首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
对地日冕物质抛射研究   总被引:5,自引:0,他引:5  
日冕物质抛射,作为太阳大气中频繁发生的极为壮观的活动现象,越来越受到太阳物理学家的关注。其中一类特殊的抛射事件--对地日冕物质抛射,通常与大的地磁暴、行星际激波和高能粒子事件相伴生,具有强烈的地球物理效应,是影响空间天气的主要因素之一。概括了对地日冕物质抛射的研究现状,重点介绍了与对土日冕物质抛射事件相联系的光球向量磁场演化的观测研究成果,并由典型事件探讨了暗条爆发、耀五等剧烈太阳活动和对地日冕物质抛射之间的密切关系,提出了尚待解决的主要问题和进一步的研究方向。  相似文献   

2.
日冕物质抛射的理想MHD模型研究   总被引:3,自引:0,他引:3  
章振大  林隽 《天文学进展》1998,16(3):195-209
概括了日冕物质抛射的一些观测结果和它们与其它太阳活动现象的相关性。简要回顾了较早期日冕物质抛射的理论研究,着重介绍了最近研究得较多的理论机制,即能量储存机制,以及其中的磁通量绳突变模型与其它理论模型的MHD数值和解析研究以及相应的重要应用.  相似文献   

3.
孙凯 《天文学进展》1997,15(1):44-52
综述日冕物质抛射的观测和持性,简短的前言之后,给出CME的发现经过及统计特性,着重介绍CME与其他种类太阳活动的相关。然后介绍CME的一般特性,包括可能与CME相关的一些物理过程的观测特性。初步结论是:CME是一种演变中的磁结构现象。  相似文献   

4.
研究了2000年紫金山天文台赣榆观测站观测到的在太阳上7个中小抛射事件,认为它们的特点是不伴随发亮现象,长1—2.5万公里,宽3—5千公里,寿命3—7分钟,产生在弱磁场处远离大黑子的地方,用一维沿磁弧流动的流体力学方程的数值模拟来解释这种抛射,结果显示,与Suematsu等和Shibata等模拟针状物和日浪不同,不是激波或反弹激波将光球色球密度量级的物质推向日冕,而是重联后的连续物质流动形成这类抛射的,大约5分钟的演化,即可达到流体力学稳定解。  相似文献   

5.
日冕物质抛射基本物理参数的统计特征   总被引:1,自引:0,他引:1  
日冕物质抛射(CME),是太阳大气中尺度最大,最为壮观的太阳活动现象.自1971年12月14日,人类第一次观测到CME以来,CME受到了越来越多的关注,许多空基日冕仪和地面设备对其观测得到了丰富的观测资料.但是,直到现在,CME的基本物理参数研究中还是存在一些不确定性,当然其中也受观测设备局限性的制约.该文综述了近年来CME基本物理参数的统计特征--速度、加速度、角宽度及纬度等--研究的新进展,指出了这些基本物理参数中存在的一些问题,并提出了今后日冕物质抛射研究中要加强的一些重大问题.  相似文献   

6.
日冕物质抛射(ChIEs)经常被观测到和其他日面活动相伴生,太阳耀斑、日珥爆发、盔状冕流等许多太阳现象,都与它有直接或间接的关系。射电观测是研究CMEs的一种重要的补充工具。多频率的射电成像观测能很好地研究CMEs的初始阶段,而且可以得到关于CMEs触发机制特征的更多信息。概括了CMEs与低频射电的关系,介绍了低频射电的观测仪器,分析了CMEs低频射电所表现出来的特征,考虑了CMEs的初发机制,总结了尚待解决的问题,表明了CMEs研究是基于多类数据和全电磁辐射波段的。  相似文献   

7.
日冕物质抛射(CME)是巨大的、携带磁力线的泡沫状气体,在几个小时中被从太阳抛射出来的过程。日冕物质抛射伴随着大量带电粒子和辐射的释放,这些物质进入日地空间,对日地空间的磁场造成很大扰动;当它们传播到地球附近时,则严重影响地球的磁场,产生磁暴,也对空间和地面的电子设备造成干扰。日冕物质抛射在传播过程中如果发生偏转,将影响它对地有效性。因此研究日冕物质抛射的偏转特性,对预报日冕物质抛射对日地空间的影响具有重要意义。主要利用2007年10月8日STEREO卫星的日冕物质抛射观测资料,结合全日面线性无力场模型(Global Linear Force-Free Field,GLFFF)进行磁场外推,分析日冕物质抛射偏转与背景磁场能量密度分布之间的关系,并计算日冕物质抛射的运动轨迹。通过改变无力因子α,发现当α=0.15时,计算得到的日冕物质抛射运动轨迹与实际观测的日冕物质抛射运动轨迹拟合得最好。  相似文献   

8.
太阳射电爆发的起因:耀斑或/和日冕物质抛射   总被引:2,自引:0,他引:2  
本文分析了近二十年来的地面和空间太阳有关观测资料,得出太阳射电爆发的起因为耀斑和/ 或日冕物质抛射(CME) 而不仅仅是耀斑,这将有利于更深刻地了解太阳射电爆发和共生高能现象的物理过程  相似文献   

9.
本文比较了1982年2月9日同时观测到的两个爆发日珥及一次白光日冕物质抛射事件。比较表明,在研究日冕物质抛射事件与爆发日珥的关系时,爆发日珥的形状可能是一个重要的因素,它体现了局部区域磁场结构的变化。作者提出了一种可能的磁场结构模型,对观测结果给以解释。  相似文献   

10.
太阳米波射电爆发是活动区上空日冕中的现象,与太阳耀斑有密切关系。近些年来,高空间分辨率的动态频谱仪获得了大量观测资料。在资料分析、理论模型和综合评述等备方面发表了许多文章。在日冕质量抛射和太阳周围磁场相互关系的研究中也取得了很大进展。  相似文献   

11.
A two-dimensional hydrodynamic code has been developed for numerical studies of stellar collisions. The motivation for the study has been the suggestion by Colgate that collisions among stars in a dense galactic core can lead to growth of stellar masses by coalescence and thus to an enhanced rate of supernova activity. The specific results reported here refer to head-on collisions between identical polytropes of index 3 having solar mass and radius. If the polytropes were initially at rest at infinity, then about five percent of the combined mass is lost by ejection following collision. The volatilized mass fraction rises to about 18% for an initial relative collision velocity of 1000 km s–1 at infinite separation, and to about 60% for the 2000 km s–1 case. Since the initial kinetic and gravitational energies balance for a relative velocity of 1512 km s–1 at infinity, it may be seen that net coalescence persists to velocities somewhat in excess of this figure. Mass ejection takes place in two ways simultaneously: (1) by a rapid sideward expulsion of fluid in a massive lateral sheet normal to the collision axis, and (2) as a result of two recoil shocks which lead momentum flows backwards along this axis. The lateral effect has similarities to the expansion of gas into a vacuum; that is, shocks are not involved. However, the ejection of material from the rear colliding hemisphere due to the recoil shocks predominates at low collision velocities. As the velocity increases, both effects strengthen, but the lateral expulsion intensifies more rapidly than the recoil shocks.  相似文献   

12.
We present results of a study of photospheric horizontal motions at the initial and main phases of the solar flare which happened on September 4, 1990, near the solar limb. The flare was accompanied by matter ejection. Spectra of the flare were obtained using the AZU-26 horizontal solar telescope at the MAO NAS (Terskol observatory). We found variations of the matter motion velocity’s value and direction at different stages of the photosphere during the flare development. The velocity changed in a range from −4 to 2 km/s. Comparisons of the obtained data with variations of the chromospheric radial velocities showed that the horizontal matter motions in the photosphere and chromosphere are mostly directed toward the observer but at particular time moments their direction changed. At two different knots, the time shift of the photospheric velocities is different. The highest velocities were observed at the main phase of the flare. At the initial phase of the flare, in the matter ejection region, we note a velocity increase compared with its preflare value and at the flare knots.  相似文献   

13.
Previous studies of the residual masses resulting from ablation of small meteoroid grains have been concerned with the ablation of particles which enter the atmosphere independently. There is widespread evidence that fragmentation is a common occurrence for meteors ranging from bright fireballs to the smallest meteors recorded with optical techniques. According to a widely accepted model, meteoroids can be considered to be a collection of tiny grains, with these grains being detached from the meteoroid during atmospheric flight. This investigation numerically solves the differential equations governing ablation of grains detached at different heights. Initial velocities from 12 to 70km s−1, and initial masses from 10−5 to 10−13kg, are considered. The ablation equations allow for thermal heating prior to the onset of intensive evaporation, and thermal reradiation throughout. The atmospheric density profile used is one based on the U.S. Standard Atmosphere (1962, U.S. Government Printing Office, Washington). Calculations were completed for grains detached at 120, 100, 95, 90, 85, 80 and 75km height. For the purposes of the ablation model it is assumed that grains are ejected with an initial temperature of 1300 K, and that intensive grain evaporation begins at 2100 K. These values are consistent with grains emitted according to the model of Hawkes and Jones (1975a, Mon. Not. R. astr. Soc. 173, 339; Mon. Not. R. astr. Soc. 185, 727). For comparison purposes, calculations were also completed for grains entering the atmosphere independently (initial height 140km and beginning temperature 280 K assumed).

It is found that particles ejected at heights of 100km and above behave essentially as independent particles incident from infinity. Hence the results of earlier studies (e.g. Nicol et al., 1985, Planet. Space Sci.33, 315) can be applied. For ejection at lower heights the resultant residual mass is somewhat less than that corresponding to grains of the same initial mass and velocity. The difference is greatest for high velocity, low mass meteors. For initial masses near 10−5kg, residual mass is almost independent of ejection height, at least down to an ejection height of 75km. The significant finding of Nicol et al. (1985, Planet. Space Sci.33, 315) that residual mass is almost independent of initial mass for a fairly wide range of initial masses is only loosely followed when in-flight ejection of particles at heights below about 95 km is considered.

Typical calculations are presented to show that in-flight fragmentation of dustballs can be an important source of macroscopic ablation product micrometeorites. The astronomical and atmospheric implications of this finding are briefly discussed.  相似文献   


14.
Horizontal motion has been studied of the matter along the active region at different heights of the photosphere (115–580 km) in the initial phase of the two-ribbon solar flare on September 4, 1990, near the solar limb, accompanied by the ejection. Photospheric velocities varied in the range −3.5 ... 2.5 km/s. The direction of motion in the photosphere and the chromosphere was mainly toward the observer. Kinematic elements have been discovered in the structure of the horizontal velocity field. Their size reduced as they approached the maximum of the flare from 7–12 to 4–5 Mm, and the velocity amplitude decreased. Throughout the whole investigated active region, vortex motions were observed in the photosphere and chromosphere. Temporal changes in the horizontal velocity field in node areas and in their vicinity were oscillatory in nature and occurred almost simultaneously along the entire height of the photosphere.  相似文献   

15.
As a coronal mass ejection (CME) passes, the flank and wake regions are typically strongly disturbed. Various instruments, including the Large Angle and Spectroscopic Coronagraph (LASCO), the Atmospheric Imaging Assembly (AIA), and the Coronal Multi-channel Polarimeter (CoMP), observed a CME close to the east limb on 26 October 2013. A hot (\({\approx}\,10~\mbox{MK}\)) rising blob was detected on the east limb, with an initial ejection flow speed of \({\approx}\, 330~\mbox{km}\,\mbox{s}^{-1}\). The magnetic structures on both sides and in the wake of the CME were strongly distorted, showing initiation of turbulent motions with Doppler-shift oscillations enhanced from \({\approx}\, \pm 3~\mbox{km}\,\mbox{s}^{-1}\) to \({\approx}\, \pm 15~\mbox{km}\,\mbox{s}^{-1}\) and effective thermal velocities from \({\approx}\,30~\mbox{km}\,\mbox{s}^{-1}\) to \({\approx}\,60~\mbox{km}\,\mbox{s}^{-1}\), according to the CoMP observations at the Fe?xiii line. The CoMP Doppler-shift maps suggest that the turbulence behaved differently at various heights; it showed clear wave-like torsional oscillations at lower altitudes, which are interpreted as the antiphase oscillation of an alternating red/blue Doppler shift across the strands at the flank. The turbulence seems to appear differently in the channels of different temperatures. Its turnover time was \({\approx}\,1000\) seconds for the Fe 171 Å channel, while it was \({\approx}\,500\) seconds for the Fe 193 Å channel. Mainly horizontal swaying rotations were observed in the Fe 171 Å channel, while more vertical vortices were seen in the Fe 193 Å channel. The differential-emission-measure profiles in the flank and wake regions have two components that evolve differently: the cool component decreased over time, evidently indicating a drop-out of cool materials due to ejection, while the hot component increased dramatically, probably because of the heating process, which is suspected to be a result of magnetic reconnection and turbulence dissipation. These results suggest a new turbulence-heating scenario of the solar corona and solar wind.  相似文献   

16.
Oued Awlitis 001 is a highly feldspathic, moderately equilibrated, clast‐rich, poikilitic impact melt rock lunar meteorite that was recovered in 2014. Its poikilitic texture formed due to moderately slow cooling, which judging from textures of rocks in melt sheets of terrestrial impact structures, is observed in impact melt volumes at least 100 m thick. Such coherent impact melt volumes occur in lunar craters larger than ~50 km in diameter. The composition of Oued Awlitis 001 points toward a crustal origin distant from incompatible‐element‐rich regions. Comparison of the bulk composition of Oued Awlitis 001 with Lunar Prospector 5° γ‐ray spectrometer data indicates a limited region of matches on the lunar farside. After its initial formation in an impact crater larger than ~50 km in diameter, Oued Awlitis 001 was excavated from a depth greater than ~50 m. The cosmogenic nuclide inventory of Oued Awlitis 001 records ejection from the Moon 0.3 Ma ago from a depth of at least 4 m and little mass loss due to ablation during its passage through Earth's atmosphere. The terrestrial residence time must have been very short, probably less than a few hundred years; its exact determination was precluded by a high concentration of solar cosmic ray‐produced 14C. If the impact that excavated Oued Awlitis 001 also launched it, this event likely produced an impact crater >10 km in diameter. Using petrologic constraints and Lunar Reconnaissance Orbiter Camera and Diviner data, we test Giordano Bruno and Pierazzo as possible launch craters for Oued Awlitis 001.  相似文献   

17.
H.J. Melosh 《Icarus》1984,59(2):234-260
Recent discoveries suggest that some meteorites have originated from major planets or satellites. Although it has been suggested that a large primary impact event might eject rock fragments as secondaries, it was previously supposed that material ejected at several kilometers per second would be highly shocked or perhaps melted. It is shown that a small amount of material (0.01 to 0.05 projectile mass) may be ejected at high velocity shock pressures. The approach utilizes observations of stress-wave propagation from large underground explosions to predict stresses and particle velocities in the near-surface environment. The largest fragments ejected at any velocity are spalls that originate from the target planet's surface. The spall size is proportional to the radius of the primary impactor and the target tensile strength and inversely proportional to ejection velocity. The shock level in the spalls is low, typically half of the dynamic crushing strength of the rock. The model also predicts the aspect ratio of the spalled fragments, the angle of ejection, and the sizes and shock level of other fragments originating deeper in the target. Comparison with data from laboratory experiments, the Ries Crater, and secondary crater sizes shows generally good agreement, although the observed fragment size at ejection velocities greater than 1 km/sec is considerably smaller than the simple version of the theory predicts. The theory indicates that although significant masses of solid material could be ejected from the Moon or Mars by large meteorite impacts, the fragments ejected from ca. 30-km-diameter craters are at most a few tens of meters in diameter if the most optimistic assumptions are made. The maximum fragment diameter is more likely to be about a meter. This theory, however, applies rigorously only up to ejection velocities of ca 1 km/sec. Further numerical extensions are necessary before film conclusions can be drawn, especially for Martian ejecta.  相似文献   

18.
The cometary images taken on 1986 January 8.590 and 8.638 UT (R-0.9 AU, ~ 1.29 AU) at Gurushikhar, Mt. Abu, India (24 °39 N, 72 °43 E alt: 1700 m) show distinct condensation region in the tail direction. The size of the condensation region is 4 × 103 km. The condensation region showed up strongly in the blue emission, implying the abundance of CO+. It was inferred to be moving with a velocity of 37 ± 3 km/s relative to the comet at a distance of 2.3 × 105 km from the nucleus in the tailward direction.The analysis show that the condensation was a result of rapid ionization mechanism, with a time scale of \~103 to 104 sec. The most probable mechanism for producing the ionization region was found to be the discharge of cross tail electric current passing through the neutral sheet in the near nucleus region followed by an outburst observed in IR wavelengths at 8.1 UT. It was accelerated by J × B drift at a rate of ~24 cm/sec2 to the position observed by us.This feature, most probably is the precursor of the first dramatic Disconnection Event (DE) observed in Halley's Comet at Jan.10.375 UT. This supports the conjecture that the tail features originate in the coma with a velocity of ~20–40 km/s.  相似文献   

19.
Asteroid families are the byproducts of catastrophic collisions whose fragments form clusters in proper semimajor axis, eccentricity, and inclination space. Although many families have been observed in the main asteroid belt, only two very young families, Karin and Veritas, have well-determined ages. The ages of other families are needed, however, if we hope to infer information about their ejection velocity fields, space weathering processes, etc. In this paper, we developed a method that allows us to estimate the ages of moderately young asteroid families (approximately in between 0.1 and 1 Gyr). We apply it to four suitable cases—Erigone, Massalia, Merxia, and Astrid—and derive their likely ages and approximate ejection velocity fields. We find that Erigone and Merxia were produced by large catastrophic disruption events (i.e., parent body ?100 km) that occurred approximately 280 and 330 Myr ago, respectively. The Massalia family was likely produced by a cratering event on Asteroid (20) Massalia less than 200 Myr ago. Finally, the Astrid family, which was produced by the disruption of a 60-70 km asteroid, is 100-200 Myr old, though there is considerable uncertainty in this result. We estimate that the initial ejection velocities for these families were only a few tens of meters per second, consistent with numerical hydrocode models of asteroid impacts. Our results help to verify that asteroid families are constantly undergoing dynamical orbital evolution from thermal (Yarkovsky) forces and spin vector evolution from thermal (YORP) torques.  相似文献   

20.
A model was developed for the mass distribution of fragments that are ejected at a given velocity for impact and explosion craters. The model is semiempirical in nature and is derived from (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationships between maximum ejecta fragment size and crater diameter, (4) measurements of maximum ejecta size versus ejecta velocity, and (5) an assumption on the functional form for the distribution of fragments ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity is broad; e.g., 68% of the mass of the ejecta at a given velocity contains fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. Using this model, we have calculated the largest fragment that can be ejected from asteroids, the Moon, Mars, and Earth as a function of crater diameter. The model is unfortunately dependent on the size-dependent ejection velocity limit for which only limited data are presently available from photography of high explosive-induced rock ejecta. Upon formation of a 50-km-diameter crater on an atmosphereless planet having the planetary gravity and radius of the Moon, Mars, and Earth, fragments having a maximum mean diameter of ≈30, 22, and 17 m could be launched to escape velocity in the ejecta cloud. In addition, we have calculated the internal energy of ejecta versus ejecta velocity. The internal energy of fragments having velocities exceeding the escape velocity of the moon (~2.4 km/sec) will exceed the energy required for incipient melting for solid silicates and thus, the fragments ejected from Mars and the Earth would be melted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号