首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quasitrapped (Hmin < 100 km) protons with energies E > 440 keV have been detected during magnetic storms by the IK-5 satellite in a narrow zone with a center at L = 3.0−3.2; this zone is well separated from the region of Isotropie fluxes at L > 4. Data for five moderate storms have been analysed in detail. It was found that the quasitrapped proton peaks appear during the recovery phase of magnetic storms and that the scattering of protons toward low mirror points takes place in all local time sectors. The relation between the observed precipitation of the E > 440 keV protons and the intraplasmaspheric precipitation of low-energy protons has been discussed in the light of the theory of generation of ion-cyclotron waves by the ring current and the theory of parasitic interaction of these waves with the radiation belt protons. A series of arguments indicates that the phenomenon under study is connected with the magnetopheric process which generates the SAR arcs.  相似文献   

2.
We discuss the parameter D in the Goertz et al. (1979) magnetic field model as it relates to the scale height of the current sheet.  相似文献   

3.
The problem of pitch angle scattering in field configurations similar to those found in the geomagnetic tail has been studied previously by Tsyganenko (1982). Tsyganenko used a scattering matrix to map pitch angle distributions through the current sheet. By using numerical solutions of the resulting integral equations he showed for weakly non-adiabatic particles the Stationary Distribution Function (SDF) was isotropic. Using his procedure the SDF was found to develop anisotropies with increasing non-adiabaticity. The work presented here shows analytically that for any degree of scattering the SDF must be isotropic for a general planar field reversal. Computations of particle trajectories have been used to verify some aspects of the analytic work.  相似文献   

4.
A substorm after a prolonged quiet period may differ from the typical one, as reported recently by Pellinen et al. (1982). The present knowledge on imperfect coupling between the magnetosphere and the ionosphere can explain qualitatively such a difference in terms of the role played by the initial conductivity of the ionosphere on substorm onset.  相似文献   

5.
The laboratory values of the Herzberg continuum absorption cross-section of oxygen at room temperature from Cheung et al. (1986, Planet. Space Sci. 34, 1007), Jenouvrier et al. (1986a, Planet. Space Sci. 34, 253) and Jenouvrier et al. (1986, J. quant. Spectrosc. radiat. Transfer 36, 349) have been compared and re-analyzed. There is no discrepancy between the absolute values of these two sets of independent measurements. These values have been combined together in a linear least-squares fit to obtain improved values of the Herzberg continuum cross-section of oxygen at room temperature throughout the wavelength region 205–240 nm. Agreement with in situ and other laboratory measurements is discussed.  相似文献   

6.
Voyager 1, exiting the earth's magnetosphere along the dawn meridian at a velocity of ~11 km/sec, measured strong tailward flows of ions (E30keV) immediately outside the magnetopause. These flows are found to originate sunward of the dawn meridian and to exhibit significant variabilities on the time scale of 400 msec. The variations are not related to changes in the magnetosheath magnetic fields and are likely produced up-stream by the leakage of magnetosphere protons or by a magnetopause particle energization process. The intensities of the dawn meridian ion flows are greater in the magnetosheath than in the magnetosphere. The flows appear to penetrate inside the dawn magnetosphere to a depth 0.1 R>E, less than an ion gyroradius.  相似文献   

7.
A system of multi-fluid MHD-equations is used to compare adiabatic and non-adiabatic transport of the energetic particles in the magnetospheric plasma sheet. A “slow-flow” approximation is considered to study large-scale transport of the anisotropic plasma consisting of energetic electrons and protons. Non-adiabatic transport of the energetic plasma is caused by scattering of the particles in the presence of both wave turbulence and arbitrary time-varying electric fields penetrating from the solar wind into the magnetosphere. The plasma components are devided into particle populations defined by their given initial effective values of the magnetic moment per particle. The spatial scales are also given to estimate the non-uniformity of the geomagnetic field along the chosen mean path of a particle. The latters are used to integrate approximately the system of MHD-equations along each of these paths. The behaviour of the magnetic moment mentioned above and of the parameter which characterizes the pitch-angle distribution of the particles are studied self-consistently in dependence on the intensity of non-adiabatic scattering of the particles. It is shown that, in the inner magnetosphere, this scattering influences the particles in the same manner as pitch-angle diffusion does. It reduces the pitch-angle anisotropy in the plasa. The state of the plasma may be unstable in the current sheet of the magnetotail. If the initial state of the plasma does not correspond to the equilibrium one, then, in this case, scattering influences the particles so as to remove the plasma further from the equilibrium state. The coefficient of the particle diffusion across the geomagnetic field lines is evaluated. This is done by employing the Langevin approach to take the stochastic electric forces acting on the energetic particles in the turbulent plasma into account. The behaviour of the energy density of electrostatic fluctuations in the magnetosphere is estimated.  相似文献   

8.
The behaviour of energetic electrons in the distant magnetosphere near the midnight meridian during polar substorms has been studied for the period March 5th–April 4th, 1965, using data from two end window Geiger counters flown on the IMP 2 satellite (apogee 15.8 Earth radii) and magnetic records from a chain of auroral zone stations around the world at magnetic latitudes equivalent to L = 7.4 ± 2.0.

When the satellite was in the distant radiation zone or in the plasma sheet which extends down the Earth's magnetic tail, sudden decreases in the horizontal magnetic field component at ground stations near the midnight meridian (negative magnetic bays) were followed by sudden increases in 40 keV electron fluxes (electron islands) at the satellite. When the satellite was at high latitudes in the magnetic tail ‘bays’ often were not followed by ‘islands.’ When the satellite was near the centre of the plasma sheet, energetic electron fluxes were observed even during magnetically quiet periods. The time delay between the sharp onset of magnetic bays in the auroral zone and the corresponding rapid increase in energetic electron intensity at the satellite, typically some tens of minutes, was least when the satellite was close to the Earth and increased with its increasing radial distance from the Earth. The delay was also a function of distance of the satellite from the centre of the plasma sheet, and of the magnitude of the intensity increase (smaller delays for larger intensity increases). We deduce that the disturbance producing the magnetic bays and associated particle acceleration originates fairly deep in the magnetosphere and propagates outward to higher L values, and down the plasma sheet in the Earth's magnetic tail on the dark side of the Earth. It is unlikely that the accelerated electrons are themselves drifting away from the Earth, because the apparent velocity with which the islands move away from the Earth decreases with increasing distance from the Earth.

It is suggested that the polar substorm and the associated particle acceleration are part of an impulsive ejection mechanism of magnetospheric energy into the ionosphere, rather than an impulsive injection mechanism of solar wind energy into the magnetosphere.  相似文献   


9.
Atmospheric densities derived from the spin decay of Explorer 6 are used to study the corpuscular heating effect at low and middle latitudes near the time of sunspot maximum. The dependence of atmospheric temperature on ap is found to be quite similar to the recently revised curve of Jacchia et al., which applies to later times in the sunspot cycle, but also at low and middle latitudes. Both curves are very different from those found by polar satellites in orbits of low eccentricity. Averaging ap over half a day instead of delaying it by a quarter day improves the fit of the models to the data.  相似文献   

10.
It has been proposed that propagation of cosmic-rays at extreme-energy may be sensitive to Lorentz-violating metric fluctuations (“foam”). We investigate the changes in interaction thresholds for cosmic-rays and gamma-rays interacting on the CMB and IR backgrounds, for a class of stochastic models of space–time foam. The strength of the foam is characterized by the factor (E/MP)a, where a is a phenomenological suppression parameter. We find that there exists a critical value of a (dependent on the particular reaction: acrit3 for cosmic-rays, 1 for gamma-rays), below which the threshold energy can only be lowered, and above which the threshold energy may be raised, but at most by a factor of two. Thus, it does not appear possible in this class of models to extend cosmic-ray spectra significantly beyond their classical absorption energies. However, the lower thresholds resulting from foam may have signatures in the cosmic-ray spectrum. In the context of this foam model, we find that cosmic-ray energies cannot exceed the fundamental Planck scale, and so set a lower bound of 108 TeV for the scale of gravity. We also find that suppression of p→pπ0 and γ→ee+ “decays” favors values aacrit. Finally, we comment on the apparent non-conservation of particle energy–momentum, and speculate on its re-emergence as dark energy in the foamy vacuum.  相似文献   

11.
Isointensity contours of 630 nm auroral emission are traced into the magnetosphere, using two different empirical magnetic field models, the Mead-Fairfield model, and the Hedgecock-Thomas model. The auroral data are for a specific ISIS-II satellite pass, and so the starting points are expressed in geographic latitude and longitude coordinates, at a specific universal time. The magnetic field models are constructed from satellite magnetometer measurements, and those used correspond to magnetically quiet times. The projections are found to agree reasonably well with direct plasma measurements of the plasma sheet. The projections of the dayside contour connect to widely different regions of the magnetosphere, providing an interpretation that is consistent with observations of the dayside aurora. It is concluded that field line projections of the aurora into the magnetosphere using these models is a valid procedure, but only under quiet-time conditions.  相似文献   

12.
We discuss the effects in ionospheric absorption of particle precipitation observed in the afternoon-early evening sector during substorms with onset in the midnight sector. All events considered here occurred during magnetically disturbed periods, Kp > 3. For many of the substorm events a smooth southward moving absorption bay is seen in the midnight and evening sectors about 1 h preceeding the onset. The magnetic pulsation activity is low during this preceding bay.

After substorm onset near magnetic midnight the precipitation region may expand with a sharp onset at the front towards the West in spatially confined regions at high and low L-values separately with about equal velocities. The observations are consistent with a model of westward expansion of the energetic electron precipitation in two regions, aligned parallel to the auroral oval, at high and low L-values of about L 6 and L 4.8.

The westward expanding absorption activity correlates well with local magnetic variations. In magnetic pulsations PiB events are seen at high latitudes simultaneously with the westward moving onsets while at low latitudes IPDP pulsations are observed during the active part of the absorption events. Later in the substorm event a slowly varying absorption event (SVA) is sometimes observed at the lower L-values, L 3–4.  相似文献   


13.
An investigation of pitch-angle scattering of energetic particles in magnetic field configurations with a current sheet similar to that observed in the geomagnetotail has been performed. The magnetic field model is specified by two parameters which are the current sheet thickness in units of particle gyroradius and the angle between the magnetic field lines and the sheet plane. Computations of a considerable number of trajectories (about 20,000 for each model case) has provided the possibility of obtaining the matrix of pitch-angle scattering and the corresponding kernel function of the integral equation for the stationary particle distribution function. Solution of this equation shows that isotropic distributions are formed only in the case of a sufficiently thick current sheet. Particle scattering in a thin field reversal region leads to the formation of an anisotropic stationary distribution. The results can be used for interpretation of the data on the spatial distribution of energetic particle fluxes in the near part of the magnetospheric tail and in the vicinity of the outer boundary of the radiation belt.  相似文献   

14.
Auroral luminosities of the main emission lines in the aurora have been calculated for excitation by an isotopic primary electron flux with spectra of the form J(E) = AE exp (−E/E1) + B(E2)E exp (−E/E1). The variation of emissions from O and N2+ with height are shown, as are the variations of column integrated intensities and pertinent intensity ratios with the characteristic energy E2, this leading to a method of estimating the electron spectrum from ground observation.  相似文献   

15.
The nearby (d=5.0 pc) brown dwarf LP 944-20 was observed with the XMM-Newton satellite on 07 January 2001. The target was detected with the Optical Monitor (V=16.736±0.081), but it was not detected during the ≈48 ks observation with the X-ray telescopes. We determine a 3σ upper limit for the X-ray emission from this object of LX<3.1×1023 ergs·s−1, equivalent to a luminosity ratio upper limit of log(LX/Lbol)≤−6.28. This measurement improves by a factor of three the previous Chandra limit on the quiescent X-ray flux. This is the most sensitive limit ever obtained on the quiescent X-ray emission of a brown dwarf. Combining the XMM-Newton data with previous ROSAT and Chandra data, we derive flare duty cycles as a function of their luminosities. We find that very strong flares [Log(LX/Lbol)>−2.5] are very rare (less than 0.7% of the time). Flares like the one detected by Chandra [Log(LX/Lbol)=−4.1] have a duty cycle of about 6%, which is lower than the radio flare duty cycle (13%). When compared with other M dwarfs, LP 944-20 appears to be rather inactive in X-rays despite of its relative youth, fast rotation and its moderately strong activity at radio wavelengths.  相似文献   

16.
An interpretation of the stable trapping boundaries of energetic electrons and protons during quiet periods is given basing on a realistic magnetospheric magnetic field model. Particle losses are explained in terms of an ionospheric and drift loss cone filling due to a non-adiabatic pitch-angle scattering in the nightside magnetotail current sheet. The proposed mechanism is shown to provide a good agreement of the observed and calculated positions of the energetic particle trapping boundaries, as well as their energy dependence. The obtained results can be applied as a tool for investigating the magnetospheric magnetic field structure using the particle data of low-altitude satellites.  相似文献   

17.
Current knowledge of the chemistry of the stratosphere is reviewed using measurements from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment to test the accuracy of our treatment of processes at mid-latitudes, and results from the Airborne Antarctic Ozone Experiment (AAOE) to examine our understanding of processes for the polar environment. It is shown that, except for some difficulties with N2O5 and possibly ClNO3, gas phase models for nitrogen and chlorine species at 30°N in spring are in excellent agreement with the data from ATMOS. Heterogeneous processes may have an influence on the concentrations of NO2, N2O5, HNO3, and ClNO3 for the lower stratosphere at 48°S in fall. Comparison of model and observed concentrations of O3 indicate good agreement at 30°N, with less satisfactory results at 48°S. The discrepancy between the loss rate of O3 observed over the course of the AAOE mission in 1987 and loss rates calculated using measured concentrations of ClO and BrO is found to be even larger than that reported by Anderson et al. (1989, J. geophys. Res. 94, 11480). There appear to be loss processes for removal of O3 additional to the HOC1 mechanism proposed by Solomon et al. (1986, Nature 321, 755), the ClO-BrO scheme favored by McElroy et al. (1986, Nature 321, 759), and the ClO dimer mechanism introduced by Molina and Molina (1987, J. phys. Chem. 91, 433). There is little doubt that industrial halocarbons have a significant impact on stratospheric O3. Controls on emissions more stringent than those defined by the Montreal Protocol will be required if the Antarctic Ozone Hole is not to persist as a permanent feature of the stratosphere.  相似文献   

18.
Dispersion equations in the electrostatic approximation are derived for waves propagating near the centre of a magnetic neutral sheet system. The unperturbed equilibrium is based on the Alfvén-Cowley neutral sheet model, in which the sheet current is carried by accelerated non-adiabatic electrons oscillating about the field reversal, and moving through a cold neutralizing ion background. Detailed account is taken of the non-adiabatic nature of the electron motion. It is also recognized that the zeroth order electron distribution may differ significantly from a convecting isotropic Maxwellian. A companion paper presents a detailed numerical study of the dispersion relations derived here.  相似文献   

19.
A mechanism is presented whereby the rate of energy dissipation in the magnetosphere is controlled by the particle density in the plasma sheet in the near geomagnetic tail. The mechanism is based on a model in which the plasma sheet is sustained by injection of solar-wind particles into the dayside magnetosphere. The efficiency of the injection is controlled by solarwind parameters, in particular, the north-south component of the interplanetary magnetic field; the maximum injection rate occurs when the interplanetary field is northward. During geomagnetically quiet times, this source balances the loss of particles from the edges of the tail current sheet. If the dayside source rate is reduced (e.g. by a southward-turning interplanetary magnetic field), then the plasma sheet is depleted and the rate of magnetic merging is enhanced in the earthward portion of the tail current sheet. This period of steadily-enhanced merging is associated with the growth phase, i.e. the period of enhanced magnetospheric convection for about one hour preceding the breakup of a polar magnetic or auroral substorm. The breakup can be understood as the result of the collapse of a portion of the tail current sheet following the local depletion of the plasma sheet.  相似文献   

20.
The semi-empirical model of catastrophic breakup events developed by Paolicchi et al. (Icarus77, 187–212, 1989) has recently been improved by means of new algorithms allowing the generation of sets of nonoverlapping fragments, and to take into account gravitational effects. In this paper we give the results of simulations aimed specifically at reproducing laboratory experiments. A comparison with both the experimental evidence and the results of the previous version of the model is presented, and particular attention is devoted to the problem of the shape distribution of the fragments. The results seem encouraging, and allow us to undertake more detailed investigations in order to analyse in detail the capability of the model for reproducing both the laboratory results and the properties exhibited by the asteroidal population, in particular, asteroid families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号