrons can grow with the magnetic field increase in some interval from zero value; it can even dominate over that for the o-mode. With further magnetic field increase, the intensity of the RTR x-mode decreases in comparison with the intensity of the o-mode and this decrease is higher for higher velocities of energetic electrons. The polarization of the RTR depends on the velocity of energetic electrons, too. For velocities lower than some velocity limit v<v i the RTR emission is unpolarized in a broad interval of magnetic field intensities in the radio source. For reasonable values of indices of the power-law distribution functions of energetic electrons, the RTR is broadband in frequencies (df/f≈0.2−0.4). Furthermore, we show various dependencies of the RTR and its spectral characteristics. Assuming the same radio flux of the transition radiation and the gyro-synchrotron one at the Razin frequency, we estimate the limit magnetic field in the radio source of the transition radiation. Then, we analyze possible sources of small-scale inhomogeneities (thermal density fluctuations, Langmuir and ion-sound waves), which are necessary for the transition radiation. Although the small-scale inhomogeneities connected with the Langmuir waves lead to the plasma radiation, which is essentially stronger than RTR, the inhomogeneities of the ion-sound waves are suitable for the RTR without any other radiation. We present the relations describing the RTR for anisotropic distribution functions of fast electrons. We consider the distribution functions of fast electrons in the form of the Legendre polynomials which depend on the pitch-angle. We analyze the influence of the degree of the anisotropy (an increase of the number of terms in the Legendre polynomial) on spectral characteristics of the RTR. A comparison with previous studies is made. As an example of the use of the derived formulas for the RTR, the 24 December 1991 event is studied. It is shown that the observed decimetric burst can be generated by the RTR in the plasma with the density inhomogeneities at the level 〈ΔN 2〉/N 2=2.5⋅10−5.  相似文献   

5.
Spectropolarimetric features of thermal cyclotron radiation of solar coronal loops and the possibility of interpretation of the observed reversal of the sense of polarization of centimeter and decimeter waves are discussed. To this end, thermal cyclotron radiation is computed in terms of the simplest model of a three-dimensional hot loop (a half-torus). Such a loop is shown to be capable of changing appreciably the properties of the radiation of a solar active region at centimeter and decimeter wavelengths. A detailed analysis is performed to determine the conditions under which the radiation spectrum of an active region containing a coronal loop may have a complex pattern with several maxima or relatively narrow-band cyclotron lines, and the sense of polarization may change several times in the wavelength interval considered. These conditions are modelled by such parameters as the structure of the magnetic field, electron density, and size of the loop. The results of the computations of two-dimensional brightness temperature distributions at different wavelengths for ordinary and extraordinary waves at fixed points of the loop and the integrated parameters of the flux and polarization of radiation in terms of the model discussed are reported. Cases are considered where the line of sight is crossed by one or two loops. The expected distribution of polarization across the source in the model considered is compared to the results of RATAN-600 observations of the solar active region AR 7962 made on May 12–14, 1996.  相似文献   

6.
We explore the conditions for resonance between cometary pick-up ions and parallel propagating electromagnetic waves. A model ring—beam distribution for the pick-up H2O+ ions is adopted which allows a direct comparison of the source of free energy for growth from either the beam or the gyrating ring in the limit near marginal stability. Under average solar wind conditions in the inner solar system, the gyrating ring provides the dominant contribution to wave growth. The presence of a field-aligned beam is only important to allow resonance with R-mode waves which occur in two distinct frequency bands either well above or below the pick-up ion gyrofrequency. The most unstable mode is the low frequency R-mode or fast MHD wave, though higher frequency whistlers or low frequency L-mode waves may also be excited by the same source of free energy. The nature of the unstable waves is strongly influenced by the inclination of the interplanetary field. For 3° the rate of the low frequency R-mode growth is dramatically reduced and resonant L-mode waves should experience net ion beam damping. Conversely for 75°, the ion beam velocity will be insufficient to allow resonant R-mode instability; L-mode waves should therefore predominate. The low frequency fast MHD mode should experience the most rapid amplification for intermediate inclination; 30° 75°. In the frame of the solar wind such waves must propagate along the field in the direction upstream towards the Sun with a phase speed lower than the beaming velocity of the pick-up ions. The waves are consequently blown back away from the Sun and would thus be detected with a left-hand polarization by an observer in the cometary frame. We consider this the most likely mechanism to account for the interior MHD waves observed by satellites over an extended spatial region surrounding comets Giacobini-Zinner and Halley.  相似文献   

7.
我们在1981年5月16日所观测到的典型的微波大爆发的spike辐射中,发现存有~1.4—1.6秒的准周期振荡特征。本文依据MHD波理论,对观测进行了分析讨论,本文认为在日冕圈内外传播着的快磁声波(“腊肠”模)调制了源区的磁场以及电子束的投射角分布,从而影响了ECM不稳定性的增长率,因此而产生了spike辐射中的准周期振荡。另外,本文还对一些有关的物理参数作了定量的估算。  相似文献   

8.
We report the detection and analysis of circular polarization in solar type III radio storms at hectometric-to-kilometric wavelengths. We find that a small (usually less than 5%), but statistically significant, degree of circular polarization is present in all interplanetary type III radio storms below 1 MHz. The sense of the polarization, which is right-hand circular for some storms and left-hand circular for others, is maintained for the entire duration of the type III storm (usually many days). For a given storm, the degree of circular polarization peaks near central meridian crossing of the associated active region. At a given time, the degree of circular polarization is found to generally vary as the logarithm of the observing frequency. The radiation characteristics, including the polarization, for one interplanetary type III storm exhibits an unusual 1.6 hour oscillation. Based on the standard plasma emission theory of type III radiation, we discuss the implications of these observations for the magnitude and radial dependence of the solar magnetic field above active regions on the Sun.  相似文献   

9.
We present our calculations of the expected characteristics of the integrated spectrum of thermal cyclotron radiation from a solar active region with a coronal magnetic loop. A hot torus is considered as a three-dimensional loop model. We show that the hot-loop emission can change appreciably the emission characteristics of the active region at centimeter and decimeter wavelengths. At certain loop parameters, the emission frequency spectrum can have a nonmonotonic and complex pattern with several peaks or contain narrow-band cyclotron lines. The polarization structure of the source with a hot loop is also complex and the polarization is repeatedly reversed over the observed frequency range under certain conditions. The revealed spectral-polarization peculiarities are considered from the standpoint of whether some atypical observed properties of the emission sources associated with solar active regions can be explained.  相似文献   

10.
UBVRI observations of circular polarization in WW Vul are presented. A positive polarization of ~0.1% was detected with a signal-to-noise ratio from 3 to 5 in each of the bands and more than 5 when averaged over all five bands. This observed polarization roughly corresponds to a 1% circular polarization of the radiation scattered in a circumstellar disk, which is most likely attributable to the significant alignment of scattering nonspherical dust grains. Since grain alignment is possible only in a magnetic field, this result provides circumstantial evidence for the existence of a magnetic field in the circumstellar disk of WW Vul.  相似文献   

11.
It is shown that relativistic electrons in the presence of circularly polarized hydromagnetic waves emit synchrotron radiation which is partially circularly polarized. The relation between the degree of polarization of the radiation and the energy density and wavelength of the waves is derived, and the factors determining the sense of polarization are discussed. Waves of the type required are generated by pitch angle anisotropies in a relativistic electron gas. An application of the result to conditions expected in quasistellar objects shows that the degree of circular polarization of synchrotron radiation in these objects may be of order 1% or greater.  相似文献   

12.
We investigated the angular direction and polarization of the solar radio millisecond spike emission in the model in which the spike emission is due to the second harmonic instability modes driven by electron cyclotron maser of loss cone distributed electrons during the propagation of a nonlinear plasma density wave near the magnetic mirror. We found that, when the angle θ between the wave vector and the magnetic field is > 60 °, the emission is in 100% X-mode polarization; when 40 ° < θ<60 °, the emission is in 100% O-mode polarization provided the amplitude of the density wave is below a certain limit; above that limit, the polarization will fall from 100% O-mode to even the X-mode. We also found that only 0.1% of the free energy of energy carrying electrons in the source region is converted into radiation wave energy.  相似文献   

13.
The location of the Jovian decametric radiation main source is determined to be the south magnetic pole while the location of the early source is found to be near the north magnetic pole, with an equal contribution from a region near the south magnetic pole. The results are based on calculations of the region observable from the Earth (ROE) for Jovian decametric radio waves that are emitted in the direction ± 10° centered on the direction perpendicular to the Jovian magnetic field and based on a Pioneer 11 model of the field at the level of the topside region of the Jovian ionosphere. Ground-based observations of the occurrence frequency of the decametric radiation as a function of Jovian longitude, which indicate a remarkable asymmetry between the early and main sources, agree with the calculated ROE area that varies as a function of CML observed from the Earth. The observations support a recent theory for the origin of the decametric radiation which is based on a wave-mode conversion from plasma waves into electromagnetic waves.  相似文献   

14.
A new model for solar spike bursts is considered based on the interaction of Langmuir waves with ion-sound waves: l+st. Such a mechanism can operate in shock fronts, propagating from a magnetic reconnection region. New observations of microwave millisecond spikes are discussed. They have been observed in two events: 4 November 1997 between 05:52–06:10 UT and 28 November 1997 between 05:00–05:10 UT using the multichannel spectrograph in the range 2.6–3.8 GHz of Beijing AO. Yohkoh/SXT images in the AR and SOHO EIT images testify to a reconstruction of bright loops after the escape of a CME. A fast shock front might be manifested as a very bright line in T e SXT maps (up to 20 MK) above dense structures in emission measure (EM) maps. Moreover one can see at the moment of spike emission (for the 28 November 1997 event) an additional maximum at the loop top on the HXR map in the AR as principal evidence of fast shock propagation. The model gives the ordinary mode of spike emission. Sometimes we observed a different polarization of microwave spikes that might be connected with the depolarization of the emission in the transverse magnetic field and rather in the vanishing magnetic field in the middle of the QT region. Duration and frequency band of isolated spikes are connected with parameters of fast particle beams and shock front. Millisecond microwave spikes are probably a unique manifestation of flare fast shocks in the radio emission.  相似文献   

15.
The studied region is a part of the current circuit of a magnetic loop in a solar active region in the altitude range of 1400–2500 km above the photosphere. At the earliest stage of development of a flare process, the magnetic field of the loop was assumed to be stationary and uniform in the interval corresponding to weak fields (the so-called deca-hectogauss fields). The conditions for emergence and development of instability of the second harmonic of Bernstein modes in this previously unexamined region were determined. This instability (and low-frequency instabilities emerging later) was assumed to be caused by the sub-Dreicer electric field of the loop, while pair Coulomb collisions were considered to be the major factor hindering its development. The obtained extremely low instability thresholds point to the possibility of subsequent emergence of low-frequency instabilities (and plasma waves corresponding to them) with much higher threshold values against the background of saturated Bernstein turbulence. The frequency of electron scattering by turbulence pulsations in this scenario normally exceeds the frequency of pair Coulomb (primarily ion–electron) collisions. Both the quasistatic sub-Dreicer field in the loop and the weak spatial inhomogeneity of plasma temperature and density were taken into account in the process of derivation and analysis of the dispersion relation for low-frequency waves. It was demonstrated that the solutions of the obtained dispersion relation in the cases of prevalent pair Coulomb collisions and dominant electron momentum losses at pulsations of saturated Bernstein turbulence are morphologically similar and differ only in the boundary values of perturbation parameters. In both cases, these solutions correspond to the two wave families, namely, kinetic Alfven waves and kinetic ion acoustic waves. These waves have their own electric fields and may play the important role in the process of preflare acceleration of energetic electrons.  相似文献   

16.
We consider the polarization behaviour of radio waves propagating through an ultrarelativistic highly magnetized electron-positron plasma in a pulsar magnetosphere. The rotation of magnetosphere gives rise to the wave mode coupling in the polarization-limiting region. The process is shown to cause considerable circular polarization in the linearly polarized normal waves. Thus, the circular polarization observed for a number of pulsars, despite the linear polarization of the emitted normal waves, can be attributed to the limiting-polarization effect. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
In this paper the observed 1.4–1.6 s quasi-periodic oscillations in the spike radiation of the microwave outburst of 1981 May 16 are analysed in teras of MHD waves. We point out that the fast magnetoacoustic waves (“sausage” mode) propagating inside and outside a loop can modulate the magnetic field and the pitch angle distribution of the electron beams in the source region. The growth rate of electron-cyclotron-maser instability is then affected to give rise to the quasi-periodic oscillations. Quantitative estimates of relevant physical parameters are given.  相似文献   

18.
Gyro-synchrotron radiation occurs when the harmonic number, i.e. the ratio of observing frequency to cyclotron frequency is low, ? 100, and for low energy electrons, when the radiation is no longer predominantly beamed in the direction of the motion of radiating electrons. The circular motion of the electrons gives rise to high levels of circular polarization. In this paper we calculate the levels of circular polarization expected from a jet given the likely conditions in microquasars, and find that the properties of the circular polarization observed in GRS 1915+105 and SS433 can be easily explained.  相似文献   

19.
A theory for type I emission is developed based on fundamental plasma emission due to coalescence of Langmuir waves with low-frequency waves. The Langmuir waves are attributed to energetic electrons trapped in a magnetic loop over an active region. It is argued that the low-frequency waves should be generated in connection with the heating of the region. The continuum can be explained in terms of Langmuir waves generated by a gap distribution formed through collisional losses over a timescale of several tens of minutes. Bursts are attributed to local enhancements in the Langmuir turbulence associated with a loss-cone instability. No triggering mechanism for the bursts is identified. It is predicted that if the continuum is due to a large source then its brightness temperature should rise over several tens of minutes to a value which is roughly independent of frequency and of position across the source and which should not exceed 3 × 109 K. For bursts, it is predicted that a fainter second harmonic component should accompany bright bursts.  相似文献   

20.
A new multichannel spectrometer, Phoenix-3, is in operation having capabilities to observe solar flare radio emissions in the 0.1?–?5 GHz range at an unprecedented spectral resolution of 61.0 kHz with high sensitivity. The present setup for routine observations allows measuring circular polarization, but requires a data compression to 4096 frequency channels in the 1?–?5 GHz range and to a temporal resolution of 200 ms. First results are presented by means of a well observed event that included narrowband spikes at 350?–?850 MHz. Spike bandwidths are found to have a power?–?law distribution, dropping off below a value of 2 MHz for full width at half maximum (FWHM). The narrowest spikes have a FWHM bandwidth less than 0.3 MHz or 0.04% of the central frequency. The smallest half-power increase occurs within 0.104 MHz at 443.5 MHz, which is close to the predicted natural width of maser emission. The spectrum of spikes is found to be asymmetric, having an enhanced low-frequency tail. The distribution of the total spike flux is approximately an exponential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号