首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
青藏铁路建设中高寒草原植被恢复与再造技术的研究   总被引:4,自引:0,他引:4  
魏建方 《冰川冻土》2003,25(Z1):195-198
对青藏铁路高寒草原植被恢复与再造的试验研究工作进行了综述分析, 通过对青藏铁路建设中沱沱河试验段工程取土场的现场调查和植被恢复试验研究, 结果表明: 工程活动后取土场的土壤条件变化很大, 质量明显下降, 为做好青藏线建设过程中的植被恢复与重建, 应切实作好表土回填工作. 从现场试验结果来看, 披碱草、早熟禾等均能较好地适应高寒草原的取土场环境, 植物在生长季节能正常生长. 在植被恢复的时间选择上应尽量利用青藏高原雨热同季的特点, 可提高植被恢复的成功率.  相似文献   

2.
梭罗草在青藏铁路取土场植被恢复中的应用研究   总被引:9,自引:3,他引:6  
根据青藏铁路工程建设中的生态环境保护以及植被恢复建设的迫切需要,在青藏铁路沱沱河试验段高寒草原区取土场开展植被恢复的试验工作,主要研究和分析了梭罗草(Kengyilia thoroldiana(Oliv.)J.L.Yang,Yen et Baum)在青藏铁路取土场植被恢复中的应用,为青藏铁路工程建设中的取土场植被恢复提供科学依据.结果表明:青藏铁路建设过程中形成的取土场属次生裸地,其有机质含量为3.31 g·kg-1,pH为8.84.梭罗草为高原干旱地区乡土多年生草本植物,具有耐寒旱、抗风沙以及耐盐碱等特性.在取土场植物的出苗率接近50%,越冬率可达75%以上.恢复第2年植物群落盖度为41%,群落地上生物量和地下生物量分别达到(128.16±41.85)g·m-2和(266.50±95.69)g·m-2.可见,无论是种子萌发和植物越冬,还是植物个体生长发育以及人工植物群落特征,梭罗草表现出对青藏铁路沿线高寒干旱地区气候和土壤环境具有较好的适应性.只要采用高原乡土植物种类和采取相应的植被恢复技术措施,青藏铁路多年冻土区取土场次生裸地的植被快速恢复是可行的.  相似文献   

3.
通过现场工程试验研究,进一步论证了水泥粘结基材替代化学粘结基材的岩质边坡绿化技术的可行性;同时提出了岩质边坡工程绿化应按"循序渐进"来进行植被恢复的理念.  相似文献   

4.
寒区线性工程沿线冻土区的植被恢复   总被引:4,自引:1,他引:3  
寒区油气管道、公路、铁路等线性工程占地、建设和开挖对沿线寒区生态环境是一个切割、破碎的过程, 对自然植被和下伏冻土造成了很大的扰动. 管道泄露引发的油污还可引起植被的退化和死亡. 植被覆盖层破坏后改变了原有的地气界面之间的水、热交换条件和力学性质, 反过来又可加速引发下伏冻土和线性工程地基的退化. 基于保护线性工程地基及下伏冻土的目的, 同时顺应环境保护的要求, 目前就寒区线性工程的植被恢复问题已经有许多探索和实践. 当前, 寒区植被恢复注重最低限度的人为介入干预下的自然恢复, 根据线性工程沿线土壤、湿度、营养条件、物种分布和丰度, 视具体情况选择物种, 确定建植方法. 阿拉斯加管道和青藏铁路植被恢复上的经验和方法, 可为拟建的冻土区中俄输油管道项目沿线的植被恢复问题提供科学的参考和借鉴.  相似文献   

5.
徐德伟  单威  孙皓  张晓冬 《地下水》2014,(5):109-111
黄河源区是我国最大的自然保护区之一,但近年来存在一系列严重的生态环境退化现象。来自地下水的基流量的变化正是植被生长环境变化的直接反映,因此开展基流量变化研究对于高寒干旱区的生态环境变化规律认识与环境恢复都具有重要的科学价值。黄河源区地下水位变化对植被生长具有直接的影响,研究结果表明:1956-1998年来自地下水的基流量总体上呈现枯—丰—枯的变化规律,表明了源区地下水位呈现低—高—低的总体变化规律;源区的基流量与地表植被的生长之间具有良好的相关性,汛期降水之后,地下水对植被生长的影响逐渐增大。  相似文献   

6.
内蒙古扎鲁特旗土地利用方式及强度对草原群落的影响   总被引:19,自引:0,他引:19  
内蒙古扎鲁特旗位于北方农牧交错带区域,近期对其草原植被的调查分析表明:人类不合理的土地利用方式及过大的土地利用强度对该地草原植被造成严重影响,草原面积缩小、植被退化严重,草场质量下降。人口激增引发的土地利用方式由牧向农的转化(垦草为粮)以及草地利用强度的加大(超载过牧)是造成该区草原植被退化的主要原因。改变土地利用方式、围栏禁牧是实现退化草原植被恢复演替的有效措施。  相似文献   

7.
山地多年冻土的异质性影响其植被类型的分布特征,且对有机碳的分布也具有重要影响。通过采集黑河上游多年冻土区三种典型植被类型(高寒沼泽草甸、高寒草甸、高寒草原)8个活动层的土壤样品,测定其土壤有机碳密度及其理化性质。结果表明:高寒沼泽草甸土壤有机碳密度最高(49.50 kg·m-2),高寒草甸次之(11.22 kg·m-2),高寒草原最低(7.30 kg·m-2)。土壤有机碳密度的剖面垂直分布特征具有差异性,高寒沼泽草甸土壤有机碳密度随深度变化不明显,高寒草原和高寒草甸土壤有机碳密度随深度逐渐减小,存在显著的表层聚集性。有机碳密度与土壤含水率和细粒含量呈显著正相关,与pH值呈显著负相关关系。一般线性模型结果表明土壤含水率、pH值和土壤颗粒组成解释了96.39%的有机碳密度变异,其中土壤含水率贡献了81.53%,pH值和土壤粒度分别贡献了9.33%和4.75%。研究表明多年冻土区不同植被类型土壤有机碳密度分布特征具有明显差异,山地多年冻土土壤含水率是控制有机碳密度分布特征的重要影响因素。  相似文献   

8.
为研究人工恢复草本植物对青藏铁路沿线退化高寒草原土体抗剪强度增强作用,以青藏铁路沱沱河段人工草地建植区为研究区,通过对区内生长期为1 a的3种组合种植草本植物开展单根拉伸和根-土复合体直剪试验,评价了3种草本组合单根、根-土复合体力学强度特性。研究结果表明:组合类型I即扁穗冰草(Agropyron cristatum)+碱茅(Puccinellia distans)+冷地早熟禾(Poa crymophila),其3种草本平均根径(0.06~0.34 mm)、平均抗拉力(0.58~3.09 N)、平均抗拉强度(36.87~221.70 MPa)相对最大;3种草本组合其单根抗拉力与根径呈幂函数正相关关系,而抗拉强度与根径呈幂函数负相关关系;直剪试验结果表明,3种草本组合其根-土复合体黏聚力均随深度增加而降低,其中组合类型I其根-土复合体黏聚力相对最大为32.62 kPa,且较组合类型II、组合类型III根-土复合体黏聚力的增加幅度分别为15.3 %、57.7 %,表现出草本组合类型I具有相对更为显著的增强土体抗剪强度作用。研究结果可为青藏铁路沿线高寒草地退化、水土流失、浅层滑坡等灾害防治提供理论依据,同时对采用种植植被开展沿线生态恢复具有实际指导意义。  相似文献   

9.
植被退化对高寒土壤水文特征的影响   总被引:11,自引:6,他引:5  
在黄河源冻土严重退化地区,采用选择典型区域和样地进行实验和模型模拟的方法,对不同植被退化特征条件下高寒土壤的水分特征曲线、土壤饱和导水率、土壤入渗及土壤水分进行研究.结果表明:Gradner和Visser提出的经验方程θ=AS-B对该地区土壤水分特征曲线有良好的模拟性;不同植被盖度条件下土壤的饱和导水率和土壤入渗有明显的区别,表层0~10cm范围内,黑土滩的饱和导水率和入渗强度最强,30cm以下土层中土壤饱和导水率、入渗强度以及土壤含水量几乎不受植被的影响.随植被退化表层土壤含水量出现明显降低,退化越严重,水分流失越多,最多时能达到38.6%,植被根系最发达的10~20cm范围的土壤含水量流失对高寒草甸土壤环境影响最大,水分流失导致退化草甸恢复难度较大.通过比较研究,在黄河源地区考斯加科夫(Kostiakov)入渗公式f(t)=at-b更适用于该研究区域高寒草甸土壤水分入渗过程的研究.  相似文献   

10.
青藏高原多年冻土区活动层土壤入渗特征及机理分析   总被引:1,自引:0,他引:1  
青藏高原多年冻土区活动层土壤的入渗规律研究是高寒区土壤水循环过程研究的主要内容。以青藏高原多年冻土区高寒沼泽草甸、高寒草甸和高寒草原的活动层土壤为研究对象,裸地为参照对象,分析了不同植被类型土壤的入渗规律及其主要影响因子。结果表明:不同植被类型土壤的入渗能力排序为高寒草原>裸地>高寒草甸>高寒沼泽草甸。高寒草甸土壤中致密的根系对土壤水分的运移具有强烈的阻滞作用,降低了土壤的入渗性能,而高寒草原土壤层根系较为稀疏,对土壤入渗的阻滞作用较弱,土壤水分向深层的渗漏速率较大。通过对比4种土壤入渗模型的模拟结果,发现Horton模型更适用于描述高寒草地土壤水分的入渗过程。另外,不同入渗模型对裸地入渗过程的模拟均优于其他植被类型草地,说明植被类型及植物的生长状况影响土壤入渗过程的模拟效果。全球变暖条件下,多年冻土区土壤入渗研究将为青藏高原多年冻土区陆地水文过程模型提供参数支持,为未来水资源变化研究提供基础数据。  相似文献   

11.
基于BP神经网络的青藏高原土壤养分评价   总被引:5,自引:1,他引:4  
杨文静  王一博  刘鑫  孙哲 《冰川冻土》2019,41(1):215-226
土壤养分在养分循环和土壤-植物关系中起着重要作用,在高海拔生态系统中,由于缺乏系统的实地观测,土壤养分在高山草原中仍然知之甚少。为了了解青藏高原多年冻土区高寒草地土壤养分的基本情况以及土壤养分的等级划分,利用青藏高原腹地西大滩至安多地区采集的154个土壤样品数据,基于BP神经网络模型建立具有3层网络,10个中间层节点的土壤养分评价模型。在MATLAB软件中进行BP神经网络的训练和验证后,对青藏高原多年冻土区高寒草地土壤养分进行综合评价。结果表明:2009年青藏高原高寒草地的土壤养分综合评价等级为4级,属于较低水平。综合评价结果与基于主成分分析方法的土壤质量指数(SQI)基本一致,说明BP神经网络模型对青藏高原土壤养分的评价结果是合理的。对评价结果与海拔、植被盖度和植被类型的关系分析表明,海拔越高或植被盖度越高,土壤养分的评价等级越高;不同植被类型的评价等级表现出高寒沼泽草甸(2级)>高寒草甸(4级)>高寒草原(5级)的趋势。BP网络作为一种简单又准确的识别方法,不仅可以评估土壤养分等级,还可以比较不同地区的土壤养分高低状况,希望为青藏高原的土地资源管理与保护提供基本的科学依据。  相似文献   

12.
青藏高原多年冻土地区公路边坡植被生长的观测与研究   总被引:1,自引:0,他引:1  
青藏高原多年冻土地区, 具有海拔高、气温低等特点. 2000年和2001年分别在青藏公路两道河和头二九附近的公路边坡, 开展了植被恢复试验. 采用垂穗披碱草、老芒麦等植物种类混播的方式, 喷播法种植, 播种当年就可以建立良好的植被. 8 a的跟踪观测结果表明, 植被一旦建立, 能够正常越冬、返青. 在牛羊啃食、践踏的情况下, 植被能保持良好的生长状态, 地下生物量积累不断增多. 假设植被能一直保持良好生长状态, 人工植被生物量要恢复到自然群落水平, 在两道河至少需要几十年, 在头二九约需十几年. 但由于野生植物种类入侵速度较慢, 人工植被要真正恢复到自然植被状态则需要更加漫长的时间.  相似文献   

13.
宋怡  金龙  陈建兵 《冰川冻土》2014,36(4):1017-1025
利用2000-2012年的MODIS 增强植被指数(Enhanced Vegetation Index,EVI)数据,结合研究区3个气象台站长期的气象数据,分析了青藏公路沿线植被变化总体趋势,以及不同整修措施对周边植被覆盖带来的不同影响.通过实地考察,选取了16个受工程活动影响的典型路边样方,3个铁路边样方和8个远离公路铁路的自然样方,对比路边和自然样方,分析植被的自我恢复能力以及4个主要影响因子.结果表明:青藏公路沿线植被覆盖变化是在整个气候变化的背景下,叠加了工程活动的影响.植被的恢复能力与其所在路段的地形、植被覆盖度、气候条件、以及工程活动的强度均有关系,抑制植被生长的因素越多,植被恢复越慢.  相似文献   

14.
多年冻土区冻土生态系统对气候变化极其敏感,利用在长江黄河源区实测的高寒草甸和高寒草原植被生物量数据以及青藏高原降水、气温以及地温等的空间分布规律,建立了长江黄河源区高寒草甸与高寒草原等主要高寒生态系统地上与地下现存生物量对气候要素变化的多元回归模型.预测分析表明:如果未来10 a气温增加0.44℃.(10a)^-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量分别递减2.7%和2.4%,如果同时降水量小幅度增加8 mm.(10a)^-1,则地上生物量可基本保持现状水平略有减少;在气温增加2.2℃.(10a)^-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量年分别平均减少达6.8%和4.6%,如果同期降水量增加12 mm.(10a)^-1,高寒草甸地上生物量可基本维持现状水平略有增加,而高寒草原地上生物量则递增5.2%.高寒草原植被地上生物量对气候增暖的响应幅度显著小于高寒草甸,而对降水增加的响应程度大于高寒草甸.明确高寒草地植被生物量随气候变化的演变趋势,对于青藏高原生态环境保护和研究气候变化对青藏高原生态系统碳循环和河源区水循环的影响具有重要意义.  相似文献   

15.
地表温度直接影响高寒山区冰川、积雪消融,冻土分布、消融和产汇流过程,蒸散发以及植被分布和演替等过程是寒区地表陆面过程、水文过程以及生态—水文过程研究的重要参数。系统总结了高寒山区地表温度的主要影响因素以及不同获取方法。研究结果认为海拔、地形和植被覆盖是影响高寒山区地表温度的主要因素。地面实测、遥感反演和模式估算是目前获取地表温度的主要手段,但在高寒山区三者均具有一定局限性:地面实测局限于实测点,难以反应区域坡面的地表温度;遥感反演受限于物理机制、地面验证和时空分辨率等,难以满足高寒山区地表生态—水文过程研究的高精度需求;模式估算试验点尺度地表温度精度较高,但在区域尺度上精度有所下降。未来的工作应加强高寒山区地表温度观测并提高模式精度,构建和发展普适性的山区任意地形和不同植被覆盖条件下的高精度地表温度计算公式,满足山区相关研究的需求。  相似文献   

16.
东昆仑山区更新世植被与环境变化的孢粉学证据   总被引:4,自引:0,他引:4  
昆仑山垭口羌塘组和三岔河组的孢粉分析表明,羌塘高原的干旱环境在早更新世时已经确立,孢粉反映的古气候以干湿变化为主,冷暖变化不明显,可能与青藏高原隆起有关,在2~1.8 Ma BP,羌塘高原的古植被是以麻黄、藜科、蒿等为主的荒漠或草原荒漠植被,1.8~1.3 Ma BP气候变得比较温和稍湿,古植被演变成草原植被,在1~0.68 Ma BP,本区在构造抬升和冰期气候控制之下植被极不发育,0.68~0.65 Ma BP可能为一小间冰段,古植被为蒿、藜科、麻黄和众多草本植物组成的草原植被,羌塘组和三岔河组缺失650~350 ka BP的沉积,可能仍为荒漠植被,倒数第二次间冰期时期,在三岔河组的沟谷里可能生长着云、冷杉组成的暗针叶林、随的,古气温明显变干,针叶林消失,60 ka BP之后,气候进一步变干,古植被又演变成荒漠植被。  相似文献   

17.
青藏高原多年冻土区典型高寒草地生物量对气候变化的响应   总被引:15,自引:3,他引:12  
多年冻土区冻土生态系统对气候变化极其敏感,利用在长江黄河源区实测的高寒草甸和高寒草原植被生物量数据以及青藏高原降水、气温以及地温等的空间分布规律,建立了长江黄河源区高寒草甸与高寒草原等主要高寒生态系统地上与地下现存生物量对气候要素变化的多元回归模型.预测分析表明:如果未来10 a气温增加0.44℃·(10a)-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量分别递减2.7%和2.4%,如果同时降水量小幅度增加8 mm·(10a)-1,则地上生物量可基本保持现状水平略有减少;在气温增加2.2℃·(10a)-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量年分别平均减少达6.8%和4.6%,如果同期降水量增加12 mm·(10a)-1,高寒草甸地上生物量可基本维持现状水平略有增加,而高寒草原地上生物量则递增5.2%.高寒草原植被地上生物量对气候增暖的响应幅度显著小于高寒草甸,而对降水增加的响应程度大于高寒草甸.明确高寒草地植被生物量随气候变化的演变趋势,对于青藏高原生态环境保护和研究气候变化对青藏高原生态系统碳循环和河源区水循环的影响具有重要意义.  相似文献   

18.
青藏高原南部第四纪花粉植物群及古气候   总被引:3,自引:0,他引:3  
本文选择了青藏高原南部具有代表性的6个花粉剖面,应用主成分分析处理这些剖面的花粉数据,重建了这些地区的古植被和古气候。研究表明,在青藏高原南部,早、中更新世的植被类型主要是松林、云杉林、铁杉林、桦林、桤木林和栎林,晚更新世和全新世的植被类型主要是高山灌丛草原、小半灌木草原、杂类草草甸、亚高山灌丛和落叶阔叶灌丛;在早、中更新世气候条件良好,有森林生长,晚更新世以后气候明显恶化,基本无森林生长。  相似文献   

19.
论青藏铁路修筑中的冻土环境保护问题   总被引:9,自引:0,他引:9  
本文通过研究已建青藏公路修筑过程中寒区冻土环境和生态环境的破坏特征,分析总结了寒区环境破坏对公路工程的影响。青藏公路工程修建活动极大地改变了冻土环境,使得多年冻土退化,上限加深,诱发了一系列冻胀、融沉、热融滑塌等冻融灾害,使得生态环境原本就很脆弱的寒区环境更加恶化,如植被退化、荒漠化等,同时,冻土环境的破坏也使得工程环境恶化,直接影响青藏公路正常交通运输。因此,在即将进行的青藏铁路修筑工程中,必须深入研究其对冻土环境的影响,对冻土环境问题和环境保护应予以足够的重视。  相似文献   

20.
研究季节性放牧对植被耗水量、水分利用效率的影响,是探索如何提高高寒草甸水源涵养能力的重要内容之一。以青藏高原三江源高寒草甸季节性放牧样地与自然放牧样地为研究对象,分析了季节性放牧和自然放牧条件下高寒草甸植被耗水量、水分盈亏量、水分利用效率(WUE)的动态变化及其与环境因素的关系。结果表明:在植被生长季(5-9月),季节性放牧样地和自然放牧样地植被耗水量在5月开始增加, 7月达最高,分别为160.94 mm和145.96 mm,季节性放牧样地植被总耗水量(395.52 mm)比自然放牧样地(348.14 mm)高13.61%。生长季平均来看,季节性放牧样地和自然放牧样地5-9月水分正盈余,分别为13.58 mm和70.96 mm,但在植物生长旺季(8月)略有亏缺。季节性放牧样地和自然放牧样地植被耗水量均与降水量呈弱的正相关关系。季节性放牧样地植被地上净初级生产量(ANPP)、地下净初级生产量(BNPP)和总的净初级生产量(NPP)比自然放牧样地分别高32.54 g·m-2、5.96 g·m-2、38.50 g·m-2,季节性放牧样地ANPP的水分利用效率(WUE)比自然放牧样地高53.85%,而BNPP、NPP的WUE比自然放牧样地分别低13.06%和9.97%。这表明,季节性放牧可提高植被生产量和耗水量,但对高寒草甸WUE的影响因放牧方式不同导致地上、地下生物量分配格局不同而有所差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号