首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of Hydrology》2003,270(1-2):135-144
The interannual variability in streamflow presents challenges in managing the associated risks and opportunities of water resources systems. This paper investigates the use of seasonal streamflow forecasts to help manage three water resources systems in south-east Australia. The seasonal streamflow forecasts are derived from the serial correlation in streamflow and the relationship between El Nino/Southern Oscillation (ENSO) and streamflow. This paper investigates the use of ENSO and serial correlation in reservoir inflow to optimise water restriction rules for an urban township and the use of seasonal forecasts of reservoir inflow to help make management decisions in two irrigation systems. The results show a marginal benefit in using seasonal streamflow forecasts in the three management examples. The results suggest that although the ENSO–streamflow teleconnection and the serial correlation in streamflow are statistically significant, the correlations are not sufficiently high to considerably benefit the management of conservative low-risk water resources systems. However, the seasonal forecasts can be used in the system simulations to provide an indication of the likely increases in the available water resources through an irrigation season, to allow irrigators to make more informed risk-based management decisions.  相似文献   

2.
Forecasting of droughts is essential for developing measures for mitigation of drought hazards and for reducing drought-induced loss. In this study, droughts were characterized by the standardized precipitation-evapotranspiration index with a time scale of 3 months. Copula-based probabilistic forecasting models were developed to predict drought occurrences. Results indicated higher probability of occurrence of seasonal droughts after the occurrence of more severe seasonal droughts, and extreme drought in winter tended to persist with higher probability till spring, whereas extreme drought in autumn might not probably last to winter. Furthermore, results indicated high probability of occurrence of droughts in southeast parts of the Pearl River basin during spring to winter. Thus, droughts in the Pearl River basin are subject to lengthening duration, particularly in the southeastern part of the basin. It should be noted here that the southeastern part is densely populated with a high degree of socioeconomic development. Thus, higher probability of droughts in the southeastern part should attract considerable concern. Higher drought risk was also identified in the western part of the basin. Results of this study provide a theoretical framework for water resources management and conservation of eco-environment in the Pearl River basin in a changing climate, and may serve as a reference for evaluation of drought risk in other regions of the world.  相似文献   

3.
The El Niño-Southern Oscillation (ENSO) phenomenon has been shown to influence dramatically precipitation and streamflow in tropical western South America. The statistical properties of annual and winter precipitation totals and streamflow characteristics in the Aconcagua River basin, in temperate central Chile, are investigated in such a way as to permit the identification of flood- and drought-generating processes and their possible linkages to upset behavior in the tropical Pacific. Despite the considerable distance to those regions generally associated with ENSO events, the phenomenon produces marked effects upon the various physical processes which govern the surface hydrometeorology of the study area. El Niño years result in significant increases in annual and winter precipitation, particularly along the coastal margin. The likelihood of rain or rain-on-snow flooding, in the succeeding winter, increases, as does the size of spring snowmelt in the southern summer, 1 year after the upset conditions in the tropical region. Annual low flows are of higher magnitude and occur earlier in the year than is usual.  相似文献   

4.
5.
6.
7.
London  Julius  Park  Jae 《Pure and Applied Geophysics》1973,106(1):1611-1617
Summary Observations of the ozone distribution indicate that modifications are required to the photochemical theory. These modifications involve ozone destruction by hydrogen and nitrogen products and ozone transport (both vertical and horizontal) due to atmospheric motions in the stratosphere. If the photochemical terms in the ozone continuity equation are omitted, changes due to atmospheric transport alone can be evaluated.Numerical computations were made of the three-dimensional wind structure as derived from the 12-layer (0–36 km) General Circulation Model developed by NCAR. The results showed that ozone is transported from the equatorial stratosphere poleward and downward in both hemispheres. The horizontal transport is primarily by the Hadley Cell in the tropics and by large-scale eddies in mid and high latitudes. The dominant mechanism for ozone transport are found to be similar to those derived for the horizontal heat and momentum transport found in other general circulation studies.  相似文献   

8.
Summary The monsoon simulations of four general circulation models are illustrated. Additional results from the Meteorological Office model showing factors that are important in determining its simulation are presented. The large-scale flow patterns of all the models reproduce the large-scale flow fairly realistically, but more detailed characteristics and, in particular, the rainfall, are poorly represented.  相似文献   

9.
The East River in the Pearl River basin, China, plays a vital role in the water supply for mega‐cities within and in the vicinity of the Pearl River Delta. Knowledge of statistical variability of streamflow is therefore important for water resources management in the basin. This study analyzed streamflow from four hydrological stations on the East River for a period of 1951–2009, using ensemble empirical mode decomposition (EEMD), continuous wavelet transform (CWT) technique, scanning t and F tests. Results indicated increasing/decreasing streamflow in the East River basin before/after the 1980s. After the early 1970s, the high/low flow components were decreasing/increasing. CWT‐based analysis demonstrates a significant impact of water reservoirs on the periodicity of streamflow. Scanning t and F test indicates that significantly abrupt changes in streamflow are largely influenced by both water reservoirs construction and precipitation changes. Thus, changes of streamflow, which are reflected by variations of trend, periodicity and abrupt change, are due to both water reservoir construction and precipitation changes. Further, the changes of volume of streamflow in the East River are in good agreement with precipitation changes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
《水文科学杂志》2012,57(15):1857-1866
ABSTRACT

Daily streamflow forecasting is a challenging and essential task for water resource management. The main goal of this study was to compare the accuracy of five data-driven models: extreme learning machine (basic ELM), extreme learning machine with kernels (ELM-kernel), random forest (RF), back-propagation neural network (BPNN) and support vector machine (SVR). The results show that the ELM-kernel model provided a superior alternative to the other models, and the basic ELM model had the poorest performance. To further evaluate the predictive capacities of the five models, the estimations of low flow and high flow in the testing dataset were compared. The RF model was slightly superior to the other models in predicting the peak flows, and the ELM-kernel model showed the highest prediction precision of low flows. There was no single model that showed obvious advantages over the other models in this study. Therefore, further exploration is required for the hydrological forecasting problems.  相似文献   

11.
Humidity and temperature fluctuations at pressure levels between 166 and 290 hPa on the grid scale of general circulation models for a region coveredn by the routes of airliners, mainly over the Atlantic, have been determined by evaluation of the data obtained with almost 2000 flights within the MOZAIC programme. It is found that the distributions of the fluctuations cannot be modelled by Gaussian distributions, because large fluctuations appear with a relatively high frequency. Lorentz distributions were used for the analytical representation of the fluctuation distributions. From these a joint probability distribution has been derived for simultaneous temperature and humidity fluctuations. This function together with the criteria for the formation and persistence of contrails are used to derive the maximum possible fractional coverage of persistent contrails in a grid cell of a GCM. This can be employed in a statistical formulation of contrail appearance in a climate model.  相似文献   

12.
Antecedent anomalies of sea surface temperature and atmospheric circulation are important signals for making long-term streamflow forecasts. In this study, four groups of ocean-atmospheric indices, i.e, El Niño Southern Oscillation (ENSO), the Northern Hemisphere atmospheric circulation, the Southern Hemisphere atmospheric circulation (SAC), and the Western Pacific and Indian Ocean SST (WPI), are evaluated for forecasting summer streamflow of the Yangtze River. The gradient boosting regression tree (GBRT) is used to forecast streamflow based on each group of indices. The score based on receiver operating characteristics (ROC) curves, i.e., area under the ROC curve (AUC), is used to evaluate skills of models for identifying the high category and the low category of summer streamflow. It is found that the ENSO group and the SAC group show higher AUC values. Furthermore, both AUC values of GBRT models and individual indices show that the low flow years are easier to be identified than the high flow years. The result of this study highlights the skill from the Southern Hemisphere circulation systems for forecasting summer streamflow of the Yangtze River. Results of relative influences of predictors in GBRT models and AUC of individual indices indicate some key ocean-atmospheric indices, such as the Multivariate ENSO Index and the 500-hPa height of the east of Australia.  相似文献   

13.
The Pearl River basin bears the heavy responsibility for the water supply for the neighboring cities such as Macau, Hong Kong and others. Therefore, effective water resource management is crucial for sustainable use of water resource. However, good knowledge of changing properties of streamflow changes is the first step into the effective water resource management. With this in mind, stability and variability of streamflow changes in the Pearl River basin is thoroughly analyzed based on monthly streamflow data covering last half century using Mann–Kendall trend test and scanning t- and F-test techniques. The results indicate: (1) significant increasing monthly streamflow is observed mainly in January–April, June and October–December. Monthly streamflow during May–September is in not significant changes. Besides, stations characterized by significant monthly streamflow changes are located in the middle and the lower Pearl River basin; (2) changing points of monthly streamflow series are detected mainly during mid-1960s, early 1970s, mid-1970s, early 1980s and early 1990s and these periods are roughly in good agreement with those of annual, winter and summer precipitation across the Pearl River basin, implying tremendous influences of precipitation changes on streamflow variations; (3) abrupt behaviors tend to be ambiguous from the upper to the lower Pearl River basin, which should be due to enhancing combined effects of abrupt changes of precipitation. The streamflow comes to be lower stability in recent decades. However, high stability of streamflow changes are observed at hydrological stations in the lower Pearl River basin. The results of this study will be of great scientific and practical merits in terms of effective water resource management in the Pearl River basin under the influences of climate changes and human activities.  相似文献   

14.
Abstract

Characteristics of hydroclimatic change in the upper reaches of the Minjiang River are analysed using data collected over the past 50 years. The effect of autocorrelation of time series on trend analysis is removed by adopting a pre-whitening technique. Long-term hydrometeorological trend and abrupt changes are analysed by the Mann-Kendall test. The results were validated by the linear trend and Spearman methods. Correlations between runoff change with air temperature and with precipitation were studied with the Pearson method. The results clearly show that average air temperature in the upper reaches of the river is increasing, and precipitation decreasing, with differences in spatio-temporal distribution. Runoff change has a clear positive correlation with precipitation. Meteorological change, especially in precipitation, is the key governing influence of runoff volume. The annual runoff decrease, especially the decrease of inflow in spring and autumn and earlier appearance and longer duration of the low-flow season, will impact greatly on irrigation and municipal water supply. Therefore, relevant measures and further study are necessary.

Editor Z.W. Kundzewicz; Associate editor Q. Zhang

Citation Huang, X.R., Zhao, J.W., Li, W.H., and Jiang, H.X., 2013. Impact of climatic change on streamflow in the upper reaches of the Minjiang River, China. Hydrological Sciences Journal, 59 (1), 154–164.  相似文献   

15.
A simple algorithm for generating streamflow networks for macroscale hydrological models (MHMs) from digital elevation models (DEMs) is presented. Typically these hydrological models are grid based, with the simulated runoff produced within each cell routed through a stream network which connects the centers of cells in the direction of the major streams. Construction of such stream networks is a time consuming task, which has generally been done by hand with the aid of maps. Results indicate that the algorithm works satisfactorily in areas of both high and low relief, and for a wide range of model cell resolutions, although some manual adjustments may be necessary. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The relationship between seasonal catchment water storage and discharge is typically nonunique due to water storage that is not directly hydraulically connected to streams. Hydraulically disconnected water volumes are often ecologically and hydrologically important but cannot be explicitly estimated using current storage–discharge techniques. Here, we propose that discharge is explicitly sensitive to changes in only some fraction of seasonally dynamic storage that we call “direct storage,” whereas the remaining storage (“indirect storage”) varies without directly influencing discharge. We use a coupled mass balance and storage–discharge function approach to partition seasonally dynamic storage between these 2 pools in the Northern California Coast Ranges. We find that indirect storage constitutes the vast majority of dynamic catchment storage, even at the wettest times of the year. Indirect storage exhibits lower variability over the course of the wet season (and in successive winter periods) than does direct storage. Predicted indirect storage volumes and dynamics match field observations. Comparison of 2 neighbouring field sites reveals that indirect storage volumes can occur as unsaturated storage held under tension in soils and weathered bedrock and as near‐surface saturated storage that remains on hillslopes (and is eventually evapotranspired). Indirect storage volumes (including moisture in the weathered bedrock) may support plant transpiration, and our method indicates that this important water source could be quantified from precipitation and stream discharge records.  相似文献   

17.
We applied a three-dimensional general ocean and coastal circulation model to the Irish Sea in order to determine water renewal time scales in the region. The model was forced with meteorological data for 1995, a year with relatively warm summer and when extensive hydrographic surveys were conducted in the Irish Sea. We investigated intra-annual variability in the rates of net flow through the Irish Sea and carried out several flushing simulations based on conservative tracer transport. The results indicate that the net northward flow of 2.50 km3/d is seasonally highly variable and under certain conditions is reversed to southward. The variability in obtained residence times is high; baroclinic effects are significant. Obtained results point at the importance of spatial and temporal consideration for transport of pollutants in the shelf seas. Implications for management are numerous and involve activities such as transport, fishing, use of resources, nature conservation, monitoring, tourism and recreation.  相似文献   

18.
Despite the significant role of precipitation in the hydrological cycle, few studies have been conducted to evaluate the impacts of the temporal resolution of rainfall inputs on the performance of SWAT (soil and water assessment tool) models in large-sized river basins. In this study, both daily and hourly rainfall observations at 28 rainfall stations were used as inputs to SWAT for daily streamflow simulation in the Upper Huai River Basin. Study results have demonstrated that the SWAT model with hourly rainfall inputs performed better than the model with daily rainfall inputs in daily streamflow simulation, primarily due to its better capability of simulating peak flows during the flood season. The sub-daily SWAT model estimated that 58 % of streamflow was contributed by baseflow compared to 34 % estimated by the daily model. Using the future daily and 3-h precipitation projections under the RCP (Representative Concentration Pathways) 4.5 scenario as inputs, the sub-daily SWAT model predicted a larger amount of monthly maximum daily flow during the wet years than the daily model. The differences between the daily and sub-daily SWAT model simulation results indicated that temporal rainfall resolution could have much impact on the simulation of hydrological process, streamflow, and consequently pollutant transport by SWAT models. There is an imperative need for more studies to examine the effects of temporal rainfall resolution on the simulation of hydrological and water pollutant transport processes by SWAT in river basins of different environmental conditions.  相似文献   

19.
The Nooksack River has its headwaters in the North Cascade Mountains and drains an approximately 2000 km2 watershed in northwestern Washington State. The timing and magnitude of streamflow in a snowpack‐dominated drainage basin such as the Nooksack River basin are strongly influenced by temperature and precipitation. Projections of future climate made by general circulation models (GCMs) indicate increases in temperature and variable changes in precipitation for the Nooksack River basin. Understanding the response of the river to climate change is crucial for regional water resources planning because municipalities, tribes, and industry depend on the river for water use and for fish habitat. We combine three different climate scenarios downscaled from GCMs and the Distributed‐Hydrology‐Soil‐Vegetation Model to simulate future changes to timing and magnitude of streamflow in the higher elevations of the Nooksack River. Simulations of future streamflow and snowpack in the basin project a range of magnitudes, which reflects the variable meteorological changes indicated by the three GCM scenarios and the local natural variability employed in the modeling. Simulation results project increased winter flows, decreased summer flows, decreased snowpack, and a shift in timing of the spring melt peak and maximum snow water equivalent. These results are consistent with previous regional studies, but the magnitude of increased winter flows and total annual runoff is higher. Increases in temperature dominate snowpack declines and changes to spring and summer streamflow, whereas a combination of increases in temperature and precipitation control increased winter streamflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The thermal regime of the middle atmosphere is determined to a great extent by the balance between the incoming solar and outgoing infrared radiation. To account for these processes in numerical models of the middle atmosphere, parameterizations that are capable of quickly and accurately calculating infrared cooling and solar heating rates are required. These parameterizations should include the breakdown of local thermodynamic equilibrium (LTE) conditions and allow for feedbacks by ensuring that dependencies on all input parameters are accounted for. This paper discusses the major mechanisms responsible for maintaining the radiative energy budget of the middle atmosphere and presents a brief review of approaches and numerical schemes currently available for use in general circulation models. The main focus of the paper is on the approaches and schemes designed for non-LTE treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号