共查询到20条相似文献,搜索用时 0 毫秒
2.
在分析现有洪水概率预报评价指标的基础上,建立了洪水概率预报的"精度-可靠度"联合评价指标体系"精度"指标用于评价倾向值预报的准确性,包括确定性系数、相对误差等指标;"可靠度"指标用于评价区间预报的合理性,包括覆盖率、区间离散度等指标其中,在"可靠度"评价指标中,提出了一个新的评价指标,即覆盖率判定系数,用以评价多个区间预报结果的整体合理性以淮河王家坝区间流域为例进行应用研究,结果表明:"精度-可靠度"联合评价指标体系可以对洪水概率预报结果的合理性做出更全面的评价. 相似文献
4.
Abstract A composite model for real time forecasting of flash floods in the Ayalon stream in central Israel has been constructed. The model is composed of four kinds of sub-models: an autoregressive model for discharges at upstream stations on the two major tributaries; a travel-time model for the flow from these stations to the downstream station located on the main stem of the stream; a time-area concentration curve for subwatershed drainage between the upstream and downstream stations; and a recession curve for the downstream station. The model incorporates an adaptive mechanism for continuous correction of forecast errors. This mechanism is calibrated during an initial period of operation, and is subsequently operated throughout a flow event. The model issues simultaneous forecasts for seven lead times ranging from 0.5 to 3.5 h. This provides a proper input for a flood warning system which is required for safe operation of a major highway running along the banks of a torrent stream in the metropolitan area of Tel-Aviv. 相似文献
5.
Functional networks were recently introduced as an extension of artificial neural networks (ANNs). Unlike ANNs, they estimate unknown neuron functions from given functional families during the training process. Here, we applied two types of functional network models, separable and associativity functional networks, to forecast river flows for different lead-times. We compared them with a conventional artificial neural network model, an ARMA model and a simple baseline model in three catchments. Results show that functional networks are flexible and comparable in performance to artificial neural networks. In addition, they are easier and quicker to train and so are useful tools as an alternative to artificial neural networks. These results were obtained with only the simplest structures of functional networks and it is possible that a more detailed study with more complex forms of the model will improve even further on these results. Thus we recommend that the use of functional networks in discharge time series modelling and forecasting should be further investigated. 相似文献
6.
Elementary precipitation and runoff estimation problems associated with hydrologic data collection networks are formulated in conjunction with the Kalman Filter Estimation Model. Examples involve the estimation of runoff using data from a single precipitation station and also from a number of precipitation stations. The formulations demonstrate the role of state-space, measurement, and estimation equations of the Kalman Filter Model in flood forecasting. To facilitate the formulation, the unit hydrograph concept and antecedent precipitation index is adopted in the estimation model. The methodology is then applied to estimate various flood events in the Carnation Creek of British Columbia. 相似文献
7.
Abstract The complexity of distributed hydrological models has led to improvements in calibration methodologies in recent years. There are various manual, automatic and hybrid methods of calibration. Most use a single objective function to calculate estimation errors. The use of multi-objective calibration improves results, since different aspects of the hydrograph may be considered simultaneously. However, the uncertainty of estimates from a hydrological model can only be taken into account by using a probabilistic approach. This paper presents a calibration method of probabilistic nature, based on the determination of probability functions that best characterize different parameters of the model. The method was applied to the Real-time Interactive Basin Simulator (RIBS) distributed hydrological model using the Manzanares River basin in Spain as a case study. The proposed method allows us to consider the uncertainty in the model estimates by obtaining the probability distributions of flows in the flood hydrograph. Citation Mediero, L., Garrote, L. & Martín-Carrasco, F. J. (2011) Probabilistic calibration of a distributed hydrological model for flood forecasting. Hydrol. Sci. J. 56(7), 1129–1149. 相似文献
8.
The objective of the study is to evaluate the potential of a data assimilation system for real-time flash flood forecasting over small watersheds by updating model states. To this end, the Ensemble Square-Root-Filter (EnSRF) based on the Ensemble Kalman Filter (EnKF) technique was coupled to a widely used conceptual rainfall-runoff model called HyMOD. Two small watersheds susceptible to flash flooding from America and China were selected in this study. The modeling and observational errors were considered in the framework of data assimilation, followed by an ensemble size sensitivity experiment. Once the appropriate model error and ensemble size was determined, a simulation study focused on the performance of a data assimilation system, based on the correlation between streamflow observation and model states, was conducted. The EnSRF method was implemented within HyMOD and results for flash flood forecasting were analyzed, where the calibrated streamflow simulation without state updating was treated as the benchmark or nature run. Results for twenty-four flash-flood events in total from the two watersheds indicated that the data assimilation approach effectively improved the predictions of peak flows and the hydrographs in general. This study demonstrated the benefit and efficiency of implementing data assimilation into a hydrological model to improve flash flood forecasting over small, instrumented basins with potential application to real-time alert systems. 相似文献
9.
This paper presented a new classified real-time flood forecasting framework by integrating a fuzzy clustering model and neural network with a conceptual hydrological model. A fuzzy clustering model was used to classify historical floods in terms of flood peak and runoff depth, and the conceptual hydrological model was calibrated for each class of floods. A back-propagation (BP) neural network was trained by using real-time rainfall data and outputs from the fuzzy clustering model. BP neural network provided a rapid on-line classification for real-time flood events. Based on the on-line classification, an appropriate parameter set of hydrological model was automatically chosen to produce real-time flood forecasting. Different parameter sets was continuously used in the flood forecasting process because of the changes of real-time rainfall data and on-line classification results. The proposed methodology was applied to a large catchment in Liaoning province, China. Results show that the classified framework provided a more accurate prediction than the traditional non-classified method. Furthermore, the effects of different index weights in fuzzy clustering were also discussed. 相似文献
10.
针对降雨输入不确定性对实时洪水预报影响的问题,本文采用不考虑未来预报降雨、考虑未来预报降雨、考虑预报降雨的降雨量误差和降雨时间误差4种方法,以陕西省两个半湿润流域(陈河流域和大河坝流域)为研究区域,分析不同预见期和不同降雨输入情况下洪水预报的精度.研究表明:相对于不考虑未来降雨情况,考虑未来降雨后在预报预见期较长时对预报结果精度提升较大,在预见期较短时对预报结果精度提升不显著;暴雨中心位置不同对预报精度影响也不同,当暴雨中心位于流域下游时降雨量误差对流量预报误差影响更大;降雨量误差主要影响洪量相对误差和洪峰相对误差,且这种影响是线性的,对确定性系数的影响是非线性的二次函数,降雨时间误差主要影响峰现时间误差. 相似文献
11.
Ocean Dynamics - In response to record-breaking flooding on Lake Champlain in 2011, the International Joint Commission launched a 5-year study to explore solutions to flooding in the binational... 相似文献
12.
The present study aims to develop a hybrid multi‐model using the soft computing approach. The model is a combination of a fuzzy logic, artificial neural network (ANN) and genetic algorithm (GA). While neural networks are low‐level computational structures that perform well dealing with raw data, fuzzy logic deal with reasoning on a higher level by using linguistic information acquired from domain experts. However, fuzzy systems lack the ability to learn and cannot adjust themselves to a new environment. Moreover, experts occasionally make mistakes and thus some rules used in a system may be false. A network type structure of the present hybrid model is a multi‐layer feed‐forward network, the main part is a fuzzy system based on the first‐order Sugeno fuzzy model with a fuzzification and a defuzzification processes. The consequent parameters are determined by least square method. The back‐propagation is applied to adjust weights of network. Then, the antecedent parameters of the membership function are updated accordingly by the gradient descent method. The GA was applied to select the fuzzy rule. The hybrid multi‐model was used to forecast the flood level at Chiang Mai (under the big flood 2005) and the Koriyama flood (2003) in Japan. The forecasting results are evaluated using standard global goodness of fit statistic, efficient index (EI), the root mean square error (RMSE) and the peak flood error. Moreover, the results are compared to the results of a neuro‐genetic model (NGO) and ANFIS model using the same input and output variables. It was found that the hybrid multi‐model can be used successfully with an efficiency index (EI) more than 0·95 (for Chiang Mai flood up to 12 h ahead forecasting) and more than 0·90 (for Koriyama flood up to 8 h ahead forecasting). In general, all of three models can predict the water level with satisfactory results. However, the hybrid model gave the best flood peak estimation among the three models. Therefore, the use of fuzzy rule base, which is selected by GA in the hybrid multi‐model helps to improve the accuracy of flood peak. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
13.
The Xinanjiang model, which is a conceptual rainfall‐runoff model and has been successfully and widely applied in humid and semi‐humid regions in China, is coupled by the physically based kinematic wave method based on a digital drainage network. The kinematic wave Xinanjiang model (KWXAJ) uses topography and land use data to simulate runoff and overland flow routing. For the modelling, the catchment is subdivided into numerous hillslopes and consists of a raster grid of flow vectors that define the water flow directions. The Xinanjiang model simulates the runoff yield in each grid cell, and the kinematic wave approach is then applied to a ranked raster network. The grid‐based rainfall‐runoff model was applied to simulate basin‐scale water discharge from an 805‐km 2 catchment of the Huaihe River, China. Rainfall and discharge records were available for the years 1984, 1985, 1987, 1998 and 1999. Eight flood events were used to calibrate the model's parameters and three other flood events were used to validate the grid‐based rainfall‐runoff model. A Manning's roughness via a linear flood depth relationship was suggested in this paper for improving flood forecasting. The calibration and validation results show that this model works well. A sensitivity analysis was further performed to evaluate the variation of topography (hillslopes) and land use parameters on catchment discharge. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
Abstract An adaptive model for on-line stage forecasting is proposed for river reaches where significant lateral inflow contributions occur. The model is based on the Muskingum method and requires the estimation of four parameters if the downstream rating curve is unknown; otherwise only two parameters have to be determined. As the choice of the forecast lead time is linked to wave travel time along the reach, to increase the lead time, a schematization of two connected river reaches is also investigated. The variability of lateral inflow is accounted for through an on-line adaptive procedure. Calibration and validation of the model were carried out by applying it to different flood events observed in two equipped river reaches of the upper-middle Tiber basin in central Italy, characterized by a significant contributing drainage area. Even if the rating curve is unknown at the downstream section, the forecast stage hydrographs were found in good agreement with those observed. Errors in peak stage and time to peak along with the persistence coefficient values show that the model has potential as a practical tool for on-line flood risk management. 相似文献
15.
This paper analyses the skills of fuzzy computing based rainfall–runoff model in real time flood forecasting. The potential of fuzzy computing has been demonstrated by developing a model for forecasting the river flow of Narmada basin in India. This work has demonstrated that fuzzy models can take advantage of their capability to simulate the unknown relationships between a set of relevant hydrological data such as rainfall and river flow. Many combinations of input variables were presented to the model with varying structures as a sensitivity study to verify the conclusions about the coherence between precipitation, upstream runoff and total watershed runoff. The most appropriate set of input variables was determined, and the study suggests that the river flow of Narmada behaves more like an autoregressive process. As the precipitation is weighted only a little by the model, the last time‐steps of measured runoff are dominating the forecast. Thus a forecast based on expected rainfall becomes very inaccurate. Although good results for one‐step‐ahead forecasts are received, the accuracy deteriorates as the lead time increases. Using the one‐step‐ahead forecast model recursively to predict flows at higher lead time, however, produces better results as opposed to different independent fuzzy models to forecast flows at various lead times. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
16.
As the calibration and evaluation of flood inundation models are a prerequisite for their successful application, there is a clear need to ensure that the performance measures that quantify how well models match the available observations are fit for purpose. This paper evaluates the binary pattern performance measures that are frequently used to compare flood inundation models with observations of flood extent. This evaluation considers whether these measures are able to calibrate and evaluate model predictions in a credible and consistent way, i.e. identifying the underlying model behaviour for a number of different purposes such as comparing models of floods of different magnitudes or on different catchments. Through theoretical examples, it is shown that the binary pattern measures are not consistent for floods of different sizes, such that for the same vertical error in water level, a model of a flood of large magnitude appears to perform better than a model of a smaller magnitude flood. Further, the commonly used Critical Success Index (usually referred to as F<2 >) is biased in favour of overprediction of the flood extent, and is also biased towards correctly predicting areas of the domain with smaller topographic gradients. Consequently, it is recommended that future studies consider carefully the implications of reporting conclusions using these performance measures. Additionally, future research should consider whether a more robust and consistent analysis could be achieved by using elevation comparison methods instead. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
17.
We investigated the effectiveness of combining gauge observations and satellite-derived precipitation on flood forecasting. Two data merging processes were proposed: the first one assumes that the individual precipitation measurement is non-bias, while the second process assumes that each precipitation source is biased and both weighting factor and bias parameters are to be calculated. Best weighting factors as well as the bias parameters were calculated by minimizing the error of hourly runoff prediction over Wu-Tu watershed in Taiwan. To simulate the hydrologic response from various sources of rainfall sequences, in our experiment, a recurrent neural network (RNN) model was used. The results demonstrate that the merged method used in this study can efficiently combine the information from both rainfall sources to improve the accuracy of flood forecasting during typhoon periods. The contribution of satellite-based rainfall, being represented by the weighting factor, to the merging product, however, is highly related to the effectiveness of ground-based rainfall observation provided gauged. As the number of gauge observations in the basin is increased, the effectiveness of satellite-based observation to the merged rainfall is reduced. This is because the gauge measurements provide sufficient information for flood forecasting; as a result the improvements added on satellite-based rainfall are limited. This study provides a potential advantage for extending satellite-derived precipitation to those watersheds where gauge observations are limited. 相似文献
18.
Nowadays, in the scientific literature many rainfall‐runoff (RR) models are available ranging from simpler ones, with a limited number of parameters, to highly complex ones, with many parameters. Therefore, the selection of the best structure and parameterisation for a model is not straightforward as it is dependent on a number of factors: climatic conditions, catchment characteristics, temporal and spatial resolution, model objectives, etc. In this study, the structure of a continuous semi‐distributed RR model, named MISDc (‘Modello Idrologico Semi‐Distribuito in continuo’) developed for flood simulation in the Upper Tiber River (central Italy) is presented. Most notably, the methodology employed to detect the more relevant processes involved in the modelling of high floods, and hence, to build the model structure and its parameters, is developed. For this purpose, an intense activity of monitoring soil moisture and runoff in experimental catchments was carried out allowing to derive a parsimonious and reliable continuous RR model operating at an hourly (or smaller) time scale. Specifically, in order to determine the catchment hydrological response, the important role of the antecedent wetness conditions is emphasized. The application of MISDc both for design flood estimation and for flood forecasting is reported here demonstrating its reliability and also its computational efficiency, another important factor in hydrological practice. As far as the flood forecasting applications are concerned, only the accuracy of the model in reproducing discharge hydrographs by assuming rainfall correctly known throughout the event is investigated indepth. In particular, the MISDc has been implemented in the framework of Civil Protection activities for the Upper Tiber River basin. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
The Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation times and straightforward operation. The basic principle of the methodology is to portray process models by means of ANN. We propose to train ANN flood forecasting models with synthetic data that reflects the possible range of storm events. To this end, establishing PAI-OFF requires first setting up a physically based hydrologic model of the considered catchment and – optionally, if backwater effects have a significant impact on the flow regime – a hydrodynamic flood routing model of the river reach in question. Both models are subsequently used for simulating all meaningful and flood relevant storm scenarios which are obtained from a catchment specific meteorological data analysis. This provides a database of corresponding input/output vectors which is then completed by generally available hydrological and meteorological data for characterizing the catchment state prior to each storm event. This database subsequently serves for training both a polynomial neural network (PoNN) – portraying the rainfall–runoff process – and a multilayer neural network (MLFN), which mirrors the hydrodynamic flood wave propagation in the river. These two ANN models replace the hydrological and hydrodynamic model in the operational mode. After presenting the theory, we apply PAI-OFF – essentially consisting of the coupled “hydrologic” PoNN and “hydrodynamic” MLFN – to the Freiberger Mulde catchment in the Erzgebirge (Ore-mountains) in East Germany (3000 km 2). Both the demonstrated computational efficiency and the prediction reliability underline the potential of the new PAI-OFF methodology for online flood forecasting. 相似文献
20.
ABSTRACTReliable simulations of hydrological models require that model parameters are precisely identified. In constraining model parameters to small ranges, high parameter identifiability is achieved. In this study, it is investigated how precisely model parameters can be constrained in relation to a set of contrasting performance criteria. For this, model simulations with identical parameter samplings are carried out with a hydrological model (SWAT) applied to three contrasting catchments in Germany (lowland, mid-range mountains, alpine regions). Ten performance criteria including statistical metrics and signature measures are calculated for each model simulation. Based on the parameter identifiability that is computed separately for each performance criterion, model parameters are constrained to smaller ranges individually for each catchment. An iterative repetition of model simulations with successively constrained parameter ranges leads to more precise parameter identifiability and improves model performance. Based on these results, a more consistent handling of model parameters is achieved for model calibration. 相似文献
|