首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
On the basis of more abundant data a relation logPV/logR for cepheid variables (Fernie, 1965) is constructed. A linear relation between logP V and logR for classical cepheids is found, which perhaps has a break at R=10R . On the logR/logP diagram thes-cepheids (Efremov, 1968) show a distinct sequence. Alls-cepheids present a relative variation of the radii R/R0.075. The existence of non-s-cepheids with R/R0.075 raises a point about the evolutionary place of these stars (see Efremov, 1968). One could suppose that cepheids with logP>1.1 pulsate in the first overtone.  相似文献   

2.
Spherically symmetric, steady-state, optically thick accretion onto a nonrotating black hole with the mass of is studied. The gas accreting onto the black hole is assumed to be a fully ionized hydrogen plasma withn 0=108 cm–3 andT 0=104 K far from the black hole, and a new approximate expression for the Eddington factor is introduced. The luminosity is estimated to beL=1.875×1033 erg s–1, which primarily arises from the optical surface (1) ofT104 K. The accretion flow is characterized by 1 and (v/c)10. In the optically thin region, the flow remains isothermal, and the increase of temperature occurs at 1. The radiative equilibrium is strictly realized at (v/c)10.  相似文献   

3.
4.
, ii (2000–3000 Å) i . , i . i (. 2). i i i i + ( 7–10). ii (. 13). ii i i (, 2400 Å) (. 14 15). i i i , iu , i (. 1). i i ii i i . .  相似文献   

5.
The process of re-escalation of the scalar field as R 3, the energy density as R 3, and the pressurep aspR 3P, lends itself to obtain a reduced equation that represents, for a wide variety of equations of state, the cosmological evolution of an homogeneous and isotropic, flat Universe. A particular solution to this equation is presented.  相似文献   

6.
The general relativistic Lense—Thirring effect can be measured by inspecting a suitable combination of the orbital residuals of the nodes of LAGEOS and LAGEOS II and the perigee of LAGEOS II. The solid and ocean Earth tides affect the recovery of the parameter by means of which the gravitomagnetic signal is accounted for in the combined residuals. Thus an extensive analysis of the perturbations induced on these orbital elements by the solid and ocean Earth tides is carried out. It involves the l=2 terms for the solid tides and the l=2,3,4 terms for the ocean tides. The perigee of LAGEOS II turns out to be very sensitive to the l=3 part of the ocean tidal spectrum, contrary to the nodes of LAGEOS and LAGEOS II. The uncertainty in the solid tidal perturbations, mainly due to the Love number k 2, ranges from 0.4% to 1.5%, while the ocean tides are uncertain at 5–15% level. The obtained results are used in order to check in a preliminary way which tidal constituents the Lense-Thirring shift is sensitive to. In particular it is tested if the semisecular 18.6-year zonal tide really does not affect the combined residuals. It turns out that, if modeled at the level of accuracy worked out in the paper, the l=2,4 m=0 and also, to a lesser extent, the l=3, m=0 tidal perturbations cancel out.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

7.
8.
9.
We emphasize the sharp distinctions between different one-body gravitational trajectories made by the ratio of time averagesR(t)E kin/E pot.R is calculated as a function of the eccentricity (e) and of the energy (E). Whent, independently ofe andE, R1/2 for closed orbits (this clearly illustrates the fulfillment of the virial theorem in classical mechanics); whereasR1, at any time, for open orbits.  相似文献   

10.
An analysis of the effects of Hall current on hydromagnetic free-convective flow through a porous medium bounded by a vertical plate is theoretically investigated when a strong magnetic field is imposed in a direction which is perpendicular to the free stream and makes an angle to the vertical direction. The influence of Hall currents on the flow is studied for various values of .Nomenclature c p specific heat at constant pressure - e electrical charge - E Eckert number - E electrical field intensity - g acceleration due to gravity - G Grashof number - H 0 applied magnetic field - H magnetic field intensity - (j x , j y , j z ) components of current densityJ - J current density - K permeability of porous medium - M magnetic parameter - m Hall parameter - n e electron number density - P Prandtl number - q velocity vector - (T, T w , T ) temperature - t time - (u, v, w) components of the velocity vectorq - U 0 uniform velocity - v 0 suction velocity - (x, y, z) Cartesian coordinates Greek Symbols angle - coefficient of volume expansion - e cyclotron frequency - frequency - dimensionless temperature - thermal conductivity - coefficient of viscosity - magnetic permeability - kinematic viscosity - mass density of fluid - e charge density - electrical conductivity - e electron collision time  相似文献   

11.
The results of the observations to search gamma-ray sources with the energy greater than 2×1012 eV, which were made in Crimean Astrophysical Observatory during the years 1969–73 are presented. A technique of the detection of the EAS Cerenkov flashes was used.The quality of the data obtained is analysed. The criteria for the selection of the data free from meteorological variations are considered.It was shown that two objects, namely, Cyg X-3 and Cas -1, may be the sources of high-energy gamma quanta. It is probable that the object with the coordinates =05h15m, =+1° is the source of gamma-rays as well. An unidentified object Cas -1 is variable: gamma-ray flux was observed twice — in Sepember–October 1971 and in December 1972. It is possible that the flux from Cyg X-3 has a period of 4.8 hr.
I I , I I , - >2.1012 . I . I , I I, I ., - -1 Cyg -3- -I . , =0515 ·=+1° -.I -1 I: I J I- - 1971 1972 . Cyg -3, , - T=4.8 .
  相似文献   

12.
13.
Litvinenko  Yuri E. 《Solar physics》1998,180(1-2):393-396
Dimensional analysis is used to derive the distribution of solar flare energies,p() = A-3/2, in accordance with recent observational and numerical results. Several other scalings, notably fl 2 , where fl is the flare duration, are obtained as well.  相似文献   

14.
Linear limb-darkening coefficientsu required in the analysis of eclipsing binary curves, are tabulated for a wide range of effective temperature (50 000° to 4000°), wavelength (0.2 2.2 ), and gravitiesg (2.0logg5.0). The computation is based on the comprehensive range of model atmospheres of Carbon and Gingerich (1969).The results are compared with the theoretical values of Hosokawa (1957), Kopal (1959) and Grygaret al. (1972), and examined in relation to empirically determined values ofu from analyses of eclipsing binary light curves. An improved agreement between theory and observation for the calculated limb-darkening coefficients of the present work is noted.  相似文献   

15.
A comparison between theGeneral Catalogue of Cool Carbon Stars (CCS) and theAFGL Catalogue has been performed.Eighty-five stars have been found in common between the two lists. Eighty-four stars which were present in Baumert's comparison between CCS and the 2 Sky Survey have no counterpart in the AFGL. Four new tentative identifications are given. The analysis of the two colours diagrams K-[4.2 ] vs. I-K and I-[4.2 ] vs. [4.2 ]-[11 ] led to the conclusion that all the infrared emission from the sources seems to come from a single circumstellar shell.  相似文献   

16.
We use the Cerenkov line emission mechanism to give a new explanation of the observed intensity ratios, particularly the L/H ratio, of the emission lines of quasars. We give equations that restrict the choice of the parameter values. The parameters are the characteristic energy of the relativistic electrons, the number density of neutral hydrogen and its relative level populations. With reasonable choice of the parmaeters, we can obtain calculated L/H, H/H, P/H ratios in agreement with observed values. Our estimate for the gas density in the broad line region of quasars is 1015 cm–3, very different from previous estimates. Unlike previous theories, such a high density causes no difficulties with the Cerenkov line emission.  相似文献   

17.
A static relativistic theory of the stability of the equilibrium of an isentropic spherically-symmetric star is deduced from the properties of a functionu which is solution of a second-order differential equation, and which is related to the model by means of the formulau = m(v, c)/c, wherem is the mass-energy inside the coordinate volumev and c is the central mass-energy density.Work done in the Laboratorio Astrofisico di Frascati, Roma.  相似文献   

18.
In this paper we introduce a new parameter, the shear angle of vector magnetic fields, , to describe the non-potentiality of magnetic fields in active regions, which is defined as the angle between the observed vector magnetic field and its corresponding current-free field. In the case of highly inclined field configurations, this angle is approximately equal to the angular shear, , defined by Hagyardet al. (1984). The angular shear, , can be considered as the projection of the shear angle, , on the photosphere. For the active region studied, the shear angle, , seems to have a better and neater correspondence with flare activity than does . The shear angle, , gives a clearer explanation of the non-potentiality of magnetic fields. It is a better measure of the deviation of the observed magnetic field from a potential field, and is directly related to the magnetic free energy stored in non-potential fields.  相似文献   

19.
Altrock  Richard C. 《Solar physics》2003,213(1):23-37
Synoptic photoelectric observations of the coronal Fexiv and Fex emission lines at 530.3 nm and 637.4 nm, respectively, are analyzed to study the rotational behavior of the solar corona as a function of latitude, height, time and temperature between 1976 (1983 for Fex) and 2001. An earlier similar analysis of the Fexiv data at 1.15 R over only one 11-year solar activity cycle (Sime, Fisher, and Altrock, 1989, Astrophys. J. 336, 454) found suggestions of solar-cycle variations in the differential (latitude-dependent) rotation. These results are tested over the longer epoch now available. In addition, the new Fexiv 1.15 R results are compared with those at 1.25 R and with results from the Fex line. I find that for long-term averages, both ions show a weakly-differential rotation period that may peak near 80° latitude and then decrease to the poles. However, this high-latitude peak may be due to sensing low-latitude streamers at higher latitudes. There is an indication that the Fexiv rotation period may increase with height between 40° and 70° latitude. There is also some indication that Fex may be rotating slower than Fexiv in the mid-latitude range. This could indicate that structures with lower temperatures rotate at a slower rate. As found in the earlier study, there is very good evidence for solar-cycle-related variation in the rotation of Fexiv. At latitudes up to about 60°, the rotation varies from essentially rigid (latitude-independent) near solar minimum to differential in the rising phase of the cycle at both 1.15 R and 1.25 R . At latitudes above 60°, the rotation at 1.15 R appears to be nearly rigid in the rising phase and strongly differential near solar minimum, almost exactly out of phase with the low-latitude variation.  相似文献   

20.
A comparison is made between the stability criteria of Hill and that of Laplace to determine the stability of outer planetary orbits encircling binary stars. The restricted, analytically determined results of Hill's method by Szebehely and co-workers and the general, numerically integrated results of Laplace's method by Graziani and Black are compared for varying values of the mass parameter =m 2/(m 1+m 2). For 00.15, the closest orbit (lower limit of radius) an outer planet in a binary system can have and still remain stable is determined by Hill's stability criterion. For >0.15, the critical radius is determined by Laplace's stability criterion. It appears that the Graziani-Black stability criterion describes the critical orbit within a few percent for all values of .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号