首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A general set of 3-D dynamic field equations for a cable segment is derived based on the classical Euler-Kirchhoff theory of an elastica. The model includes flexural stiffness to remove the potential singularity when cable tension vanishes and can be reduced to the equations for a perfectly flexible cable. A hybrid model and a solution scheme by direct integration are then proposed to solve the oceanic cable/body system with a localized low-tension region. Numerical examples demonstrate the capability and validity of the formulation and the numerical algorithm.  相似文献   

2.
具有链—缆—链结构的复合系泊链缆因其相对于全钢链质量和成本上的优势而在深水系泊中得以广泛应用。基于细长杆理论采用有限差分法建立了可以考虑链—缆—链结构的复合系泊缆数值模型,将其应用于不同工况下全钢链和复合链缆运动的数值模拟中,并开展了验证。首先,将单根钢链顶张力数值模拟结果与不同工况下的模型试验结果进行了对比,验证了数值预报程序应用于全钢链的准确性。然后,对于复合系泊链缆开展了静刚度和动刚度迭代数值模拟,并将模拟结果同已发表文章中的算例结果进行比较,验证了该数值模型在复合链缆模拟上的准确性。发现对于单根钢锚链的验证,激励半径越大,激励周期越小,一个周期内顶张力幅值及其极差越大,钢链运动就越剧烈。对于链—缆—链式复合系泊链缆的验证,发现静刚度迭代中数值模拟结果与算例结果差异较小;对于动刚度迭代,除个别大幅慢漂工况外,两者有较高的吻合;且激励周期越小,激励半径越大,复合系泊链缆顶张力越大,弹性模量越小,运动越剧烈。对于聚酯缆刚度的敏感性分析,发现改变动刚度经验公式参数的情况下,杨氏模量的静刚度迭代和动刚度迭代结果误差分别最大达到了60.81%和68.21%,因此合成纤维材料特性对复合系泊链...  相似文献   

3.
Mooring forces and motion responses of pontoon-type floating breakwaters   总被引:3,自引:0,他引:3  
The experimental and theoretical investigations on the behaviour of pontoon-type floating breakwaters are presented. A two-dimensional finite element model is adopted to study the behaviour of pontoon-type floating breakwaters in beam waves. The stiffness coefficients of the slack mooring lines are idealized as the linear stiffness coefficients, which can be derived from the basic catenary equations of the cable. The theoretical model is supported by an experimental programme conducted in a wave flume. The motion responses and mooring forces are measured for three different mooring configurations, and the results are reported and discussed in detail in this paper. The wave attenuation characteristics are presented for the configurations studied.  相似文献   

4.
Dynamic Analysis of Towed and Variable Length Cable Systems   总被引:2,自引:3,他引:2  
Towed cable systems are frequently used in marine measurements where the length of the towed cable varies during launch and recovery. In this paper a novel method for modeling variable length cable systems is introduced based on the finite segment formulation. The variable length of the towed cable is described by changing the length of the segment near the towing point and by increasing or decreasing the number of the discrete segments of the cable. In this way, the elastic effects of the cable can be easily handled since geometry and material properties of each segment are kept constant. Experimental results show that the dynamic behavior of the towed cable is consistent between the model and the physical cable. Results show that the model provides numerical efficiency and simulation accuracy for the variable length towed system.  相似文献   

5.
This paper proposes a geometrically exact formulation for three-dimensional static and dynamic analyses of the umbilical cable in a deep-sea remotely operated vehicle(ROV) system. The presented formulation takes account of the geometric nonlinearities of large displacement, effects of axial load and bending stiffness for modeling of slack cables. The resulting nonlinear second-order governing equations are discretized spatially by the finite element method and solved temporally by the generalized-a implicit time integration algorithm, which is adapted to the case of varying coefficient matrices. The ability to consider three-dimensional union action of ocean current and ship heave motion upon the umbilical cable is the key feature of this analysis. The presented formulation is firstly validated, and then three numerical examples for the umbilical cable in a deep-sea ROV system are demonstrated and discussed, including the steady configurations only under the action of depth-dependent ocean current, the dynamic responses in the case of the only ship heave motion, and in the case of the combined action of the ship heave motion and ocean current.  相似文献   

6.
This paper proposes a geometrically exact formulation for three-dimensional static and dynamic analyses of the umbilical cable in a deep-sea remotely operated vehicle (ROV) system. The presented formulation takes account of the geometric nonlinearities of large displacement, effects of axial load and bending stiffness for modeling of slack cables. The resulting nonlinear second-order governing equations are discretized spatially by the finite element method and solved temporally by the generalized- implicit time integration algorithm, which is adapted to the case of varying coefficient matrices. The ability to consider three-dimensional union action of ocean current and ship heave motion upon the umbilical cable is the key feature of this analysis. The presented formulation is firstly validated, and then three numerical examples for the umbilical cable in a deep-sea ROV system are demonstrated and discussed, including the steady configurations only under the action of depth-dependent ocean current, the dynamic responses in the case of the only ship heave motion, and in the case of the combined action of the ship heave motion and ocean current.  相似文献   

7.
A point-absorber-type Wave-Energy Converter (WEC) consisting of a floating vertical inner cylinder and an annular outer cylinder that slides along the inner one is considered. The two cylinders heave differently under wave excitation, and wave energy can be harnessed from the relative heave motion between the two cylinders using a Permanent Magnet Linear Generator (PMLG) as the Power Take-Off unit. A mooring cable is attached to the bottom of the inner cylinder. This paper aims to examine the effect of the stiffness of the mooring cable on the performance of the coaxial-cylinder WEC system. The two limiting cases of no mooring cable (freely floating inner and outer cylinders) and an infinitely stiff mooring cable (fixed inner cylinder) were also considered. To perform the analysis, hydrodynamic and interference coefficients of the two heaving cylinders were computed semi-analytically using the method of matched eigenfunction expansions. Experimentally determined viscous corrections on damping were also included in the model in order to have more realistic predictions. The performance of the system in terms of motion responses and capture width were predicted and discussed for both regular and irregular waves. The results of the analysis indicate that both the freely floating design and the design with rigidly moored inner cylinder are viable. The two limiting cases show similar optimal performances, albeit with very different optimal generator damping. However, an ill-chosen mooring-cable stiffness may cause the inner and the outer cylinders to have the same resonance frequency, eliminating the relative heave motion and leading to almost no energy extraction. This situation needs to be avoided when designing the mooring system for a coaxial-cylinder WEC.  相似文献   

8.
Time-domain numerical simulation of ocean cable structures   总被引:2,自引:0,他引:2  
This paper describes the numerical features of WHOI Cable, a computer program for analyzing the statics and dynamics of oceanographic cable structures. The governing equations include the effects of geometric and material nonlinearities, bending stiffness for seamless modeling of slack cables, and a model for the interaction of cable segments with the sea floor. The program uses the generalized-α time integration algorithm, adaptive time stepping, and adaptive spatial gridding to produce accurate, stable solutions for dynamic problems. The nonlinear solver uses adaptive relaxation to improve robustness for both static and dynamic problems. The program solves surface and subsurface single-point mooring problems, multi-leg and branched array systems, and towing and drifting problems. User specified forcing can include waves, currents, wind, and ship speed.  相似文献   

9.
A numerical model is developed to investigate the behavior of a pair of flexible, floating breakwaters consisting of complaint, beam-like structures anchored to the sea bed. Each structure is kept under tension by a small buoyancy chamber at the tip, additional stiffness in each case is provided by mooring lines attached to the buoyancy chamber. The fluid motion is idealized as linearized, two-dimensional potential flow and the equation of motion of each breakwater is taken to be that of a one-dimensional beam of uniform flexural rigidity and mass per unit length subjected to a constant axial force. The boundary integral equation method is applied to the fluid domain. Modifications are made to the basic formulation to account for the zero thickness of the idealized structures, and the dynamic behavior of the breakwaters is described through an appropriate Green's function. Numerical results are presented which illustrate the effects of the various wave and structural parameters on the efficiency of the two-breakwater systems as a barrier to wave action. It is found that by adjusting the spacing between the breakwaters acceptable wave reflection characteristics may be obtained even with relatively flexible structures.  相似文献   

10.
A numerical approach for predicting motion and tension of extensible marine cables during laying operations in a rough sea is presented here. The solution methodology consists of dividing the cable into straight elements, which must satisfy an equilibrium equation and compatibility relations. The system of nonlinear differential equations is solved by the Runge–Kutta method, taking the effect of regular and/or irregular waves into account explicitly.

Illustrative applications of the method are given for a typical cable laying ship. The results are presented as rms values of the cable dynamic tension and corresponding dynamic factor for two different types of cable and several values of cable stiffness. The effect of axial deformation on the maximum tension at the shipboard pulley location is highlighted.  相似文献   


11.
Results are presented which relate to the elastic stability of towers that are stayed at their tops by clusters of guys. Allowance is made for the self-weight of the tower, the effect that sag has on the stiffness of the cluster of guys is included, and limiting trends in response are explored and explained. A straightforward rearrangement of the parameters permits the inclusion of an external point load at the tower top and, in this form, the work is applicable to the guyed towers planned for the support of production platforms offshore.  相似文献   

12.
A hydrodynamic model of a two-part underwater manoeuvrable towed system is proposed in which a depressor is equipped with active horizontal and vertical control surfaces, and a towed vehicle is attached to the lower end of a primary cable. In such a system the towed vehicle can be manoeuvred in both vertical and horizontal planes when it is towed at a certain velocity and the coupling effect of excitations at the upper end of the primary cable and disturbances of control manipulations to the towed vehicle can be reduced. In the model the hydrodynamic behavior of an underwater vehicle is described by the six-degrees-of-freedom equations of motion for submarine simulations. The added masses of an underwater vehicle are obtained from the three-dimensional potential theory. The control surface forces of the vehicle are determined by the wing theory. The results indicate that with relative simple control measures a two-part underwater manoeuvrable towed system enables the towed vehicle to travel in a wide range with a stable attitude. The method in this model gives an effective numerical approach for determining hydrodynamic characteristics of an underwater vehicle especially when little or no experimental data are available or when costs prohibit doing experiments for determining these data.  相似文献   

13.
论文研究铰接系泊塔-油轮系统波流联合作用下的动力响应。考虑铰接塔-油轮单点系泊系统系缆刚度的非线性,将尼龙系缆处理为分段非线性刚度模型,采用M orison公式计算铰接塔的波浪载荷,采用线性波浪绕射理论计算波浪对油轮的作用,建立了两自由度耦合的分段非线性运动微分方程。计算了高177 m的铰接系泊塔和93 500 t油轮构成的FPSO系统的耦合动力响应,并讨论了系统运动对于系缆张力的影响。  相似文献   

14.
对于海洋缆索系统,论文针对传统有限段法的不足,提出改进的缆索有限段法,缆索离散为若干弹性缆段组成的多柔体系统,根据缆索的特点选择适当的参考系和广义速率,引入有限元法中的形函数描述段内各点位移,根据Kane方程推导改进缆索有限段模型的运动方程。基于改进的缆索有限段法,提出了模拟拖曳缆索释放一回收过程的变拓扑结构模型,即用可变长度缆段长度的变化和缆段数量的改变建模缆索的释放和回收过程。文中对一海洋拖曳系统进行了动力学仿真,与海洋试验结果比较验证了模型的正确性。  相似文献   

15.
The anchorage system for mid-ocean loading or production consists of an articulated tower for mooring the tanker. Flexible risers are also essential components of the anchorage system. The present paper provides a state-of-the-art review on articulated storage systems and flexible risers, giving theoretical background for the development of computer software for the static analysis of flexible risers.In the state-of-the-art review for flexible risers, various analysis techniques for elastic lines and flexible risers under self-weight, current and wave forces are presented. The dynamic response of the flexible riser, including vortex-induced oscillations, is also outlined.The literature concerning the articulated tower and tanker is relatively scarce. Available works related only to dynamic responses of articulated towers. The combined response of tower and tanker is only studied by Chakrabarti and Cotter [(1978), Analysis of a tower-tanker system. In Proceedings of the 10th Offshore Technology Conference, OTC 3202, pp. 1301–1310] in a limited sense. The review of these works is summarised relevant to this paper.In the end, the static analysis of the flexible riser under its self-weight and current is presented using a finite difference approach. The problem essentially involves geometrical non-linearity, which is tackled with the help of an iterative solution based on modified Newton-Raphson technique. The theoretical formulation presented is being used to develop the computer software for the static analysis of the flexible risers.  相似文献   

16.
This paper presents a model formulation that can be used for analyzing the three-dimensional vibration behaviours of an inclined extensible marine cable. The virtual work-energy functional, which involves strain energy due to axial stretching of the cable and virtual work done by external hydrostatic forces is formulated. The coupled equations of motion in the Cartesian coordinates of global systems are obtained by taking into account the difference between Euler’s equations and equilibrium equations. The method of Galerkin finite element is used to obtain the mass and stiffness matrices which are transformed into the local coordinate systems. Then the eigenvalue problem is solved to determine its natural frequencies and corresponding mode shapes. The model formulation developed herein is conveniently applied for the cases of specified top tension. The numerical investigations are carried out to demonstrate the validity of the model and to explore in details the influence of various parameters on the behaviours of marine cables. Results for the frequency avoidance phenomenon, maximum dynamic tension and coupled transverse mode shapes are presented and discussed.  相似文献   

17.
针对1 000 m水深作业的新型圆筒型浮式生产储卸油系统(FPSO),选择多点系泊FPSO和穿梭油轮串靠外输方案,分析串靠方案在中国南海的可行性。FPSO和穿梭油轮作业时两者之间相互影响的研究较为重要,通过ANSYS-AQWA建立水动力耦合分析模型,基于多浮体水动力学方法进行时域耦合仿真模拟。在FPSO作业海况下,分析了串靠外输时系泊锚链及系泊大缆的张力特性和两浮体的运动响应,对大缆的长度和刚度参数变化进行了分析。结果表明:串靠外输方案满足新型圆筒型FPSO的作业环境。随着系泊大缆长度增加,其张力最值逐渐减小,FPSO和穿梭油轮的最小间距逐渐增大。两浮体最小距离稳定在83 m左右。随着系泊大缆刚度增加,其张力最值增大,相比于大缆长度,大缆刚度对耦合系统的影响较弱。  相似文献   

18.
A two-degree freedom model for an ALT-tanker system is established corresponding to the pitch of the ALT and the surge of the tanker.Tension in the mooring cable between the ALT and the tanker is represented by an unsymmetrical,piecewise-nonlinear function.Wave load on the tower is evaluated by use of the Morison equation.The first order wave load acting on the tanker is calculated by the linear diffraction theory based on the 2-D Helmholtz equation,and the near field approach of Pinkster is used to evaluate the second order drift force.The dynamic equation of motion is established based on the principle of D'lembert.Dynamic response and cable tension of a mooring system composed of an 88.4 m ALT and a 100000 t grade tanker are calculated.The influence of wave frequency,wave excitation amplitude,wind and current force on ALT-tanker motion and cable tension is discussed.  相似文献   

19.
A numerical model was used to analyze the motion response and mooring tension of a submerged fish reef system. The system included a net attached to a rigid structure suspended up from the bottom with a single, high tension mooring by fixed flotation. The analysis was performed by using a Morison equation type finite element model configured with truss elements. Input forcing parameters into the model consisted of both regular and irregular waves, with and without a steady current. Heave, surge and pitch dynamic calculations of the reef structure were made. Tension response results of the attached mooring line were also computed. Results were analyzed in both the time and frequency domain in which appropriate, linear transfer functions were calculated. The influence of the current was more evident in the tension and heave motion response data. This is most likely the result of the large buoyancy characteristics of the reef structure and the length of the mooring cable. Maximum mooring component tension was found to be 13.9 kN and occurred when the reef was subjected to irregular waves with a co-linear current of 1.0 m/s velocity. The results also showed that the system had little damping (in heave) with damped natural periods of 2.8 s. This combination of system characteristics promotes a possible resonating situation in typical open sea conditions with similar wave periods.  相似文献   

20.
拖曳线列阵声纳中隔振模块研究   总被引:6,自引:0,他引:6  
介绍了作为隔振模块研究依据的拖缆抖动特性的试验研究结果及隔振模块理论分析方法 ,给出了隔振模块有关参数变化对隔振量影响的理论值 ,提供了隔振模块隔振量试验方法 ,某隔振模块隔振量的测量结果以及装与不装隔振模块情况下 ,声阵的拖曳噪声声压谱级的测量结果  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号