共查询到20条相似文献,搜索用时 15 毫秒
1.
Takenobu Toyota Shinya Takatsuji Kazutaka Tateyama Kazuhiro Naoki Kay I. Ohshima 《Journal of Oceanography》2007,63(3):393-411
The general properties of sea ice and overlying snow in the southern Sea of Okhotsk were examined during early February of
2003 to 2005 with the P/V “Soya”. Thin section analysis of crystal structure revealed that frazil ice (48% of total core length)
was more prevalent than columnar ice (39%) and that stratigraphic layering was prominent with a mean layer thickness of 12
cm, indicating that dynamic processes are essential to ice growth. The mean thickness of ice blocks and visual observations
suggest that ridging dominates the deformation process above thicknesses of 30 to 40 cm. As for snow, it was found that faceted
crystals and depth hoar are dominant (78%), as which is also common in the Antarctic sea ice, and is indicative of the strong
vertical temperature gradients within the snow. Stable isotope measurements (δ18O) indicate that snow ice occupies 9% of total core length and that the mass fraction of meteoric ice accounts for 1 to 2%
of total ice volume, which is lower than the Antarctic sea ice. Associated with this, the effective fractionation coefficient
during the freezing of seawater was also derived. Snow ice was characterized by lower density, higher salinity, and nearly
twice the gas content of ice of seawater origin. In addition, it is shown that the surface brine volume fraction and freeboard
are well correlated with ice thickness, indicating some promise for remote sensing approaches to the estimation of ice thickness. 相似文献
2.
3.
4.
The dynamics of ice formation and phytoplankton bloom development in the coastal region of the Okhotsk Sea, Hokkaido, where the Japanese scallop, Mizuhopecten yessoensis, are cultured were investigated using seven years (1998–2004) satellite data from the Special Sensor Microwave/Imager (SSM/I) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The interannual variability of sea ice cover and timing of spring bloom occurrences were analyzed. Longer ice cover in 1999, 2001 and 2003 with the presence of ice until early April and shortened ice cover in 1998, 2000, 2002 and 2004 with the occurrence of ice until early March were recognized at this area. Variability in the timing of sea ice retreat and development of spring blooms at the scallop areas were observed. Progression of a single ice edge bloom showed higher Chl-a concentration compared to development of an initial ice edge bloom followed by a later open water bloom. Higher concentration of phytoplankton biomass was observed in the initial bloom when sea ice melting is delayed compared to when the sea ice leaves earlier. Wind events were also observed to affect the occurrences of spring bloom. 相似文献
5.
Numerical sea ice prediction in China 总被引:3,自引:2,他引:3
NumericalseaicepredictioninChinaWuHuiding,BaiShan,ZhangZhanhai1(ReceivedSeptember12,1996;acceptedJune5,1997)Abstract──Adynami... 相似文献
6.
James D. Hays Joseph J. Morley 《Deep Sea Research Part I: Oceanographic Research Papers》2003,50(12):1481-1506
The modern Sea of Okhotsk and the high-latitude glacial ocean share similar radiolarian faunas suggesting they also share environmental similarities. This sea favors deep- (>200 m) over shallow-living species as evidenced by collections of sediment traps set at 258 and 1061 m in the central part of the Sea. Of the twelve dominant polycystine radiolarian species, four live above and eight below 258 m. The shallow-living species’ productivity maxima coincide with spring and fall phytoplankton blooms while deep-living species’ annual production, nearly twice that of the shallow-living species, is concentrated in fall. Previous workers have shown that summer plankton tows collect higher concentrations of polycystine Radiolaria below than above 200 m and that Radiolaria, fish and zooplankton have unusual concentration maxima between 200 and 500 m. The paucity of Radiolaria and other consumers above 200 m coincides with an upper (0–150 m) cold (−1.5°C to 1.5°C), low salinity layer while higher concentrations below 200 m occur within warmer saltier water. This unusual biological structure must produce a lower ratio of shallow (<200 m) to deep carbon remineralization than elsewhere in the world ocean.Deep-living radiolarian species, similar to those of the modern Sea of Okhotsk, dominate glacial high-latitude deep-sea sediments. If the hydrographic and biological structures that produced these glacial faunas were like those of the modern Sea of Okhotsk, then glacial high-latitude oceans would have differed from today's in at least two respects. Surface waters were less saline and more stable enhancing the spread of winter sea ice. This stability, combined with a deepening of nutrient regeneration, reduced surface water nutrients contributing to a reduction of atmospheric carbon dioxide. 相似文献
7.
日本海、鄂霍次克海和白令海的古海洋学研究进展 总被引:2,自引:0,他引:2
边缘海的存在使大陆和大洋之间的物质和能量交换变得相当复杂。在构造运动和海平面升降的控制下,边缘海和大洋之间时而连通时而隔绝,各种古气候变化信号都在一定程度上被放大。基于近期有关西北太平洋边缘海的古海洋学研究成果,简要概述了日本海、鄂霍次克海、白令海以及北太平洋地区自中新世以来的古气候和古海洋环境演化特征,并认为它们与全球其它地区一样也受控于因地球轨道参数变化引起的太阳辐射率的变化,大尺度的气候变化具有与地球轨道偏心率周期相对应的100ka周期,而41ka的小尺度周期则受地球自转轴斜率变化的控制。一些突发性的气候变化则是由气候不稳定性、海峡的关闭与开启和其它一些地球气候系统的非线性活动所驱动。但同时作为中高纬度边缘海,它们的古海平面、古海水温度、古洋流等古海洋环境因子的变化特征还受到冰盖扩张和退缩、构造运动、冰川性地壳均衡补偿、东亚季风等因素的影响,具有一定的区域特点。 相似文献
8.
局地海冰数值预测的冰激结构响应计算 总被引:6,自引:0,他引:6
在渤海海冰数值预测的基础上,通过渤海海冰的热力—动力模型,对油气作业区的冰厚、冰速、冰温等海冰参数进行短期数值预测,并以此对海冰的盐度、卤水体积、弯曲强度等海冰物理力学参数进行推算,进而对冰激平台结构响应进行计算分析。以辽东湾JZ20-2油气田的MUQ平台为例,对1999/2000年冬季的冰激结构振动响应进行了预测,其结果与实测情况较为吻合。 相似文献
9.
With improved observation methods, increased winter navigation, and increased awareness of the climate and environmental changes, research on the Baltic Sea ice conditions has become increasingly active. Sea ice has been recognized as a sensitive indicator for changes in climate. Although the inter-annual variability in the ice conditions is large, a change towards milder ice winters has been detected from the time series of the maximum annual extent of sea ice and the length of the ice season. On the basis of the ice extent, the shift towards a warmer climate took place in the latter half of the 19th century. On the other hand, data on the ice thickness, which are mostly limited to the land-fast ice zone, basically do not show clear trends during the 20th century, except that during the last 20 years the thickness of land-fast ice has decreased. Due to difficulties in measuring the pack-ice thickness, the total mass of sea ice in the Baltic Sea is, however, still poorly known. The ice extent and length of the ice season depend on the indices of the Arctic Oscillation and North Atlantic Oscillation. Sea ice dynamics, thermodynamics, structure, and properties strongly interact with each other, as well as with the atmosphere and the sea. The surface conditions over the ice-covered Baltic Sea show high spatial variability, which cannot be described by two surface types (such as ice and open water) only. The variability is strongly reflected to the radiative and turbulent surface fluxes. The Baltic Sea has served as a testbed for several developments in the theory of sea ice dynamics. Experiences with advanced models have increased our understanding on sea ice dynamics, which depends on the ice thickness distribution, and in turn redistributes the ice thickness. During the latest decade, advance has been made in studies on sea ice structure, surface albedo, penetration of solar radiation, sub-surface melting, and formation of superimposed ice and snow ice. A high vertical resolution has been found as a prerequisite to successfully model thermodynamic processes during the spring melt period. A few observations have demonstrated how the river discharge and ice melt affect the stratification of the oceanic boundary layer below the ice and the oceanic heat flux to the ice bottom. In general, process studies on ice–ocean interaction have been rare. In the future, increasingly multidisciplinary studies are needed with close links between sea ice physics, geochemistry and biology. 相似文献
10.
11.
Motoyo Itoh 《Journal of Oceanography》2007,63(4):637-641
Okhotsk Sea Intermediate Water (OSIW), the source water for ventilation of North Pacific Intermediate Water, exhibits a multidecadal
warming trend. Historical data show that OSIW temperatures increased by 0.28, 0.57, 0.31 and 0.10°C during 1955 to 2003 at
potential densities of 26.8, 27.0, 27.2 and 27.4σ
θ
, at depths of approximately 250, 500, 700 and 900 m, respectively. This rate of warming is much faster than that of the global
ocean. This OSIW warming is likely linked to the reduced ventilation of cold Dense Shelf Water associated with brine rejection
during sea ice formation. 相似文献
12.
海冰动力过程的改进离散元模型及在渤海的应用 总被引:1,自引:0,他引:1
海冰的断裂、重叠和堆积等离散分布特性广泛地存在于极区和副极区的不同海域,并对海冰的生消、运移过程有着重要影响。针对海冰在不同尺度下的离散分布特点,发展海冰动力过程的离散元方法有助于完善海冰数值模式,提高海冰数值模拟的计算精度。为此,本文针对海冰生消运移过程中的非连续分布和形变特性,发展了适用于海冰动力过程的改进离散元模型(MDEM)。不同于传统离散元方法,该模型将海冰离散为具有一定厚度、尺寸和密集度的圆盘单元。海冰单元设为诸多浮冰块的集合体,其在运移和相互接触碰撞过程中,依照质量守恒发生单元尺寸、密集度和厚度的相应变化。基于海冰离散性和流变性的特点,该模型采用黏弹性接触本构模型计算单元间的作用力,并依据Mohr-Coulomb准则计算海冰法向作用下的塑性变形及切向摩擦力。为验证该模型的可靠性,本文对海冰在规则水域内的运移和堆积过程进行了分析,离散元计算结果与解析值相一致;此外,对旋转风场下海冰漂移规律的模拟进一步验证了本文方法的精确性。在此基础上,对渤海辽东湾的海冰动力过程进行了48h数值分析,计算结果与卫星遥感资料和油气作业区的海冰现场监测数据吻合良好。在下一步工作中将考虑海冰离散元模拟中的热力因素影响,发展具有冻结、断裂效应的海冰离散元模型,更精确地模拟海冰动力-热力耦合作用下的生消和运移过程。 相似文献
13.
14.
Kay I. Ohshima Genta Mizuta Motoyo Itoh Yasushi Fukamachi Tatsuro Watanabe Yasushi Nabae Koukichi Suehiro Masaaki Wakatsuchi 《Journal of Oceanography》2001,57(4):451-460
In the southwestern part of the Okhotsk Sea, oceanographic and sea-ice observations on board the icebreaker Soya were carried out in February 1997. A mixed layer of uniform temperature nearly at the freezing point extending down to a
depth of about 300 m was observed. This is much deeper than has previously been reported. It is suggested that this deep mixed
layer originated from the north (off East Sakhalin), being advected along the shelf slope via the East Sakhalin Current, accompanied
with the thick first-year ice (average thickness 0.6 m). This vertically uniform winter water, through mixing with the surrounding
water, makes the surface water more saline (losing a characteristic of East Sakhalin Current Water) and the water in the 100–300
m depth zone less saline, colder, and richer in oxygen (a characteristic of the intermediate Okhotsk Sea water). The oceanographic
structure and a heat budget analysis suggest that new ice zone, which often appears at ice edges, can be formed through preconditioning
of thick ice advection and subsequent cooling by the latent heat release due to its melting.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
15.
海冰热力模式的辐射参数化方案在渤海和波罗的海应用的比较 总被引:2,自引:0,他引:2
研究了海冰热力模式中的各种辐射参数化方案,对比了模式计算的太阳短波辐射、大气长波辐射以及海冰热力变化,并利用渤海和波罗的海观测资料进行比较和误差分析.冬季大部分时间太阳短波辐射对海冰热力过程的作用有限.简单计算方案一般满足海冰模式要求.误差主要受云和冰雪表面与大气之间的多重反射影响.长波辐射对表面热平衡和海冰质量变化起重要作用.长波辐射参数化方案的计算结果受环境因素影响.云量参数化有待进一步改进.海冰模式计算结果的精度与长波辐射计算精度有一致性. 相似文献
16.
We have examined wind-induced circulation in the Sea of Okhotsk using a barotropic model that contains realistic topography
with a resolution of 9.25 km. The monthly wind stress field calculated from daily European Centre for Medium-Range Weather
Forecasting (ECMWF) Re-Analysis data is used as the forcing, and the integration is carried out for 20 days until the circulation
attains an almost steady state. In the case of November (a representative for the winter season from October to March), southward
currents of velocity 0.1–0.3 m s−1 occur along the bottom contours off the east of Sakhalin Island. The currents are mostly confined to the shelf (shallower
than 200 m) and extend as far south as the Hokkaido coast. In the July case (a representative for the summer season from April
to September), significant currents do not occur, even in the shallow shelves. The simulated southward current over the east
Sakhalin shelf appears to correspond to the near-shore branch of the East Sakhalin Current (ESC), which was observed with
the surface drifters. These seasonal variations simulated in our experiments are consistent with the observations of the ESC.
Dynamically, the simulated ESC is interpreted as the arrested topographic wave (ATW), which is the coastally trapped flow
driven by steady alongshore wind stress. The volume transport of the simulated ESC over the shelf reaches about 1.0 Sv (1
Sv = 106 m3s−1) in the winter season, which is determined by the integrated onshore Ekman transport in the direction from which shelf waves
propagate.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
17.
Numerical simulation for dynamical processes of sea ice 总被引:1,自引:0,他引:1
NumericalsimulationfordynamicalprocessesofseaiceWuHuiding,BaiShan,ZhangZhanhaiandLiGuoqing(ReceivedMay16,1996;acceptedJanuary... 相似文献
18.
Sachiko Oguma Tsuneo Ono Yutaka W. Watanabe Hiromi Kasai Shuichi Watanabe Daiki Nomura Humio Mitsudera 《Estuarine, Coastal and Shelf Science》2011
In this study, we examined the relationship between the low salinity water in the shelf region of the southern Okhotsk Sea which was seasonally sampled (0–200 m), and fluxes of low salinity water from Aniva Bay. To express the source of freshwater mixing in the surface layer, we applied normalized total alkalinity (NTA) and stable isotopes of seawater as chemical tracers. NTA-S diagrams indicate that NTA of low salinity water in the upper 30 m layer just off the Soya Warm Current is clearly higher than in the far offshore region in summer and autumn. Using NTA-S regression lines, we could deduce that the low salinity and high NTA water in the upper layer originates from Aniva Bay. For convenience, we defined this water as the Aniva Surface Water (ASW) with values S < 32, NTA > 2450 μmol kg−1. Formation and transport processes of ASW are discussed using historical data. The interaction between the maximum core of high NTA water on the bottom slope of eastern Aniva Bay and an anticyclonic eddy at the mouth of Aniva Bay are concluded to control ASW formation. Upwelling of the Cold Water Belt water at the tip of Cape Krillion is considered to cause ASW outflow from Aniva Bay. 相似文献
19.
通过海冰生消机理和数值试验,讨论了渤海海冰特征厚度的存在条件;对不同厚度的海冰表面温度、冰面热量收支、冰面下热传导和太阳辐射透射量进行了对比分析,分析了渤海海冰向特征冰厚的动态演化过程;在不同气温、风速、相对湿度和海洋热通量等气象和水文条件下,对渤海特征冰厚进行了计算;讨论了海冰生消的动态平衡过程,分析了1997/1998年冬季辽东湾JZ20-2海域实测冰厚与特征冰厚的相互关系。对渤海特征冰厚分析将有助于渤海海冰数值模拟工作的开展和对不同重现期设计冰厚的推算。 相似文献
20.
Previous studies have highlighted reversals in the Beaufort Gyre on regional scales during summer months, and more recently, throughout the annual cycle. In this study we investigate coherent ice drift features associated with individual ice beacons during winter 2008 that may be a signature of ice–coast interactions, atmospheric and/or oceanic forcing. Examined in particular are three case studies associated with reversals in ice beacon trajectories in January and April of 2008; case I corresponds to a meander reversal event in January, case II to a loop reversal event in April, and case III to a meander reversal event located to the northeast of the Mackenzie Canyon in April. An assessment of atmospheric and oceanic conditions during these reversal events shows enhanced ocean–sea-ice–atmosphere dynamical coupling during the Case I meander reversal event in January and comparatively weak coupling during the Case II loop and Case III meander reversal event in April. Absolute (single-particle/beacon) and relative (two-particle/beacon) dispersion results demonstrate dominant meridional ice drift displacement and inter-beacon separation for Case I relative to Cases II and III indicative of ice–ice and ice–coast interactions in January. The results from this investigation provide an ice drift case study analysis relevant to, and template for, high-resolution sea ice dynamic modeling studies essential for safety and hazard assessments of transportation routes and shipping lanes, ice forecasting, and nutrient and contaminant transport by sea ice in the Arctic. 相似文献