首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The results from a set of 12 solar corona radial velocity measurements in the 400-440 nm spectral band during the total solar eclipse of July 11, 1991 are reported. The measurements show that the orbital motion of the F-corona material near the sun in the ecliptic plane is consistent with Keplerian motion and predominantly, but not exclusively, prograde, as is usually assumed. This work demonstrates a method of using the measured radial velocities to sort out the relative amounts of K-corona, near-earth F-corona, near-solar F-corona, and scattered light in each measurement for each observation point W and E of the sun between 2.5Ro(solar radii) and 5Ro along the celestial equator and at three points north of the sun. The near-solar F-corona component is quite weak, contributing only 7-14% of the total signal in each case. The stronger diffraction component from near-earth F-corona is estimated to have been produced by particles with radii of about 11μ. In contrast, the scattered light component appears as strong zero-velocity features dominating all the measurements. The measurements W and E of the sun and near the ecliptic plane also show evidence of a red-shift velocity of at least 330 km s−1, suggestive of a high-speed dust outflow from the sun.  相似文献   

2.
An overlooked systematic error exists in the apparent radial velocities of solar lines reflected from regions of Venus near the terminator, owing to a combination of the finite angular size of the Sun and its large (2 km/sec) equatorial velocity of rotation. This error produces an apparent, but fictitious, retrograde component of planetary rotation, typically on the order of 40 m/sec. Spectroscopic, photometric, and radiometric evidence against a 4-day atmospheric rotation is also reviewed. The bulk of the somewhat contradictory evidence seems to favor slow motions, on the order of 5 m/sec, in the atmosphere of Venus; the 4-day “rotation” may be due to a travelling wavelike disturbance, not bulk motions, driven by the uv albedo differences.  相似文献   

3.
Modifications to a Zeiss 1/4 Å filter are described which allow high spatial resolution observations of the line-of-sight velocities and magnetic fields in the photosphere and in sunspots. First results show: (1) the granular velocity field to be very strong; differences in upward motions in the granules and downward motions in between are as much as 6 km/sec; (2) the Evershed effect in sunspots to originate primarily in the dark regions between bright penumbral filaments.  相似文献   

4.
The solar atmosphere may be divided into a number of isolated active components and a quiet residue. On the largest scale the latter is dominated by a general dipole magnetic field of strength 1–2 G; its observable components are flux concentrations in supergranule boundary regions (SBRs), spicules, mottles and polar plumes. The velocity field in the SBRs is discussed. There are continuous gas streaming motions up and down between the photosphere and the corona; spicules may be mainly downward moving gas.A unifying model is developed of these various components, as well as the heating mechanism of the whole quiet atmosphere. Highly ordered velocity fields of the cell, together with a gravitational wave, cause a vertical magnetic force tube to collapse below a critical level; the result is an upward eruption of a vortex ring at the Alfvén velocity. The complex mass velocity pattern may explain spicules, mottles and plumes, as well as unobservable streaming motions.The quiet atmosphere is divided into regions above SBRs and those above the inner parts of the cells. Hydromagnetic eruptions from the former may account for the entire heat requirement of the atmosphere. The model atmosphere has a chromosphere-corona transition layer which bulges upwards above the SBRs and so conforms with EUV data. The energy and mass balances in this solar atmosphere are considered, and it is also shown to be consistent with the radio data.  相似文献   

5.
From the comparison of 59 iron lines at the center of the solar disk with laboratory wavelenghts, the mean vertical velocity of solar granulation and its depth dependence is determined. These values are used to calculate limb-effect curves. The differences to observed curves are interpreted as mean horizontal motions. These motions yield again a depth dependence showing Doppler shifts toward the observer in deep layers and away from the observer in high layers for regions away from the disk center. Values from - 400 m s–1 through + 500 m s–1 are obtained.  相似文献   

6.
The temporal characteristics of the chromospheric velocity field in a quiet region are studied by means of a carefully guided sequence of 215 H spectra of the disk centre lasting 54 min. The Doppler shifts of each frame at = 0.4 Å are measured and the velocity history of each position on the sun is reconstructed. The velocity power spectrum is found for each of 256 points along the total slit length of 280000 km.A steady downward velocity is associated with places where the amplitude of the fluctuating velocity is high. The average velocity power spectrum exhibits three main features: (1) A peak at 287 sec, (2) A group of high frequency peaks in the range 150–210 sec, and (3) A low frequency peak with a period of 900 sec.The relationship of these features to the Ca K network is discussed.Member of the High Altitude Observatory Solar Project at Sacramento Peak, on leave from Dunsink Observatory, Ireland.  相似文献   

7.
Center-limb observations of line-center intensity and velocity fluctuations in the Magnesium b lines are described. Autocorrelation and power spectral analyses indicate small scale brightness structures having periodicities of 3000 km and 8000 km and large scale structures of 22000 km. Corresponding velocity structures are 6000 km and 30000 km.The relative rms fluctuation amplitude for the small scale bright features is found to be of order 12% and for the large scale features 8%. The variation of these rms values with heliocentric angle is also shown.At disk center some weak correlation is found between bright features and downward velocities in the large scale structures. Towards the limb there is a strong correlation in all three lines between line of sight motions and bright features. This indicates that the large scale bright features are closely associated with the supergranule motions.By inspecting the actual brightness and velocity fluctuation tracings it can be seen that, in some regions, the small scale structures show a significant negative correlation over a range of about 25000 km. Beyond this characteristic length, however, the correlation may decrease abruptly or even become positive for a similar distance. There is some evidence which suggests that this behaviour may also be related to the supergranule motions.  相似文献   

8.
We cross-correlate pairs of Mt. Wilson magnetograms spaced at intervals of 24–38 days to investigate the meridional motions of small magnetic features in the photosphere. Our study spans the 26-yr period July 1967–August 1993, and the correlations determine longitude averages of these motions, as functions of latitude and time. The time-average of our results over the entire 26-yr period is, as expected, antisymmetric about the equator. It is poleward between 10° and 60°, with a maximum rate of 13 m s–1, but for latitudes below ±10° it is markedly equatorward, and it is weakly equatorward for latitudes above 60°. A running 1-yr average shows that this complex latitude dependence of the long-term time average comes from a pattern of motions that changes dramatically during the course of the activity cycle. At low latitudes the motion is equatorward during the active phase of the cycle. It tends to increase as the zones of activity move toward the equator, but it reverses briefly to become poleward at solar minimum. On the poleward sides of the activity zones the motion is most strongly poleward when the activity is greatest. At high latitudes, where the results are more uncertain, the motion seems to be equatorward except around the times of polar field reversal. The difference-from-average meridional motions pattern is remarkably similar to the pattern of the magnetic rotation torsional oscillations. The correspondence is such that the zones in which the difference-from-average motion is poleward are the zones where the magnetic rotation is slower than average, and the zones in which it is equatorward are the zones where the rotation is faster.Our results suggest the following characterization: there is a constant and generally prevailing motion which is perhaps everywhere poleward and varies smoothly with latitude. On this is superimposed a cycle-dependent pattern of similar amplitude in which the meridional motions of the small magnetic features are directed away from regions of magnetic flux concentration. This is suggestive of simple diffusion, and of the models of Leighton (1964) and Sheeley, Nash, and Wang (1987). The correspondence between the meridional motions pattern and the torsional oscillations pattern in the magnetic rotation suggests that the latter may be an artifact of the combination of meridional motion and differential rotation.  相似文献   

9.
Slow drift (Type II) radio bursts from the sun are believed to be caused by a primary disturbance moving outward through the solar atmosphere with a velocity of about 1000 km/sec. Analysis of the 2 years, 1956 October 1 through 1958 September 30, over the sunspot maximum shows that 45 per cent of these bursts are associated with the subsequent occurrence of terrestrial auroræ and magnetic storms. The mean delay between the radio bursts and the terrestrial disturbances is 33 hr, which is in good accord with the velocity for the disturbing source as deduced from the radio data. Investigation of the properties of the individual slow drift bursts and their association with other solar radio and optical phenomena reveals no completely conclusive criteria to explain why only 45 per cent of the bursts are geomagnetically important. The geomagnetic effects are enhanced, however, if the bursts occur near the equinoxes and if they are accompanied by a flare o'f importance 2 or 3, or by continuum (Type IV) radiation.

In the reverse association, with radio data available for an average 14 hr daily, it is shown that at least 60 per cent of magnetic storms are preceded, within 4 days, by a slow drift burst.  相似文献   


10.
Cloud motions were obtained from a number of images acquired in reflected solar ultraviolet light during spring and fall of 1979 from the Pioneer Venus Orbiter Cloud Photopolarimeter (OCPP) to determine the zonal mean circulation of the atmosphere of Venus at the cloud top level. The meridional profile of the zonal component of motion is somewhat different from that previously obtained from Mariner 10 and preliminary Pioneer Venus observations, although the equatorial magnitude is about the same (?94 m/sec). The mean meridional motion is toward the south pole south of about 5° south latitude, and toward the north pole north of this latitude, with peak mean magnitudes of about 7 m/sec polewards of 20° north and 40° south latitudes in the respective hemispheres. From the few measurements obtained at higher latitudes the magnitude of the mean meridional component appears to decrease although it is still directed toward the respective poles. Due to the evolution of the cloud patterns over the duration of the images from which the cloud velocities are obtained, the uncertainties in the mean zonal and meridional components may be as large as 5–10 and 2–4 m/sec, respectively. Preliminary estimates of meridional momentum transport show that the mean circulation dominates the eddy circulation transport completely, in agreement with the estimates obtained from Mariner 10 data, although the uncertainties in both the mean and eddy circulation transports are large. The momentum transports are polewards and their peak magnitudes occur at latitudes between 20° and 40° in both the hemispheres.  相似文献   

11.
The proper motion in galactic latitude of O-B stars enables us to detect the kinematic behaviour of an optical counterpart of the large-scale warp of the HI gas layer in our Galaxy. A selected set of the proper motions of about 350 O-B stars within 3kpc from the sun (R0=8.5kpc) is analyzed on the proper motion systems of N30, FK4, and FK5. A remarkable differece in the kinematic behaviour of the warp appears between the old systems (N30 and FK4) and FK5-system. On the old systems, the O-B stars in the belt 8.5kpcR<9.5kpc exhibit a systematic z-motion upward from the galactic plane forl180° and downward forl>180° with the mean proper motions of about ±0".4/century, respectively. On the other hand, the results on the FK5-system show no meaningful systematic z-motion, even though the O-B star layer exterior to the solar circle is inclined (3°) with respect to the galactic plane. These findings can neither be inferred from the model of the oblique material flow nor from the concepts of the precessional stellar rings and of the bending oscillation of a stellar disk. The remarkable difference in the kinematic behaviour of the warp, appearing between the old and new systems, is caused mainly by the conversion of the proper motions on the old systems into those on the J2000.0 frame. The conversion near the galactic plane is given by µb(FK4(J2000.0))–µb(FK4)–0.50 sinl/century. The implication of this relation is discussed in connection with the warping motion of stars detected here.  相似文献   

12.
The motions of the components of wide binary stars in the solar neighborhood in the regular Galactic gravitational field on time scales ~1010 yr have been studied numerically. The regions of restricted motions of the components in wide pairs have been found depending on the initial conditions: the magnitude of the relative velocity of the components, their mutual distance, and the inclination of the relative velocity vector to the Galactic plane. The size of the main part of the region of restricted motions is approximately equal to the tidal radius. Profound changes in the eccentricity of the binary orbit occur at inclinations close to 90°, which can lead to close approaches of the stars with a pericenter distance less than 1 AU. In the case of retrograde motions (the binary rotates in a direction opposite to the Galactic rotation), there is a region of restricted motions extending at least to 10 pc. Examples of the trajectories of relative motion of the stars and the change in osculating orbital elements are given for systems with restricted motions.  相似文献   

13.
Previous studies have shown that the measured velocity field in solar prominences exhibits a slightly different behaviour depending on the observational conditions, on the investigation method, and possibly on the type of prominence. Observations of prominences seen at the limb reveal strong downward motions, whereas upflows are detected as Doppler shifts in filaments on the disk. In order to shed new light on this point, we have investigated the mass motions in a solar prominence by using a new method for calculating the geometric distortion between subsequent images. Flows perpendicular to the line of sight have been determined in several layers of the prominence-corona atmosphere, using extreme ultraviolet (EUV) lines formed at different temperature levels (T=104–106 K). We show that the motions mainly have a vertical direction, oriented both upwards and downwards. The velocity pattern can change rapidly during time intervals exceeding 10–15 min. We also find that the measured velocity field shows a similar pattern in all the studied lines.  相似文献   

14.
We consider a stationary model of the propagation of galactic cosmic rays (GCR) in the heliosphere and adjacent interstellar space. The heliosphere is assumed to be a two-layer medium consisting of two adjacent regions that are spherically symmetric relative to the sun. The solar wind velocity is supersonic in the inner heliosphere bounded by the standing termination shock, and this velocity is subsonic in the outer heliosphere bounded by the heliosheath. The GCR scattering in these regions is due to different factors characterized by relevant diffusion coefficients. The solar wind velocity is assumed to be zero in the interstellar medium, where the scattering becomes weaker. No particle sources are presumed to exist at the boundaries between the layers. An exact analytical solution of the corresponding mathematical problem can be obtained without essential difficulties, although it is extremely cumbersome. Analytical expressions for the GCR spectra of particles with very high energies (>2500 MeV) and very low energies (<1400 MeV) are obtained for each region of particle propagation. The low-energy particle distribution corresponds to the data obtained by the Voyager spacecraft. It is shown that the low-energy particle density continuously increases from the sun toward the heliospheric boundary, regardless of the scattering mode in the inner and outer parts of the heliosphere.  相似文献   

15.
Charge-transfer collisions between solar-wind protons and neutral interstellar hydrogen in the vicinity of the sun have been considered. Due to the focusing effect of the sun's gravitational field interstellar particles entering the solar system in free flights produce a specific density distribution in the circumsolar space. On their way from the sun to the orbit of the earth solar protons will therefore generate fast neutrals by collisions with neutral hydrogen. Depending on the position at its orbit the earth will be hit by these fast neutrals which will come down directly into the thermosphere and will produce temperature and density increases. It is shown that the corpuscular energy flux connected with these fast neutrals will have a semi-annually varying profile along the earth's orbit. Interstellar particle densities of about 5 cm–3 at infinity would produce energy fluxes of the order of 0.1 erg/cm2 sec. Assuming a specific proper motion of interstellar matter surrounding the solar system we obtain a neutral corpuscular energy flux having nearly the same shape and phase as the wellknown semi-annual effect in atmospheric temperatures and densities. Collision-generated, fast neutrals reaching the earth could therefore possibly give an explanation of this effect.Mitteilungen der Astronomischen Institute Bonn, Nr. 102.  相似文献   

16.
The temperature structure of the transition region between the chromosphere and corona is discussed in the context of current ideas about magnetic fields in these layers. Magnetic channeling of the downward conductive heat flow from the corona into the regions of enhanced field at the supergranulation boundaries is proposed as a mechanism for explaining the measured intensities of solar ultraviolet emission lines which originate in layers with temperatures below 105 °K. It is shown that nearly all of the observed ultraviolet line emission originates in interspicule regions, and that this emission plays an important part in the energy balance of the cooler layers of the transition region. It is suggested that certain motions observed in the upper chromosphere may represent the earliest visual evidence for conversion of inflowing conduction energy into kinetic motions.On leave from the Observatory Sonnenborgh at Utrecht, The Netherlands.  相似文献   

17.
Ambrož  P. 《Solar physics》2001,198(2):253-277
The structure of the large-scale background magnetic field evolves in time and space. The large-scale horizontal transport velocity field of the magnetic flux patterns was inferred over the whole solar photosphere in the course of two solar activity cycles from year 1976 to 1999. The method of velocity determination and the testing procedures of the velocity accuracy are presented. The non-axially symmetric component of the horizontal velocity was found and both zonal and meridional velocity regions were described. The horizontal large-scale transport velocity regions vary in shape and the intensity during different phases of the 11-year solar activity cycle. The total horizontal transport velocity is characterized by the presence of variable amounts of the vector field vortices with symmetric orientation relative to the solar equator. The zonal velocity regions, distributed inside of the zonal belt limited by latitudes ± 35°, are persistent for about 4 Carrington rotations. Recurrent structures of similar velocity distributions are not coherent over the whole solar photosphere.  相似文献   

18.
Photospheric ephemeral regions (EPRs) cover the Sun like a magnetic carpet. From this, we update the Babcock – Leighton solar dynamo. Rather than sunspot fields appearing in the photosphere de novo from eruptions originating in the deep interior, we consider that sunspots form directly in the photosphere by a rapid accumulation of like-sign field from EPRs. This would only occur during special circumstances: locations and times when the temperature structure is highly superadiabatic and contains a large subsurface horizontal magnetic field (only present in the Sun’s lower latitudes). When these conditions are met, superadiabatic percolation occurs, wherein an inflow and downflow of gas scours the surface of EPRs to form active regions. When these conditions are not met, magnetic elements undergo normal percolation, wherein magnetic elements move about the photosphere in Brownian-type motions. Cellular automata (CA) models are developed that allow these processes to be calculated and thereby both small-scale and large-scale models of magnetic motions can be obtained. The small-scale model is compared with active region development and Hinode observations. The large-scale CA model offers a solar dynamo, which suggests that fields from decaying bipolar magnetic regions (BMRs) drift on the photosphere driven by subsurface magnetic forces. These models are related to observations and are shown to support Waldmeier’s findings of an inverse relationship between solar cycle length and cycle size. Evidence for significant amounts of deep magnetic activity could disprove the model presented here, but recent helioseismic observations of “butterfly patterns” at depth are likely just a reflection of surface activity. Their existence seems to support the contention made here that the field and flow separate, allowing cool, relatively field-free downdrafts to descend with little field into the nether worlds of the solar interior. There they heat by compression to form a hot solar-type Santa Ana wind deep below active regions.  相似文献   

19.
The Faraday rotation of a radio source (Pioneer 6) occulted by the solar corona has been measured by Levy et al. (1969). During the course of these measurements, three large-scale transient phenomena were observed. These events were preceded by subflares and class 1 flares. These transient events are interpreted as evidence for a coronal magnetic bottle at 10 R . The velocity of propagation for the disturbance is set at 200 km/sec; the dimension of the region, 10 R ; field strength at 10 R , 0.02 G; particle density, 2.0 × 104/cm3; Alfvén speed, 320 km/sec. From the nature of the observations and the lack of related effects from similar flares on the interplanetary sector pattern observed at 1 AU, it is suggested that such coronal magnetic bottles expand to perhaps 10–30 R and then contract to a few solar radii. Such a phenomena is evidence for an expansion of the corona with a sub-Alfvénic velocity. It is further suggested that such magnetic bottles may be important in the storage and diffusion of solar generated cosmic ray particles. NAS-NRC Postdoctoral Resident Research Associate.  相似文献   

20.
Large-scale solar motions comprise differential rotation (with latitudinal, and perhaps radial gradients), axially symmetric meridional motions, and possible asymmetric motions (giant convective cells or Rossby-type waves or both). These motions must be basic in any satisfactory theory of the changing pattern of solar magnetic fields and of the 22-yr cycle. In the present paper available data are discussed and, as far as possible, evaluated and explained.Rotational measurements are based on the changing positions of discrete features such as sunspots, on Doppler shifts, on geophysical changes and on statistical evaluation of the motions of diffuse objects. The first mentioned, comprising faculae, sunspots, K-corona (to latitudes 45°) and filaments, show agreement better than 0.7 %. A new formula for surface rotation s , based on faculae and sunspot data, is s = 14.52 – 2.48 sin2 b – 2.51 sin6 b deg day–1, where b is latitude, and validity may extend to about 70°. Errors in Doppler shift measurements and statistical treatments are discussed. There is evidence of a much slower coronal rate at high latitudes, and of a slower sub-surface rate at lower latitudes.Ordered meridional motions have been revealed by statistical investigations of the positions of spot groups, of spots and of filaments. All these results seem explicable in terms of an oscillating hydro-magnetic circulation in each hemisphere. These have both 11-yr and 22-yr components, and these periods are provided by a general dipole field of about one gauss, together with a pair of toroidal fields centred at latitudes ±16° and of average strength of order 10 G.Evidence of large-scale (perhaps 3 × 105 km), irregular surface motions is provided by the distribution of surface magnetic flux, the motions of sunspots, and Doppler-shift observations; it is supported by Ward's theory of the equatorial acceleration. The possibility is suggested that these asymmetric motions also drive the oscillatory meridional motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号