共查询到20条相似文献,搜索用时 78 毫秒
1.
Gui-Peng Yang Maurice Levasseur Sonia Michaud Michael Scarratt 《Marine Chemistry》2005,96(3-4):315-329
Sixteen surface microlayer samples and corresponding subsurface water samples were collected in the western North Atlantic during April–May 2003 to study the distribution and cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) and the factors influencing them. In the surface microlayer, high concentrations of DMS appeared mostly in the samples containing high levels of chlorophyll a, and a significant correlation was found between DMS and chlorophyll a concentrations. In addition, microlayer DMS concentrations were correlated with microlayer DMSPd (dissolved) concentrations. DMSPd was found to be enriched in the microlayer with an average enrichment factor (EF) of 5.19. However, no microlayer enrichment of DMS was found for most samples collected. Interestingly, the DMS production rates in the microlayer were much higher than those in the subsurface water. Enhanced DMS production in the microlayer was likely due to the higher concentrations of DMSPd in the microlayer. A consistent pattern was observed in this study in which the concentrations of DMS, DMSPd, DMSPp (particulate) and chlorophyll a in the microlayer were closely related to their corresponding subsurface water concentrations, suggesting that these constituents in the microlayer were directly dependent on the transport from the bulk liquid below. Enhanced DMS production in the microlayer further reinforces the conclusion that the surface microlayer has greater biological activity relative to the underlying water. 相似文献
2.
Mireille Lefvre Alain Vzina Maurice Levasseur John W. H. Dacey 《Deep Sea Research Part I: Oceanographic Research Papers》2002,49(12)
Dimethylsulfide (DMS) is a volatile sulfur compound produced by the marine biota. The flux of DMS to the atmosphere may act on climate via aerosol formation. It is therefore important to improve our understanding of the processes that regulate sea surface DMS concentrations for eventual inclusion into climate models. In order to simulate the dynamics of DMS concentrations in the mixed layer, a model of DMS production was developed and calibrated against a 1 year time-series of DMS and DMSP (dissolved and particulate) data collected in the Sargasso Sea at Hydrostation ‘S’. The model reproduces the observed divergence between the seasonal cycles of particulate DMSP, the DMS precursor produced by algae, and DMS produced through the microbial loop from the cleavage of dissolved DMSP. DMSPp (particulate) reaches its maximum in the spring whereas DMSPd (dissolved) and DMS reach maximum concentrations in summer. Several parameters had to vary seasonally and with depth in order to reproduce the data, pointing out the importance of physiological and structural changes in the plankton food web. These parameters include the intracellular S(DMSp):N ratio, the C:Chl ratio and the sinking rates of phytoplankton and detritus. For the Sargasso Sea, variations in the solar zenithal angle, which co-vary with the seasonal variations in the depth of the mixed layer, proved to be a convenient signal to drive the seasonal variation in the structure and dynamics of the plankton. Variations of the temperature and photosynthetically active radiation also help to reproduce the short-term variability of the annual S cycle. Results from a sensitivity analysis show that variations in DMSPp are dependent mostly on parameters controlling phytoplankton biomass, whereas DMS is dependent mostly on variables controlling phytoplankton productivity. 相似文献
3.
海水中痕量DMS和DMSP分析方法的研究 总被引:6,自引:1,他引:6
二甲基硫(DMS)是海洋排放的占优势地位的生源硫气体,其在大气中的氧化产物能够影响到环境酸化和世界的气候变化.因此, 测定海水中的DMS对于准确地评价其在全球硫循环所起的重要作用具有重要意义.本文中作者研究了海水中DMS的痕量分析技术.海水中的DMS首先采用气提-冷阱捕集技术进行预浓缩, 然后用带有火焰光度检测器的气相色谱(GC-FPD)进行分析.该方法的精确度在5%以内, 平均回收率为85.6% (82.8%-90.5%), 最小检出限为0.15 ng S.β-二甲基巯基丙酸内盐(DMSP)的分析是通过将其在碱性溶液中分解成DMS来进行.作者采用此方法实测了黄海中DMS和DMSP的含量, 获得了理想的结果. 相似文献
4.
The distributions of DMS and its precursor dimethylsulfoniopropionate, in both dissolved (DMSPd) and particulate fractions (DMSPp) were determined in the seasurface microlayer and corresponding subsurface water of the Jiaozhou Bay, China and its adjacent area in May and August 2006. The concentrations of all these components showed a clear seasonal variation, with higher concentrations occurring in summer. This can be mainly attributed to the higher phytoplankton biomass observed in summer. Simultaneously, the enrichment extents of DMSPd and DMSPp in the microlayer also exhibited seasonal changes, with higher values in spring and lower ones in summer. Higher water temperature and stronger radiant intensity in summer can enhance their solubility and photochemical reaction in the microlayer water, reducing their enrichment factors (the ratio of concentration in the microlayer to that in the corresponding subsurface water). A statistically significant relationship was found between the microlayer and subsurface water concentrations of DMS, DMSP and chlorophyll a, demonstrating that the biogenic materials in the microlayer come primarily from the underlying water. Moreover, our data show that the concentrations of DMSPp and DMS were significantly correlated with the levels of chlorophyll a, indicating that phytoplankton biomass might play an important role in controlling the distributions of biogenic sulfurs in the study area. The ratios of DMS/chlorophyll a and DMSPp/chlorophyll a varied little from spring to summer, suggesting that there was no obvious change in the proportion of DMSP producers in the phytoplankton community. The mean sea-to-air flux of DMS from the study area was estimated to be 5.70 μmol/(m2·d), which highlights the effects of human impacts on DMS emission. 相似文献
5.
K.E. Bailey D.A. Toole B. Blomquist R.G. Najjar B. Huebert D.J. Kieber R.P. Kiene P. Matrai G.R. Westby D.A. del Valle 《Deep Sea Research Part II: Topical Studies in Oceanography》2008,55(10-13):1491
Lagrangian time series of dimethylsulfide (DMS) concentrations from a cyclonic and an anticyclonic eddy in the Sargasso Sea were used in conjunction with measured DMS loss rates and a model of vertical mixing to estimate gross DMS production in the upper 60 m during summer 2004. Loss terms included biological consumption, photolysis, and ventilation to the atmosphere. The time- and depth (0–60 m)-averaged gross DMS production was estimated to be 0.73±0.09 nM d−1 in the cyclonic eddy and 0.90±0.15 nM d−1 in the anticyclonic eddy, with respective DMS replacement times of 5±1 and 6±1 d. The higher estimated rate of gross production and lower measured loss rate constants in the anticyclonic eddy were equally responsible for this eddy's 50% higher DMS inventory (0–60 m). When normalized to chlorophyll and total dimethylsulfoniopropionate (DMSP), estimated gross production in the anticyclonic eddy was about twice that in the cyclonic eddy, consistent with the greater fraction of phytoplankton that were DMSP producers in the anticyclonic eddy. Higher rates of gross production were estimated below the mixed layer, contributing to the subsurface DMS maximum found in both eddies. In both eddies, gas exchange, microbial consumption, and photolysis were roughly equal DMS loss terms in the surface mixed layer (0.2–0.4 nM d−1). Vertical mixing was a substantial source of DMS to the surface mixed layer in both eddies (0.2–0.3 nM d−1) owing to the relatively high DMS concentrations below the mixed layer. Estimated net biological DMS production rates (gross production minus microbial consumption) in the mixed layer were substantially lower (by almost a factor of 3) than those estimated in a previous study of the Sargasso Sea, which may explain the relatively low mixed-layer DMS concentrations found here during July 2004 (3 nM) compared to previous summers (4–6 nM). 相似文献
6.
K.O. Buesseler C. Lamborg P. Cai R. Escoube R. Johnson S. Pike P. Masque D. McGillicuddy E. Verdeny 《Deep Sea Research Part II: Topical Studies in Oceanography》2008,55(10-13):1426
We examined the impact of a cyclonic eddy and mode-water eddy on particle flux in the Sargasso Sea. The primary method used to quantify flux was based on measurements of the natural radionuclide, 234Th, and these flux estimates were compared to results from sediment traps in both eddies, and a 210Po/210Pb flux method in the mode-water eddy. Particulate organic carbon (POC) fluxes at 150 m ranged 1–4 mmol C m−2 d−1 and were comparable between methods, especially considering differences in integration times scales of each approach. Our main conclusion is that relative to summer mean conditions at the Bermuda Atlantic Time-series Study (BATS) site, eddy-driven changes in biogeochemistry did not enhance local POC fluxes during this later, more mature stage of the eddy life cycle (>6 months old). The absence of an enhancement in POC flux puts a constraint on the timing of higher POC flux events, which are thought to have caused the local O2 minima below each eddy, and must have taken place >2 months prior to our arrival. The mode-water eddy did enhance preferentially diatom biomass in its center, where we estimated a factor of three times higher biogenic Si flux than the BATS summer average. An unexpected finding in the highly depth-resolved 234Th data sets is narrow layers of particle export and remineralization within the eddy. In particular, a strong excess 234Th signal is seen below the deep chlorophyll maxima, which we attribute to remineralization of 234Th-bearing particles. At this depth below the euphotic zone, de novo particle production in the euphotic zone has stopped, yet particle remineralization continues via consumption of labile sinking material by bacteria and/or zooplankton. These data suggest that further study of processes in ocean layers is warranted not only within, but below the euphotic zone. 相似文献
7.
The production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by marine microalgae was investigated to elucidate more on the role of marine phytoplankton in ocean-atmosphere interactions in the global biogeochemical sulfur cycle.Axenic laboratory cultures of four marine microalgae–Isochrysis galbana 8701,Pavlova viridis,Platymonas sp.and Chlorella were tested for DMSP production and conversion into DMS.Among these four microalgae,Isochrysis galbana 8701 and Pavlova viridis are two species of Haptophyta,while Chlorella and Platymonas sp.belong to Chlorophyta.The results demonstrate that the four algae can produce various amounts of DMS(P),and their DMS(P) production was species specific.With similar cell size,more DMS was released by Haptophyta than that by Chlorophyta.DMS and dissolved DMSP (DMSPd) concentrations in algal cultures varied significantly during their life cycles.The highest release of DMS appeared in the senescent period for all the four algae.Variations in DMSP concentrations were in strong compliance with variations in algal cell densities during the growing period.A highly significant correlation was observed between the DMS and DMSPd concentrations in algal cultures,and there was a time lag for the variation trend of the DMS concentrations as compared with that of the DMSPd.The consistency of variation patterns of DMS and DMSPd implies that the DMSPd produced by phytoplankton cells has a marked effect on the production of DMS.In the present study,the authors’ results specify the significant contribution of the marine phytoplankton to DMS(P) production and the importance of biological control of DMS concentrations in oceanic water. 相似文献
8.
胶州湾海水中DMS和DMSP的分布及其影响因素 总被引:1,自引:0,他引:1
为了解人为活动对二甲基硫(DMS)和二甲巯基丙酸(DMSP)生物生产的干扰,分别于2005年8月、11月对胶州湾海域进行采样。测定结果表明:胶州湾海水中8月DMS、DMSPd和DMSPp在次表层的平均含量分别为4.89,17.9和23.93nmol·L-1,在微表层中的平均含量分别为4.58,19.98和21.49nmol·L-1,11月DMS、DMSPd和DMSPp在次表层的平均含量分别为2.07,12.99和16.74nmol·L-1,在微表层中的平均含量分别为1.44,16.13和19.62nmol·L-1。DMS和DMSP的水平分布由于受到陆源输入的影响,呈现出自湾内向湾外递降的趋势。DMS和DMSP的含量夏季高于秋季。DMS和Chl-a在每个季节具有一定的相关性。DMS浓度的增加导致DMS通量增加。对海水微表层和次表层的研究表明,DMS和DMSPp并未在微表层中富集,而DMSPd有一定程度的富集。DMS,DMSP,Chl-a在海水微表层和次表层之间浓度分布的相关性体现了2层水体之间存在强烈的交换作用。 相似文献
9.
顶空气相色谱法测定海水二甲基硫和浮游植物细胞二甲基硫丙酸的研究 总被引:12,自引:2,他引:12
建立了顶空GC/FPD测定海水中二甲基硫(DMS)和浮游植物细胞中二甲基硫丙酸(DMSP)的方法,并研究盐度、温度、气液相比DMS诸因素对DMS顶空灵敏度的影响。该法对DMS测定的相对标准偏差均小于6%,平均回收率为106%,最低检出限为20ng/L。细胞DMSP先经碱作用转化为DMS,在50℃下作用时间不少于6h,峰高与浓度的双对数线性相关系数大于0.99。对1994年冬、1995年夏采自胶州湾 相似文献
10.
《Marine Chemistry》2007,103(1-2):197-208
Biological consumption is a major sink for dimethylsulfide (DMS) in the surface ocean, but the fate of DMS is poorly known. We determined the fate of sulfur from biologically consumed DMS in samples from the upper 60 m of the Sargasso Sea during July 2004. Using tracer levels of 35S-DMS in dark incubations we found that DMS was transformed into three identifiable non-volatile, sulfur-containing product pools: dimethylsulfoxide (DMSO), sulfate, and particle-associated macromolecules. Together, DMSO and sulfate accounted for most (81–93%) of the non-volatile sulfur products. Only a small fraction (∼ 2%) of the consumed DMS-sulfur was recovered in cellular macromolecules, leaving 5–17% of the metabolic products of DMS consumption unidentified. The relative importance of the two major products varied with depth. DMSO was the main sulfur product (∼ 72%) from DMS metabolism in the surface mixed layer, whereas sulfate was the most important product (∼ 74%) below the mixed layer. Changes in temperature and photosynthetically-active radiation (PAR) did not cause shifts in DMS fate in short term incubations (7–12 h), however these or other factors (e.g., exposure to ultraviolet radiation), operating over longer time scales, could potentially influence the observed pattern of DMS fate with depth. Biological DMSO production rates ranged from 0.07 to 0.33 nM day− 1, with the highest rate found at 30 m, just below the surface mixed layer. With DMSO concentrations ranging from 4.0 to 8.6 nM, turnover times for DMSO were long (15–61 days) when only the biological production from DMS was considered. Identification of the main sulfur containing products from DMS metabolism improves understanding of this important process in the marine sulfur cycling. Detection and quantification of DMSO production from biological DMS consumption also provides a more complete picture of DMSO biogeochemistry in the ocean. 相似文献
11.
二甲基硫(DMS)是海水中一种最重要的、含量最丰富的还原态挥发性生源有机硫化物,前体β-二甲基巯基丙酸内盐(DMSP)的降解过程受各种因素影响。其中主要包括温度、DMSP的浓度、氧气、盐度、酸度、颗粒粒度、藻类生长期、季节变化、氧化压力、抑制剂等。它们均与DMSP降解速率呈一定的函数关系,并对DMSP的降解产物产生影响。藻类是DMSP的主要来源,因此着重讨论了温度、盐度、酸度等对不同浮游植物细胞内DMSP与DMS生物生产和转化过程的影响。结合海洋硫循环的研究现状和海洋化学发展的趋势,探究了用颗粒态DMSP与Chla的比率来量化碳和硫通量的方法及DMSP裂解酶活性的检验技术。大气中CO2压力持续增加导致的海洋酸化对藻类中DMSP降解过程的影响也是进一步研究的重点。 相似文献
12.
Temporal variability of dimethylsulfide and dimethylsulfoniopropionate in the Sargasso Sea 总被引:1,自引:0,他引:1
John W. H. Dacey Frances A. Howse Anthony F. Michaels Stuart G. Wakeham 《Deep Sea Research Part I: Oceanographic Research Papers》1998,45(12):2085-2104
Vertical profiles of dimethylsulfide (DMS) and β-dimethylsulfoniopropionate, particulate (pDMSP) and dissolved (dDMSP), were measured biweekly in the upper 140 m of the Sargasso Sea (32°10′N, 64°30′W) during 1992 and 1993. DMS and pDMSP showed strong, but different, seasonal patterns; no distinct intra-annual pattern was observed for dDMSP. During winter, concentrations of DMS were generally less than 1 nmol l−1 at all depths, dDMSP was less than 3 nmol l−1 and pDMSP was less than 8 nmol l−1. In spring, concentrations of both dDMSP and pDMSP rose, on a few occasions up to 20 nmol l−1 in the dissolved pool and up to 27 nmol l−1 in the particulate pool. These increases, due to blooms of DMSP-containing phytoplankton, resulted in only minor increases in DMS concentrations (up to 4 nmol l−1). Throughout the summer, the concentrations of DMS continued to increase, reaching a maximum in August of 12 nmol l−1 (at 30 m depth). There was no concomitant summer increase in dDMSP or pDMSP. The differences among the seasonal patterns of DMS, dDMSP, and pDMSP suggest that the physical and biological processes involved in the cycling of DMS change with the seasons. There is a correlation between the concentration of DMS and temperature in this data set, as required by some of the climate feedback models that have been suggested for DMS. A full understanding of the underlying processes controlling DMS is required to determine if the temperature-DMS pattern is of significance in the context of global climate change. 相似文献
13.
Solid-phase microextraction (SPME) is a simple, sensitive and less destructive method for the determination of dimethylsulfide
(DMS) in seawater. Combined with detection by gas chromatography-mass spectrometry (GC-MS), the method had sufficient sensitivity
(minimum detectable concentration of DMS was 0.05 nM), and practical levels of reproducibility (relative standard deviation
≤7%) and linearity (r
2 > 0.995) over a wide concentration range (0.5 to 910 nM). The protocol developed was applied to a Sagami Bay water sample
to determine concentrations of DMS and DMSP, and in situ DMSP-lyase activity. 相似文献
14.
A process-oriented, quasi-geostrophic, barotropic model has been developed with the aim of studying the relative importance of wind and topographic forcing on oceanic eddy generation by tall, deep water islands. As a case study, we chose the island of Gran Canaria. Topographic forcing was established using different intensities (weak, medium, strong, and very strong) for the oceanic current incident to the island. Wind forcing was introduced to simulate the mean wind curl observed in atmospheric tall island wakes. As observed from in situ data, the resulting wind curl consists of two cells of opposite sign which become a complementary source of vorticity at the island lee. The intensity and the shape of the two cells depend on the strength of the incident wind against the obstacle. The oceanic model was forced at three different wind (trade winds) speeds which correspond to weak, medium and strong wind intensities. Results from several numerical experiments show that in those periods where the incident wind is in the medium–strong range and the incident current speed is low (low Reynolds number), the wind forcing is the trigger mechanism for oceanic eddy generation. Eddies are spun off from the island for a lower Reynolds number (Re)/intensity of the oceanic flow (Re = 20) when compared with only topographic forcing (Re > 60). However, when the current speed is strong (high Reynolds number), the vorticity input by the wind is quickly advected by the oceanic flow and does not contribute to oceanic eddy generation. When only wind forcing is considered, only two stationary eddies are generated in the island wake. In this case, eddies of opposite sign are not sequentially spun off by the island and a Von-Kármán-like eddy street is not developed downstream of the island. Therefore, the main mechanism responsible for the development of an eddy street is the topographic perturbation of the oceanic flow by the island flanks. The wind over the island wake acts only as an additional source of vorticity, promoting the generation of an eddy street at a lower intensity of the incident oceanic flow, but not being capable of generating an eddy street without the topographic forcing. 相似文献
15.
于2010年7~11月对胶州湾夏、秋季浮游动物种类和丰度进行现场调查,并分析讨论了胶州湾夏、秋季浮游动物丰度的水平分布与环境因子(温度、盐度、水深、叶绿素a)和二甲基硫(DMS)、溶解态β-二甲基巯基丙酸内盐(DMSPd)、颗粒态β-二甲基巯基丙酸内盐(DMSPp)的相关性。结果表明,胶州湾浮游动物丰度分布不均匀,8月湾内西部沿岸海域C1站位出现调查期间的动物丰度最大值(656.1ind/m3),最小值(1.492ind/m3)出现在10月胶州湾东北部的A2站位。浮游动物丰度具有明显的季节变化,秋季浮游动物丰度低于夏季浮游动物丰度。浮游动物丰度与盐度、叶绿素a含量、细菌生物量的相关性不明显,2010年10月浮游动物丰度与DMS呈显著正相关(P0.05),11月的浮游动物丰度与DMSPp呈显著正相关(P0.05),其它月份(7、8、9月)的浮游动物丰度与DMS、DMSPd、DMSPp浓度的相关性均不明显。由于浮游动物摄食活动对DMS释放的影响受多种因素的制约,因此浮游动物与DMS的相互作用需要进一步研究。 相似文献
16.
Y.W. Watanabe H. Yoshinari A. Sakamoto Y. Nakano N. Kasamatsu T. Midorikawa T. Ono 《Marine Chemistry》2007,103(3-4):347-358
We proposed an empirical equation of sea surface dimethylsulfide (DMS, nM) using sea surface temperature (SST, K), sea surface nitrate (SSN, μM) and latitude (L, °N) to reconstruct the sea surface flux of DMS over the North Pacific between 25°N and 55°N: ln DMS = 0.06346 · SST − 0.1210 · SSN − 14.11 · cos(L) − 6.278 (R2 = 0.63, p < 0.0001). Applying our algorithm to climatological hydrographic data in the North Pacific, we reconstructed the climatological distributions of DMS and its flux between 25 °N and 55 °N. DMS generally increased eastward and northward, and DMS in the northeastern region became to 2–5 times as large as that in the southwestern region. DMS in the later half of the year was 2–4 times as large as that in the first half of the year. Moreover, applying our algorithm to hydrographic time series datasets in the western North Pacific from 1971 to 2000, we found that DMS in the last three decades has shown linear increasing trends of 0.03 ± 0.01 nM year− 1 in the subpolar region, and 0.01 ± 0.001 nM year− 1 in the subtropical region, indicating that the annual flux of DMS from sea to air has increased by 1.9–4.8 μmol m− 2 year− 1. The linear increase was consistent with the annual rate of increase of 1% of the climatological averaged flux in the western North Pacific in the last three decades. 相似文献
17.
Sonia Michaud Maurice Levasseur Guy Cantin 《Estuarine, Coastal and Shelf Science》2007,71(3-4):741-750
Weekly variations in total dimethylsulfoniopropionate (DMSPt) and dimethylsulfide (DMS) were investigated in relation to the phytoplankton assemblage from spring to fall 1994 at a coastal fixed station in the St. Lawrence Estuary. DMSPt and DMS concentrations showed a strong seasonality and were tightly coupled in time. Maximum concentrations of DMSPt and DMS were observed in July and August, during a period of warm water and low nutrient concentrations. Seasonal maxima of 365.4 nmol l−1 for DMSPt and 14.2 nmol l−1 for DMS in early August coincided with the presence of many phytoplankton species, such as Alexandrium tamarense, Dinophysis acuminata, Gymnodinium sp., Heterocapsa rotundata, Protoperidinium ovatum, Scrippsiella trochoidea, Chrysochromulina sp. (6 μm), Cryptomonas sp. (6 μm), a group of microflagellates smaller than 5 μm (mf < 5), many tintinnids, and Mesodinium rubrum. The abundance of mf < 5 followed the general trend of DMS concentrations. The temporal occurrence of high P. ovatum abundance and DMSPt concentrations suggests that this heterotrophic dinoflagellate can either synthesize DMSP or acquire it from DMSP-rich prey. The calculated sea-to-air DMS flux reached a maximum of 8.36 μmol −2 d−1 on August 1. The estimated annual emission from the St. Lawrence Estuary is 77.2 tons of biogenic sulfur to the atmosphere. 相似文献
18.
Courtney S. Ewart Meredith K. Meyers Elisa R. Wallner Dennis J. McGillicuddy Jr. Craig A. Carlson 《Deep Sea Research Part II: Topical Studies in Oceanography》2008,55(10-13):1334
The EDdy Dynamics, mixing, Export, and Species composition (EDDIES) project provided a unique opportunity to evaluate the response of the microbial community and further understand the biological and biogeochemical consequences of mesoscale perturbation events in an oligotrophic system. In order to characterize microbial dynamics, we performed measurements of bacterial biomass (BB) and production (BP) and phytoplankton pigment analyses in two upwelling eddies in the Sargasso Sea sampled in 2004 and 2005. We also observed a 3-fold increase in BP at the Bermuda Atlantic Time-series Study (BATS) site during the passage of a cyclonic eddy in 2003. Although the integrated BB and BP over 140 m in 2004 and 2005 eddies remained within the climatological range measured at the BATS site, there was systematic variability in bacterioplankton dynamics across both eddies. Cyclonic eddy C1 demonstrated decreased BP at the feature's center relative to its periphery, and BP was not correlated with total chlorophyll a (TChl a) variability. However, BP correlated with prymnesiophyte pigments throughout the feature. In contrast, mode-water eddy A4 showed an enhancement in BP at the eddy center (EC) relative to its edges and was coincident with elevated TChl a, high primary production measurements, and a high concentration of diatoms. In eddy A4, the tight relationship between enhanced BP, TChl a and specific phytoplankton taxa implies that the phytoplankton community structure was an important factor influencing BP variability. While the heterotrophic bacterial response in C1 and A4 was not enhanced relative to BATS summer climatology, these data and the presence of similar nutrient fields across both eddies suggest that BP and BB were influenced by the eddy perturbations and responded to changes in the phytoplankton community. 相似文献
19.
Fleur C. van Duyl Winfried W. C. Gieskes Arjen J. Kop Wilma E. Lewis 《Journal of Sea Research》1998,40(3-4)
In the spring of 1995, short-term variations in the concentration of particulate and dissolved dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) were monitored in the western Wadden Sea, a shallow coastal region in open connection with the North Sea. Significant correlations were found between abundance of Phaeocystis globosa and particulate DMSP; concentrations increased rapidly from 100 to 1650 nM in the middle of April. Highest DMS concentrations were found during the initial phase of the exponential growth of the bloom. DMS production and loss rates of DMSP and DMS were estimated experimentally during various phases of the bloom. DMS production and consumption were roughly in balance, with production only slightly exceeding consumption at the start of the bloom. Rates of production and consumption were highest during the exponential growth phase of Phaeocystis and declined in the course of the bloom (from 300–375 to less than 5 nmol dm−3 d−1). Demethylation of DMSP increased during the bloom (from 11 to 1300 nmol dm−3 d−1); it accounted for up to 100% of the DMSP loss at the end of the bloom. The shift from DMSP cleavage to demethylation in the course of a Phaeocystis bloom implies that DMS concentrations are not necessarily highest at the peak or towards the end of blooms. 相似文献
20.
Satellite and in situ observations of the bio-optical signatures of two mesoscale eddies in the Sargasso Sea 总被引:1,自引:0,他引:1
D.A. Siegel D.B. Court D.W. Menzies P. Peterson S. Maritorena N.B. Nelson 《Deep Sea Research Part II: Topical Studies in Oceanography》2008,55(10-13):1218
Satellite ocean-color imagery and field spectroradiometer observations are used to assess the bio-optical signatures of two mesoscale features, a cyclone C1 and an 18°-water anticyclone A4, in the Sargasso Sea. Field determinations of upper layer bio-optical properties, such as the diffuse attenuation coefficient and remote-sensing reflectance spectra, show little statistically significant variations with distance to the eddy center for either eddy. This contrasts field observations showing many-fold higher phytoplankton pigment biomass at depth (and for A4 higher primary production rates at depth) than is typical for this region. The cyclone C1 does show a significant decrease in the depth of the 1% photosynthetically available radiation (PAR) isolume with increasing distance from eddy center while the anticyclone A4 shows no coherent signal vs. distance. Vertical profiles of bio-optical properties show consistent patterns where subsurface maxima are displaced higher inside the core of the cyclone C1 than in the surrounding waters while the highest values of the diffuse attenuation coefficient at 443 nm are observed within the core of anticyclone A4. Satellite observations of near-surface bio-optical properties show signals consistent with eddy physical characteristics, although the magnitude of these variations is very small, barely detectable by typical field measurement protocols. Mean values of bio-optical properties are higher within the cyclone compared with its periphery but not for the anticyclone. For both eddies, significant inverse correlations are observed between time series of bio-optical properties and eddy center sea-level anomaly. Consistent response to wind speed is also noted: following strong wind events, bio-optical parameters are elevated inside the anticyclone and are reduced inside the cyclone. These observations demonstrate that a combination of physical processes, including vertical eddy uplift, eddy horizontal advection, and eddy-scale Ekman pumping, contribute to the bio-optical imprint of mesoscale eddies. The contributions of these forcing mechanisms change over the period of observation, illustrating the limitations of inferring eddy bio-optical dynamics from short-term, field observations. The present analyses provide insights into the potential as well as the drawbacks of bio-optical techniques for probing the biological and biogeochemical impacts of open-ocean eddies. 相似文献