首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Almadén district constitutes the largest and probably the most intriguing mercury concentration in the world. Two types of mineralization are recognized: 1) stratabound, of Lower Silurian age, well represented by the large Almadén deposit; and 2) fully discordant mercury deposits of minor importance in terms of size, and exemplified by the deposit of Las Cuevas. The latter ones can be found at different positions along the Almadén stratigraphic column. Both types of deposits are always associated with the so-called frailesca rocks (diatremes of alkali basaltic composition). This paper reports the first lead isotope compositions of cinnabar in the district. Whole samples and stepwise leaching cinnabar aliquots display relatively homogeneous isotopic compositions (206Pb/204Pb = 18.112–18.460; 207Pb/204Pb = 15.635–15.705; 208Pb/204Pb = 38.531–38.826). Taken together with Jébrak et al.s (2002) pyrite lead isotope results, the new cinnabar isotopic data define a steep array trend on the 207Pb/204Pb– 206Pb/204Pb diagram, indicating a mixed contribution of lead and probably mercury from different sedimentary sources in the Almadén basin. The Almadén Hg deposits are related to a contemporaneous mafic magmatism that might have provided part of the mercury. Hydrothermal leaching of organic matter from sedimentary rocks and formation of Hg organic complexes enhanced metal solubility, promoting transport from and within the volcanic units.Editorial handling: M. Chiaradia  相似文献   

2.
Systematic microthermometric measurements of fluid inclusions in the PGE-polymetallic deposits hosted in the Lower Cambrian black rock series in southern China were performed, and the results suggest: (1) there exist two types of fluid inclusions. TypeⅠis of NaCl-H2O system with low-medium salinity, and its homogenization temperatures (Th) and salinities are 106.9- 286.4℃ and ( 0.8- 21.8) wt%NaCl eq. respectively; TypeⅡ is of CaCl2-NaCl-H2O system with medium-high salinities, and its homogenization temperatures and salinities range from 120.1℃ to 269.6℃ and ( 11.4- 31.4) wt%NaCl eq., respectively. The typeⅡ fluid inclusions have been discovered for the first time in this kind of deposits; (2) two generations of ore-forming fluids were recognized. Characteristics of fluid inclusions in the PGE-polymetallic ores and carbonate-quartz stockworks in the underlying phosphorites are almost of no difference, they may represent ore-forming fluids at the main metallogenic stage. The peak value of homogenization temperature of those fluid inclusions is about 170℃, while their salinities possess a remarkable bimodal distribution pattern with two peak values of (27-31) wt%NaCl eq. and (4-6) wt%NaCl eq. On the contrary, fluid inclusions in the carbonate-quartz veins in the hanging wall may represent ore-forming fluids at the post-metallogenetic stage. The homogenization temperatures and the peak values of salinities are mostly 130-170℃ and (12-14) wt%NaCl eq., respectively; (3) nobel gas isotopic composition analyses in combination with the microthermometric measurements of fluid inclusions suggest that the ore-forming fluids at the main metallogenetic stage were probably derived from mixing of basinal hot brines with the CaCl2-NaCl-H2O system and seawater with the NaCl-H2O system; (4) in the Early Cambrian, the basinal hot brines were trapped in the Caledonian basins, which were distributed along the southern margin of the Yangtze Craton, and where giant thick sediments were accumulated, and expelled and migrated laterally along the strata because of the pressure caused by overlying sediments. The basinal hot brines absorbed Ni, Mo, V, PGE from the surrounding rocks and were transformed into ore-bearing hydrothermal fluids with the CaCl2-NaCl-H2O system and medium-high salinities, then ascended along faults and mixed with seawater of the NaCl-H2O system, and finally PGE-polymetallic deposits or occurrences were formed in the black rock series.  相似文献   

3.
In this study, we discuss the first cosmogenic 10Be dating of river terraces located in the lower reaches of the Santo Domingo river (Southeastern flank of the Mérida Andes, Western Venezuela). The geomorphic observations and dating allowed the restoration of the temporal evolution of incision rate, which was analysed in terms of tectonic, climatic and geomorphic processes. The long-term incision rate in the area has been constantly around 1.1 mm/a over the last 70 ka. Taking into account the geologic and geomorphologic setting, this value can be converted into the Late Pleistocene uplift rate of the Southeastern flank of the Mérida Andes. Our results show that the process of terraces formation in the lower reaches of the Santo Domingo river occurred at a higher frequency (103–104 years) than a glacial/interglacial cycle (104–105 years). According to the global and local climate curve, these terraces were abandoned during warm to cold transitions.  相似文献   

4.
Quartz from sandstone‐type uranium deposits in the east part of the Ordos Basin contains abundant secondary fluid inclusions hosted along sealed fractures or in overgrowths. These inclusions consist mainly of water with NaCl, KCl, CO2 (135–913 ppm) and trace amounts of CO (0.22–16.8 ppm), CH4 (0.10–1.38 ppm) and [SO4]2? (0.35–111 ppm). Homogenization temperatures of the studied fluid inclusions range from 90 to 210°C, with salinities varying from 0.35 to 12.6 wt‐% (converted to NaCl wt%), implying multiple stages of thermal alteration. Although high U is associated with a high homogenization temperature in one case, overall U mineralization is not correlated with homogenization temperature nor with salinity. The H and O isotopic compositions of fluid inclusions show typical characteristics of formation water, with δ18O ranging from 9.8 to 12.3‰ and δD from 26.9 to ?48.6‰, indicating that these fluid inclusions are mixtures of magmatic and meteoric waters. The oxygen isotope ratios of carbonates in cement are systematically higher than those of the fluid inclusions. Limited fluid inclusion‐cement pairs show that the oxygen closely approaches equilibrium between water and aragonite at 150°C. Highly varied and overall negative δ13C in calcite from cement implies different degrees of biogenetic carbon involvement. Correlations between U in bulk rocks and trace components in fluid inclusions are lacking; however, high U contents are typically coupled with high [SO4]2?, implying pre‐enrichment of oxidized materials in the U mineralization layer. All these relationships can be plausibly interpreted to indicate that U (IV), [SO4]2? as well as Na, K were washed out from the overlying thick sandstone by oxidizing meteoric water, and then were reduced by reducing agents, such as CH4 and petroleum, likely from underlying coal and petroleum deposits, and possibly also in situ microbes at low temperatures.  相似文献   

5.
The Dabu Cu-Mo porphyry deposit is situated in the southern part of the Lhasa terrane within the post-collisional Gangdese porphyry copper belt (GPCB). It is one of several deposits that include the Qulong and Zhunuo porphyry deposits. The processes responsible for ore formation in the Dabu deposit can be divided into three stages of veining: stage I, quartz–K-feldspar (biotite) ± chalcopyrite ± pyrite, stage II, quartz–molybdenite ± pyrite ± chalcopyrite, and stage III, quartz–pyrite ± molybdenite. Three types of fluid inclusions (FIs) are present: liquid-rich two-phase (L-type), vapor-rich two-phase (V-type), and solid bearing multi-phase (S-type) inclusions. The homogenization temperatures for the FIs from stages I to III are in the ranges of 272–475 °C, 244–486 °C, and 299–399 °C, and their salinities vary from 2.1 to 49.1, 1.1 to 55.8, and 2.9 to 18.0 wt% NaCl equiv., respectively. The coexistence of S-type, V-type and L-type FIs in quartz of stage I and II with similar homogenization temperatures but contrasting salinities, indicate that fluid boiling is the major factor controlling metal precipitation in the Dabu deposit. The ore-forming fluids of this deposit are characterized by high temperature and high salinity, and they belong to a H2O–NaCl magmatic–hydrothermal system. The H–O–S–Pb isotopic compositions indicate that the ore metals and fluids came primarily from a magmatic source linked to Miocene intrusions characterized by high Sr/Y ratios, similar to other porphyry deposits in the GPCB. The fluids forming the Dabu deposit were rich in Na and Cl, derived from metamorphic dehydration of subducted oceanic slab through which NaCl-brine or seawater had percolated. The inheritance of ancient subduction-associated arc chemistry, without shallow level crustal assimilation and/or input of the meteoric water, was responsible for the generation of fertile magma, as well as CO2-poor and halite-bearing FIs associated with post-collisional porphyry deposits. The estimated mineralization depths of Qulong, Dabu and Zhunuo deposits are 1.6–4.3 km, 0.5–3.4 km and 0.2–3.0 km, respectively, displaying a gradual decrease from eastern to western Gangdese. Deep ore-forming processes accounted for the generation of giant-sized Qulong deposit, because the exsolution of aqueous fluids with large fraction of water and chlorine in deep or high pressure systems can extract more copper from melts than those formed in shallow systems. However, the formation of small-sized Dabu deposit can be explained by a single magmatic event without additional replenishment of S, metal, or thermal energy. In addition, the ore-forming conditions of porphyry Cu–Mo deposits in GPCB are comparable to those of porphyry Cu ± Au ± Mo deposits formed in oceanic subduction-related continental or island arcs, but differ from those of porphyry Mo deposit formed in the Dabie-Qinling collisional orogens. The depth of formation of the mineralization and features of primary magma source are two major controls on the metal types and ore-fluid compositions of these porphyry deposits.  相似文献   

6.
The aim of this study was to establish the seasonal variation of fungal propagules in homes of Mérida, Mexico, and to examine the relation between their concentrations in enclosed and open locations taking into account environmental parameters such as temperature, humidity and wind speed. Samples were taken inside and outside domestic environments during the most characteristic weather seasons in the region: dry season (sampled in May), rainy season (sampled in October), and cold fronts season (sampled in February). The geometric mean of the indoors and outdoors concentration of airborne fungal propagules was 1653 and 1432 CFU/m3 during the cold fronts period, 125 and 92 CFU/m3 during the dry period, and 1326 and 1145 CFU/m3 during the rainy period. The respirable fraction during the three periods sampled was always within a range of 50 to 100%. The composition of fungal genera exhibited a seasonal change, and 19 of these were identified. The main genera found during the three periods were Cladosporium spp., Penicillium spp., Aspergillus spp., Fusarium spp., andAcremonium spp. The fungal aerosol concentrations and diversity found in Mérida, Mexico, were similar to those from other reports of cities with comparable tropical humid climate. This study concludes that the concentration of airborne fungal propagules and its respirable fraction can be related to several meteorological factors, mainly to relative humidity.  相似文献   

7.
《Precambrian Research》2004,128(1-2):167-188
Thirty-nine oriented block samples of iron-formation were collected at 13 sites, including opposite limbs of major folds, from the 1.88-Ga Sokoman Formation (Knob Lake Group) in the Schefferville–Knob Lake area of the central New Québec Orogen, northern Québec. The samples assayed up to 80.24% Fe2O3T (54.08% Fe), implying Fe-enrichment of the iron-formation up to ore grade. Anisotropy of magnetic susceptibility measurements on 245 standard specimens indicate a well preserved bedding-parallel fabric in the iron-formation, suggesting minimal alteration of the magnetic mineralogy since deposition and/or a mimetic secondary magnetic mineralogy. The iron-formation has not been internally deformed since the magnetic mineralogy was established. Analyses by variable-field translation balance and X-ray diffraction showed that the predominant magnetic mineral is hematite but a small amount of magnetite also is present in most samples. Following low-temperature pre-treatment as appropriate, stepwise thermal and alternating-field demagnetization of 218 specimens revealed a low-temperature, post-folding component (maximum Tub≈400 °C, D=27.1°, I=20.1°, α95=10.9°, from seven sites; pole position of 40.6°S, 257.0°E), and components carried by magnetite (maximum Tub≈580 °C, D=35.8°, I=3.9°, α95=9.1°, from 10 sites; pole position of 29.6°S, 250.9°E) and hematite (maximum Tub≈680 °C, D=40.0°, I=1.6°, α95=18.6°, from seven sites; pole position of 26.8°S, 247.0°E). The components carried by magnetite and hematite are pre-, syn- and post-folding depending on the sampling site, indicating that the magnetization was acquired continuously with deformation in the New Québec Orogen at 1.84–1.83 Ga. No evidence was found for acquisition of magnetization during the Mesozoic, when many of the iron oxide orebodies in the Schefferville–Knob Lake area are thought to have formed. Our findings imply that an episode of Fe-enrichment of iron-formation in the Sokoman Formation involved the circulation of hydrothermal fluids related to late Paleoproterozoic orogenesis. Such orogenic circulation of fluids may have contributed to the development of hematitic orebodies in the central New Québec Orogen.  相似文献   

8.

The geology, stable isotopes and fluid inclusions from mineralized and unmineralized Middle Proterozoic sequences of the McArthur Basin, Northern Territory, have been studied at Eastern Creek, Bulman Mines, Beetle Springs, and other localities in the McArthur Basin where disseminated sulphides in unmineralized black shales were available from drill core. At Eastern Creek, galena and minor chalcopyrite (δ34S+3.6 to +11.2%o) occur in an evaporitic sedimentary sequence. Barite (δ34S+18.4 to +24.7%o) also occurs, and saline brines are trapped along healed fractures in the barite. Pressure‐corrected trapping temperatures in the barite (95–138°C), and in vein dolomite (158–168°C) agree with temperature estimates from the degree of maturation of the sedimentary organic matter. The δ18O and δ13CCo2 values of the mineralizing fluid were calculated to be +3.5 to +4.5%o and ‐2.7%o, respectively. Sedimentary dolomite has restricted δ13C and δ18O ranges, within the reported ranges for non‐mineralized Middle Proterozoic dolomite. An ore formation model developed for Eastern Creek, in which a basinal fluid at about 200°C carrying base metals and sulphide was released from underlying sediments during local fault movement, may be applicable to a number of other deposits. The mineralization deposited from these fluids occurs only below the pre‐Roper Group unconformity, implying that it may be older than the basal Roper Group. The δ34S values of iron sulphides in fine grained black dolostones (not associated with mineral deposits) from the McArthur Basin were assessed in the light of the values found for sulphides in modern organic‐rich sedimentary environments. The data so obtained suggest that the considerable concentration of iron sulphide in the mineral deposits formed, at least in part, from heated basinal waters and that disseminated iron sulphides remote from mineralization also formed from a similar source.  相似文献   

9.
《Journal of Structural Geology》2004,26(6-7):1215-1230
Existing structural analysis of drill-core and sulphide zonation were taken as evidence for a large-scale synform that dominates the geometry of the Cannington Ag–Pb–Zn deposit—a Broken Hill-type (BHT) deposit. Underground mapping in this study has found that northwesterly directed thrusting took place during peak-temperature D1, and that S1 gneissosity is continuous around an amphibolite mega-boudin. D2 sillimanite–biotite shear zones contain asymmetric folds previously interpreted to be parasitic folds, but in this study they are interpreted as due to easterly-directed extension of S1. S1 and S2 indicate that shear zones were continuous and not folded into the current deposit geometry. D2 is associated with garnet–pyroxene alteration that proved to be a favourable host for low-temperature sulphide precipitation. Retrograde deformation post-D2 controlled lode geometry. Such a concept of high-temperature shear zone formation can be applied to other BHT deposits such as the Broken Hill Main Lode and the Aggeneys–Gamsberg base metal deposits in South Africa. In the shear zone model, Cannington and other BHT deposits are situated within high-temperature thrust shear zones that formed in conjunction with regional large-scale folding.  相似文献   

10.
The amethyst-bearing geodes found in the flood basalts of the Arapey formation at Artigas (Uruguay) were formed as protogeodes by bubbles of CO2-rich basalt-derived fluids. The formation of the celadonite rim and the lining of the geodes by agate followed by quartz and amethyst were driven by the artesian water of the Guaraní aquifer percolating the basalts from below. The temperature of the amethyst formation is estimated from fluid inclusion data to be between 50° and 120°C. Oxygen stable isotope data suggest a crystallization temperature of calcite of about only 24°C. The actual wellhead temperature of the water produced from the Guaraní aquifer in the study area is around 29°C.  相似文献   

11.
Within a series of pot experiments with substrates sampled at heavily to moderately polluted sites of past metal mining activities, it was tried to influence the soil plant transfer of metals via addition of complexants, soil bacteria and perlite. Lettuce (lactuca sativa) was chosen as a universal accumulator plant. A wide range of concentrations in the samples ensures a rather general approach. The goal was to develop a strategy to enable plant growth at metal contaminated substrates for phytoremediation purposes. One contaminated mine tailing from Shiheung/Korea was treated with EDTA, NTA, citric acid, malic acid, NaCl, citrate+NaCl, as well as compost, to provoke effects from chemical treatment. This should yield low molecular metal complexes in the soil solution and provide a carbon source to natural soil life. Other samples from Shiheung, from Okdong mine tailings, Okdong farmland, as well as from three contaminated sites from a medieval mine tailing at Oberzeiring/Styria/Austrias were treated with Cd- adapted soil bacteria, perlite, and soil bacteria and perlite, to impose of changes in microbial life directly. Fresh mine tailings are low in microbial life and plant- available nitrogen, whereas in the contaminated Austrian medieval samples, conditions have had time to adapt for more than 600 years. In the test substrates, supply with nutrient nitrogen was low, supply with nutrient phosphorus was low to adequate, and supply with potassium and sulfate was adequate. Effects of various additives on the plant yield mainly depend on the initial nutrient status. After harvest, the soils were parted in root soils and bulk soils to recognize possible differences. The lettuce plants were parted in leaves and roots. The solids were characterized by convential methods and aqua regia digestion, as well as by a Tessier-type sequential leaching procedure. The plant samples were digested with HNO3/HClO4. Basically, sample solutions were simultaneously read for 23 elements in ICP-OES in appropriate dilutions. Various treatments result in concentration shifts in root soil, bulk soil, plant roots and plant leaves. Interpretation is not easy, but physiologically active elements or contaminants are usually more involved.  相似文献   

12.
The Seongsan district in the Jindo–Haenam basin of southwest Korea comprises Precambrian gneissic basement, overlain and intruded by Cretaceous volcanic (98–71 Ma) and plutonic (86–68 Ma) rocks, respectively. Haenam Formation volcanic and volcaniclastic rocks are the dominant rock type exposed in the district and are the main host to high-sulphidation (82–77 Ma) and low-sulphidation (79–73 Ma) epithermal deposits. The Eunsan and Moisan low-sulphidation epithermal deposits have similar vein mineralogy, zoned hydrothermal alteration mineral assemblages, structural framework and interpreted deformation events. These similarities suggest that they formed by district-scale hydrothermal fluid flow at about 77.5 Ma. At this time, ore fluid movement along subvertical WNW-trending faults was particularly focussed in dilatant fault bends, jogs, and at intersections with N-trending splays. At Eunsan, Au–Ag ore shoots coincide with these areas of structural complexity, whereas at Moisan, narrower ore zones correspond with several parallel, poorly connected veins. A secondary control on the location of ore zones is the intersection between mineralised WNW-striking structures and rocks of the Haenam Formation. The higher permeability and porosity of these rocks, in comparison with mudstones and siltstones of the underlying Uhangri Formation, resulted in the more efficient lateral migration of ore fluids away from subvertical faults and into wall rocks. The intersection between subvertical WNW-striking faults and the gently dipping Haenam Formation imparts a low angle SW plunge to both ore bodies. WNW-striking post-mineralisation faults displace ore zones up to 100 m and complicate the along-strike exploration and mining of WNW-trending ore zones. Future exploration strategies in the district involve the systematic testing of WNW-trending mineralised structures along strike from known deposits, with a particular emphasis on identifying structurally complex areas that experienced local dilation during the mineralisation event. Poorly exposed regions have historically been under-explored. However, based on the proposed exploration model for the Eunsan and Moisan deposits, these areas of poor outcrop are now considered important target areas for hidden ore bodies using ground-based geophysical exploration tools, such as seismic surveys.  相似文献   

13.
Bangpu deposit in Tibet is a large but poorly studied Mo-rich (~ 0.089 wt.%), and Cu-poor (~ 0.32 wt.%) porphyry deposit that formed in a post-collisional tectonic setting. The deposit is located in the Gangdese porphyry copper belt (GPCB), and formed at the same time (~ 15.32 Ma) as other deposits within the belt (12 ~ 18 Ma), although it is located further to the north and has a different ore assemblage (Mo–Pb–Zn–Cu) compared to other porphyry deposits (Cu–Mo) in this belt. Two distinct mineralization events have been identified in the Bangpu deposit which are porphyry Mo–(Cu) and skarn Pb–Zn mineralization. Porphyry Mo–(Cu) mineralization in the deposit is generally associated with a mid-Miocene porphyritic monzogranite rock, whereas skarn Pb–Zn mineralization is hosted by lower Permian limestone–clastic sequences. Coprecipitated pyrite and sphalerite from the Bangpu skarn yield a Rb–Sr isochron age of 13.9 ± 0.9 Ma. In addition, the account of garnet decreases and the account of both calcite and other carbonate minerals increases with distance from the porphyritic monzogranite, suggesting that the two distinct phases of mineralization in this deposit are part of the same metallogenic event.Four main magmatic units are associated with the Bangpu deposit, namely a Paleogene biotite monzogranite, and Miocene porphyritic monzogranite, diabase, and fine-grained diorite units. These units have zircon U–Pb ages of 62.24 ± 0.32, 14.63 ± 0.25, 14.46 ± 0.38, and 13.24 ± 0.04 Ma, respectively. Zircons from porphyritic monzogranite yield εHf(t) values of 2.2–8.7, with an average of 5.4, whereas the associated diabase has a similar εHf(t) value averaging at 4.7. The geochemistry of the Miocene intrusions at Bangpu suggests that they were derived from different sources. The porphyritic monzogranite has relatively higher heavy rare earth element (HREE) concentrations than do other ore-bearing porphyries in the GPCB and plots closer to the amphibolite lithofacies field in Y–Zr/Sm and Y–Sm/Yb diagrams. The Bangpu diabase contains high contents of MgO (> 7.92 wt.%), FeOt (> 8.03 wt.%) but low K2O (< 0.22 wt.%) contents and with little fractionation of the rare earth elements (REEs), yielding shallow slopes on chondrite-normalized variation diagrams. These data indicate that the mineralized porphyritic monzogranite was generated by partial melting of a thickened ancient lower crust with some mantle components, whereas the diabase intrusion was directly derived from melting of upwelling asthenospheric mantle. An ancient lower crustal source for ore-forming porphyritic monzogranite explains why the Bangpu deposit is Mo-rich and Cu-poor rather than the Cu–Mo association in other porphyry deposits in the GPCB because Mo is dominantly from the ancient crust.The Bangpu deposit has alteration zonation, ranging from an inner zone of biotite alteration through silicified and phyllic alteration zones to an outer propylitic alteration zone, similar to typical porphyry deposits. Some distinct differences are also present, for example, K-feldspar alteration at Bangpu is so dispersed that a distinct zone of K-feldspar alteration has not been identified. Hypogene mineralization at Bangpu is characterized by the early-stage precipitation of chalcopyrite during biotite alteration and the late-stage deposition of molybdenite during silicification. Fluid inclusion microthermometry indicates a change in ore-forming fluids from high-temperature (320 °C–550 °C) and high-salinity (17 wt.%–67.2 wt.%) fluids to low-temperature (213 °C–450 °C) and low-salinity (7.3 wt.%–11.6 wt.%) fluids. The deposit has lower δDV-SMOW (− 107.1‰ to − 185.8‰) values compared with other porphyry deposits in the GPCB, suggesting that the Bangpu deposit formed in a shallower setting and is associated with a more open system than is the case for other deposits in this belt. Sulfides at Bangpu yield δ34SV-CDT values of − 2.3‰ to 0.3‰, indicative of mantle-derived S implying that coeval mantle-derived mafic magma (e.g., diabase) simultaneously supplied S and Cu to the porphyry system at Bangpu. In comparison, the Pb isotopic compositions (206Pb/204Pb = 18.79–19.28, 207Pb/204Pb = 15.64–15.93, 208Pb/204Pb = 39.16–40.45) of sulfides show that other metals (e.g., Mo, Pb, Zn) were likely derived mainly from an ancient crustal source. Therefore, the formation of the Bangpu deposit can be explained by a two-stage model involving (1) the partial melting of an ancient lower crust triggered by invasion of asthenospheric mantle-derived mafic melts that provide heat and metal Cu and (2) the formation of the Bangpu porphyry Mo–Cu system, formed by magmatic differentiation in the overriding crust in a post-collisional setting.  相似文献   

14.
The Humber Arm Allochthon was structurally emplaced onto the Laurentian margin in western Newfoundland during Taconian (Ordovician) and Acadian (Devonian) deformation. On Port au Port Peninsula, disrupted allochthonous rocks previously mapped as mélange and scaly shale include three mappable, variably disrupted, stratigraphic units; in addition, mixed rocks constitute mélange with much smaller area than previously mapped. At outcrop scale, a qualitative assessment of disruption distinguishes broken, but coherent stratigraphy from a more disrupted and mixed mélange unit. Within coherent regions, three generations of folds are probably related to Taconian, Acadian and Carboniferous deformation events. More disrupted regions show an average of ~24% blocks to 76% matrix with block sizes 0.5–158 cm. A new sampling technique allowed recovery of oriented mélange samples for thin-section. Multiple orientations of extensional fractures suggest approximately coaxial extension. Abundant carbonate and less common bitumen-filled veins suggest that high fluid pressure played a role in the emplacement of the Allochthon. High fluid pressure was probably also responsible for dewatering structures, sandstone dykes and partially brecciated carbonate beds. Map relationships, outcrop and thin-section scale observations lead to a reinterpreted structural history for western Newfoundland in which an early, Taconian, West Bay Thrust Sheet was rapidly emplaced onto the Laurentian margin. During emplacement, debris flows initially contributed igneous blocks to the allochthon, but the majority of fragmentation took place in an environment of horizontal tectonic extension promoted by high fluid-pressure that encouraged brittle fracture. The West Bay thrust sheet was subsequently overridden by the out-of-sequence Lourdes Thrust. Parts of the allochthon were probably re-imbricated in later events, but because of previous disruption, an organized imbricated thrust belt was not developed. At the tip of an advancing thrust wedge, a clear distinction between tectonic and surficial processes of mélange formation may not be possible.  相似文献   

15.
The Homestake gold deposit, located in the Black Hills, South Dakota, USA, is one of the largest known hydrothermal gold deposits globally, with total mining production exceeding 40 Moz Au. Rhenium–osmium geochronology of ore-associated arsenopyrite and pyrrhotite was performed in an effort to delineate the timing of gold mineralization in relation to known tectonothermal events in the northern Black Hills. Arsenopyrite yields a rhenium–osmium (Re–Os) age of 1,736 ± 8 Ma (mean squared weighted deviation = 1.6), consistent with existing age constraints for gold mineralization, whereas Re–Os pyrrhotite data are highly scattered and do not yield a meaningful mineralization age. This is taken to indicate that the Re–Os arsenopyrite chronometer is robust to at least 400°C, whereas the Re–Os pyrrhotite chronometer is likely disturbed by temperatures of 300–350°C. The Re–Os arsenopyrite age and initial Os ratio (0.28 ± 0.15) are interpreted to indicate that gold was introduced at ca. 1,730 Ma, coincident with the onset of exhumation of crustal blocks and, possibly, the earliest intrusive phases of Harney Peak granite magmatism. New in situ U–Pb monazite analyses from an aplite dike in the east-central Black Hills indicate that granite magmatism was a protracted event, persisting until at least ca. 1,690 Ma.  相似文献   

16.
High-alumina fenites in the Mont Saint-Hilaire alkaline complex, Québec, Canada, form bodies at the contact of peralkaline nepheline syenite. Fenites are subdivided into four types: corundum-spessartine-biotite-feldspar, muscovite-corundum-hercynite-biotite-feldspar, carbonated muscovite-biotite-hercynite-feldspar, and spessartine-hercynite-feldspar. Accessory minerals of the ilmenite-pyrophanite series, columbites, zircon, thorite, pyrrhotite, Fe, Mn, Mg, Ca, Ba, and REE carbonates, uedaite-(Ce), etc. are identified. Three stages are suggested in the formation of these rocks. In mineralogy and geochemistry, the Mont Saint-Hilaire high-alumina fenites are similar to Al-rich fenites replacing xenoliths in the Khibiny alkaline complex, Russia. In both cases, fenites are related to peralkaline rocks and replace high-alumina protoliths: granite at Mont Saint-Hilaire and metapelites in the Khibiny Mountains. These fenites are regarded as a specific type of fenites with rock-forming Mg-depleted hercynite.  相似文献   

17.
Decoding the earliest orogenic stages in the Andes, the largest subduction orogen on Earth is fundamental to understanding changes in climate, drainage organization, and biodiversity in South America. Furthermore, it is crucial to unraveling the driving mechanism behind the initiation of orogeny. To track the earliest stages of Andean growth, we studied the Aysén/Río Mayo basin (ARB) in the North Patagonian Andes. The small degree of Cenozoic tectonic overprinting in this part of the Andes has allowed outstanding preservation of the deformational and sedimentary record of the earliest Andean deformation. In this study, we employ a multidisciplinary approach involving structural geology, sedimentology, geochronology, and provenance studies from the Early Cretaceous Apeleg Formation (~130–122 Ma) in the ARB and geochemical analysis of intrusive Cretaceous igneous rocks. Particularly, the recognition of syncontractional growth strata at several localities indicate a syntectonic origin for this unit and provide additional structural evidence of Early Cretaceous contraction in the North Patagonian Andes. Thus, the Apeleg Formation is interpreted as deposited during a contractional basin stage. Geochemical data from Aptian-Albian intrusive igneous rocks indicate that initial contraction emplaced over thinned crust likely inherited from the Jurassic extension in the ARB. This stage is then compared with a new synthesis of the earliest Cretaceous contraction along the Andes. This analysis reveals that the ARB likely holds the oldest post-Gondwanic synorogenic unit along the orogen and more significantly, that Andean birth was a diachronous process which propagated northward since the late Early Cretaceous. The latter findings have major implications for the evolution of the Andes and shed light into the driving mechanism behind initial orogeny.  相似文献   

18.
High-pressure (HP) rocks at Tehuitzingo, on the western margin of the HP belt within the Paleozoic Acatlán Complex (southern México), occur in a klippe that was thrust over low-grade clastic rocks. The youngest detrital zircon cluster in the low-grade rocks yielded U-Pb ages of 481 ± 16 Ma, which provide an older limit for deposition. The HP rocks are composed of metabasites, serpentinite, granite (482 ± 3 Ma) and mica schist (youngest concordant detrital zircon: 433 ± 3 Ma). The schist and granite are inferred to be high-grade equivalents of lower Paleozoic, low-grade rocks exposed elsewhere in the Acatlán Complex, from which they are inferred to have been removed by subduction erosion. Mineral analyses indicate that the subducted rocks underwent HP metamorphism and polyphase deformation at depths of ~ 50 km (~ 16 kbar and 750 °C: eclogite facies). Subsequent retrogression passed through epidote-amphibolite to greenschist facies, which was synchronous with W-vergent thrusting over the low-grade clastic rocks. Deposition of the low-grade rocks and thrusting are bracketed between either 481–329 Ma (Ordovician-Mississippian), and was followed by F3 synformal folding. Cooling through ca. 385 °C is indicated by 329 ± 1 and 316–317 ± 2 Ma, 40Ar/39Ar muscovite plateau ages in HP rocks, which are 5–17 my younger than those of the adjacent Piaxtla eclogites suggesting younger exhumation. The petrology, P-T conditions and ages of the Piaxtla Suite is consistent with an extrusion channel within the Acatlán Complex along the active western margin of Pangea during the Carboniferous. Detrital zircon populations in the low-grade psammite (ca. 481, 520–650, 720, 750, 815, 890, 1050 and 2750 Ma) and the HP schist (ca. 457–480, 534, 908, 954–1150, 1265, 1845 and 2035 Ma) indicate derivation from the Ordovician Acatlán granitoids, Neoproterozoic Brasiliano orogens, 900–750 Ma Goiás arc (Amazonia), 1–1.3 Ma Oaxaquia, and more ancient sources in Oaxaquia/Amazonia.  相似文献   

19.
The newly discovered Handagai skarn Fe–Cu deposit is located in the northern Great Xing'an Range of NE China and is hosted by the Ordovician Luohe Formation. The orebodies that form the deposit are generally concordant with the bedding within these sediments, and are spatially related to areas of skarn development. The Fe–Cu mineralization in this area records four stages of paragenesis, namely prograde skarn, retrograde skarn, quartz–sulfide, and quartz–carbonate stages. The Handagai deposit is a calcic skarn that is dominated by an andradite–diopside–epidote–actinolite assemblage. The mineralogy and geochemistry of the skarn indicate that it formed from a hydrothermal fluid that altered the carbonate units in this area to a garnet (And42–95Grs4–53) and pyroxene (Di71–78Hd22–29Jo0–2) bearing skarn. The epidote within the skarn has an epidote end-member composition, with the chlorite in the skarn dominantly Fe-rich, indicating that these minerals formed in an Fe-rich environment. The petrographic, microthermometric, and Raman spectroscopic analysis of fluid inclusions within garnet, epidote, actinolite, quartz, and calcite precipitated at different stages of formation of the Handagai deposit indicate that mineralization-related fluid inclusions are either liquid-rich two-phase H2O–NaCl (type I), gas-rich two-phase H2O–NaCl (type II), three-phase (liquid + vapor + solid) H2O–NaCl (type III), or CO2–H2O–NaCl inclusions (type IV). The early stages of mineralization are associated with all four types of inclusion, whereas the later stages of mineralization are only associated with type I and II inclusions. Inclusion homogenization temperatures vary between the four stages of mineralization (370 °C–530 °C and > 600 °C, 210 °C–290 °C, 190 °C–270 °C, and 150 °C–230 °C, from early to late, respectively), with salinities also varying between the earlier and later stages of mineralization (11–18 and > 45, 7–15, 6–9, and 3–7 wt.% NaCl equivalent (equiv.), respectively). The majority of the inclusions within the Handagai deposit have homogenization temperatures and salinities of 200 °C–350 °C and 4–14 wt.% NaCl equiv., respectively, indicating that this is a medium–high temperature and medium–low salinity type deposit. The fluid inclusions were trapped at pressures of 11 to 72 MPa, corresponding to depths of 0.4 to 2.9 km. The geology, mineralogy, geochemistry, and fluid inclusions microthermometry indicate that the Handagai deposit formed as a result of contact infiltration metasomatism, with the deposition of ore minerals resulting from a combination of factors that include boiling as a result of reduced pressure, cooling, and fluid mixing.  相似文献   

20.
Seismic risk scenarios are obtained for an informal settlement in Mérida (Venezuela), which is representative of an important number of urban areas in earthquake-prone regions of the developing world. The vulnerability indices of the buildings range between 0.64 and 0.80 on a scale of 0 to 1. In an intensity IX earthquake scenario, more than 32% of the buildings would suffer damage of grade 4 (extensive) or greater. A structural analysis of the buildings in the study area shows that they are unsafe for gravity loads, and that the seismic demands exceed the strength of the constructions. Simple and comparatively inexpensive measures can improve the seismic performance of these buildings; the vulnerability can be reduced by about 51%. In an intensity IX earthquake scenario, the expected economic loss before retrofitting the buildings is US5.36 million, with 275 fatalities; once retrofit has been carried out, the resulting figures are US5.36 million, with 275 fatalities; once retrofit has been carried out, the resulting figures are US0.39 million and 10 fatalities. Retrofit would cost US1.04 million, whereas reconstruction would cost US1.04 million, whereas reconstruction would cost US19 million.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号