首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical composition of metamorphosed siliciclastic rocks in the Orlica-?nie?nik Dome (Bohemian Massif) identifies the main sources for the Neoproterozoic [the M?ynowiec Formation (MF)], Early Cambrian [the Stronie Formation (SF)] and Late Cambrian/Early Ordovician [the Goszów quartzites (GQ)] sediments. The MF developed from erosion of a Cadomian magmatic arc along the northern Gondwana margin. The variegated SF, with supra-subduction affinities, shows chemical characteristics pointing to erosion of the freshly exhumed Cadomian orogen and detritus deposition in the back-arc basin. The very different chemical features of the GQ indicate deposition in a basin sited on a passive continental margin. The explanation proposed for the observed changes in chemical composition involves three main stages: (1) The pre ~540 Ma evolution of an active continental margin and related back-arc basin ceased with the collision and accretion of the magmatic arc to the Gondwana margin; (2) Early Cambrian rift to drift transition (540–500 Ma) and development of a depositional basin filled with detritus derived from remnants of the magmatic arc; (3) Peri-Gondwana break-up leading to the formation of shallow-water passive margin depositional basins filled with quartz-rich detritus resembling Early Ordovician Armorican quartzites known from other parts of the Variscan Belt.  相似文献   

2.
Abstract

The Orlica-?nie?nik dome comprises large orthogneiss bodies interbedded with amphiblite-grade metasediments and minor metavolcanics. New U-Pb and Pb-Pb SHRIMP zircon ages for two major gneiss units of the dome, the ?nie?nik and Giera?tów gneiss, yielded similar ages of ca. 500 Ma. This is interpreted to reflect the magmatic crystallization age from the same or similar igneous precursors, in agreement with the geochemical characteristics of these rocks. Some zircon cores in both gneisses, interpreted to be inherited xenocrysts, have ages of ca. 530–540 Ma, and, additionally, of ca. 565 Ma and 2.6 Ga in the ?nie?nik gneiss. Igneous grains in both gneiss types have high-U rims, which are dark under cathodoluminescence. They are much better developed in the Giera?tow gneiss and they yield a well-defined weighted mean U-Pb age of 342 ± 6 Ma. These high-U rims are interpreted to have grown close to the peak of HT metamorphism which is responsible for the migmatitic texture of the Giera?tow gneiss. The Visean HT-LP metamorphism in the Orlica-?nie?nik dome is interpreted as a result of rapid uplift and decompression due to overthrusting of high grade rocks over the Moravo-Silesian nappe pile. Our data support geodynamic models that ascribe a predominant influence in the tectonic evolution of the West Sudetes to the Variscan oro- genic events. This is suggested by the inheritance of zircon xenocrysts from the Cadomian basement and by the Late Cambrian- Early Ordovician magmatic event, both typical of the Armorican terrane assemblage, as well as by the Early Carboniferous age of the metamorphism. © 2000 Éditions scientifiques et médicales Elsevier SAS  相似文献   

3.
《Geodinamica Acta》2000,13(5):293-312
The Orlica-Śnieżnik dome comprises large orthogneiss bodies interbedded with amphiblite-grade metasediments and minor metavolcanics. New U-Pb and Pb-Pb SHRIMP zircon ages for two major gneiss units of the dome, the Śnieżnik and Gierałtów gneiss, yielded similar ages of ca. 500 Ma. This is interpreted to reflect the magmatic crystallization age from the same or similar igneous precursors, in agreement with the geochemical characteristics of these rocks. Some zircon cores in both gneisses, interpreted to be inherited xenocrysts, have ages of ca. 530–540 Ma, and, additionally, of ca. 565 Ma and 2.6 Ga in the Śnieżnik gneiss. Igneous grains in both gneiss types have high-U rims, which are dark under cathodoluminescence. They are much better developed in the Gierałtów gneiss and they yield a well-defined weighted mean U-Pb age of 342 ± 6 Ma. These high-U rims are interpreted to have grown close to the peak of HT metamorphism which is responsible for the migmatitic texture of the Gierałtów gneiss. The Visean HT–LP metamorphism in the Orlica-Śnieżnik dome is interpreted as a result of rapid uplift and decompression due to overthrusting of high grade rocks over the Moravo-Silesian nappe pile. Our data support geodynamic models that ascribe a predominant influence in the tectonic evolution of the West Sudetes to the Variscan orogenic events. This is suggested by the inheritance of zircon xenocrysts from the Cadomian basement and by the Late Cambrian–Early Ordovician magmatic event, both typical of the Armorican terrane assemblage, as well as by the Early Carboniferous age of the metamorphism.  相似文献   

4.
Small tectonic slices of undeformed eclogites and ultrahigh-pressure granulites occur in three tectonic units of the Śnieżnik Mts. (SW Poland). Ultrahigh-pressure granulite/eclogite transitions with peak metamorphic conditions between 21 and 28 kbar at 800 to 1000 °C occur only in the Złote unit. Conventional U-Pb multigrain analyses of zircons from a mafic granulite provided 207Pb/206Pb ages between 360 to 369 Ma which are interpreted to approximate timing of original crystallisation from a melt. Diffusion kinetics and the restricted availability of a fluid phase mainly controlled the conversion from granulite to eclogite, although some bulk-chemical differences were also recognised. The ultrahigh-pressure granulites from the Złote unit exclusively contain H2O-rich inclusions with variable salinities which distinguishes them from high-temperature (HT)-granulites world-wide. This is also in contrast to the fluid regime (H2O-N2-CO2) recognised in the lower-temperature eclogites (600–800 °C) from the closely associated Międzygórze and Śnieżnik units. The variation in fluid composition between the lower-temperature eclogites and ultrahigh-pressure granulites on the one hand and ultrahigh-pressure granulites and HT-granulites on the other hand probably indicates contrasting P-T-t paths as a result of different tectonic environments. Received: 15 June 1998 / Accepted: 2 March 1999  相似文献   

5.
Amphibolites from the Szklarska Por?ba hornfels belt (northern part of the Karkonosze-Izera Massif) represent rocks of alkali-basalt composition metamorphosed during Variscan times. Despite the intense thermal influence of the Karkonosze granite superimposed on the effects of regional amphibolite-facies metamorphism, the geochemical affinities of the Szklarska Por?ba amphibolites are well preserved. They are similar to alkaline OIB basalts derived from an enriched (undepleted) sub-lithospheric source in the garnet stability field at depths ca 80–120?km. Trace-element characteristics and geochemical modelling indicate that the source was not modified by metasomatism in a supra-subduction zone or by alkali (silicate, carbonatitic) infiltration. Subsequent intra-crustal fractional crystallization involved olivine and clinopyroxene, and subordinate spinel and, presumably, plagioclase. The chemical composition of the rocks is most similar to that of modern magmas generated in an extensional setting (intra-continental rift). Neither geochemical characteristics nor estimated mantle temperatures only slightly higher than those of ambient mantle convincingly attest to the involvement of deep-mantle plume activity. Instead, decompression melting of passively upwelling asthenosphere beneath opening fractures in fragmented lithosphere is invoked. The origin of the amphibolite protolith was presumably associated with the Early Palaeozoic rifting of northern Gondwana, well documented throughout the Karkonosze-Izera massif. Locally rifting must have ceased earlier (immature rift) as reflected by mafic dykes exposed in the northern part of the massif, i.e., in the Szklarska Por?ba hornfelses, and by the Izera gneisses and the Stara Kamienica metapelites. A passive rift system controlled by lithosphere extension provides a plausible explanation for the origin of mafic rocks in the Karkonosze-Izera Massif and sheds light on possible mechanisms involved in the break-up of Gondwana.  相似文献   

6.
Approximately 500-Ma-old orthogneisses are widespread in the eastern part of the Variscan belt and are commonly interpreted to have intruded mica-schist series of assumed Neoproterozoic age. New SHRIMP zircon ages of quartzofeldspathic metavolcanogenic rocks of the mica schist series in the eastern part of the Karkonosze-Izera Massif (SW Poland) indicate that they are late Cambrian/early Ordovician rather than Neoproterozoic in age, based on the zircon age spectra distributed mainly between ca. 500 and 660 Ma (with a few Proterozoic inherited minimum ages of ca. 970 and 1,825 Ma). Younger zircon dates, dispersed between ca. 412 and 464 Ma, are interpreted as a result of Pb-loss likely caused by subsequent metamorphism. Consequently, the felsic metavolcanogenic rocks appear to be roughly contemporaneous with the intrusion of ca. 500-Ma-old orthogneiss protoliths (with the pooled concordia age of 487 ± 8 Ma interpreted as the best approximation of the protolith intrusive age). Field relationships, petrological and geochemical features of the felsic and mafic rocks studied support a model in which the accompanying mica schist series are not the original country rocks to the ca. 500 Ma granite intrusions, and indicate that their recent close proximity is the result of tectonic juxtaposition. However, both the mica schists enclosing the bimodal metavolcanic rocks, and the orthogneisses, are interpreted to represent a Cambro-Ordovician passive continental margin sequence being part of the Saxothuringian domain. They are tectonically overlain to the east by HP/T metamorphic units, comprising MORB-type metaigneous rocks, and delineating a tectonic suture separating the Saxothuringian block in the west from an assumed continental block (Tepla-Barrandian) to the south-east.  相似文献   

7.
8.
Mineralogy and Petrology - The results of the new Electron Microprobe Analysis of apatite, hornblende and biotite crystals of the hornblende-biotite variety of the Strzegom-Sobótka granite...  相似文献   

9.
The Kodzko Metamorphic Complex (KMC) in the Central Sudetes consists of meta-sedimentary and meta-igneous rocks metamorphosed under greenschist to amphibolite facies conditions. They are comprised in a number of separate tectonic units interpreted as thrust sheets. In contrast to other Lower Palaeozoic volcano-sedimentary successions in the Sudetes, the two uppermost units (the Orla-Googowy unit and the Kodzko Fortress unit) of the KMC contain meta-igneous rocks with supra-subduction zone affinities. The age of the KMC was previously assumed to be Early Palaeozoic–Devonian, based on biostratigraphic findings in the lowermost tectonic unit. Our geochronological study focused on the magmatic rocks from the two uppermost tectonic units, exposed in the SW part of the KMC. Two orthogneiss samples from the Orla-Googowy unit yielded ages of 500.4±3.1 and 500.2±4.9 Ma, interpreted to indicate the crystallization age of the granitic precursors. A plagioclase gneiss from the same tectonic unit, intimately interlayered with metagabbro, provided an upper intercept age of 590.1±7.2 Ma, which is interpreted as the time of igneous crystallization. From the topmost Kodzko Fortress unit, a metatuffite was studied, which contains a mixture of genetically different zircon grains. The youngest 207Pb/206Pb ages, which cluster at ca. 590-600 Ma, are interpreted to indicate the maximum depositional age for this metasediment. The results of this study are in accord with a model that suggests a nappe structure for the KMC, with a Middle Devonian succession at the base and Upper Proterozoic units at structurally higher levels. It is suggested here that the KMC represents a composite tectonic suture that juxtaposes elements of pre-Variscan basement, intruded by the Lower Ordovician granite, against a Middle Palaeozoic passive margin succession. The new ages, combined with the overall geochemical variation in the KMC, indicate the existence of rock assemblages representing a Gondwana active margin. The recognition of Neoproterozoic subduction-related magmatism provides additional arguments for the hypothesis that equivalents of the Teplá-Barrandian domain are exposed in the Central Sudetes.  相似文献   

10.
A temperature–time path was constructed for high-temperature low-pressure (HT–LP) migmatites of the Bayerische Wald, internal zone of the Variscan belt, Germany. The migmatites are characterised by prograde biotite dehydration melting, peak metamorphic conditions of approximately 850 °C and 0.5–0.7 GPa and retrograde melt crystallisation at 800 °C. The time-calibration of the pressure–temperature path is based on U–Pb dating of single zircon and monazite grains and titanite separates, on 40Ar/39Ar ages obtained by incremental heating experiments on hornblende separates, single grains of biotite and K-feldspar, and on 40Ar/39Ar spot fusion ages of biotite determined in situ from sample sections. Additionally, crude estimates of the duration of peak metamorphism were derived from garnet zoning patterns, suggesting that peak temperatures of 850 °C cannot have prevailed much longer than 2.5 Ma. The temperature–time paths obtained for two areas approximately 30 km apart do not differ from each other considerably. U–Pb zircon ages reflect crystallisation from melt at 850–800 °C at 323 Ma (southeastern area) and 326 Ma (northwestern area). The U–Pb ages of monazite mainly coincide with those from zircon but are complicated by variable degrees of inheritance. The preservation of inherited monazite and the presence of excess 206Pb resulting from the incorporation of excess 230Th in monazite formed during HT–LP metamorphism suggest that monazite ages in the migmatites of the Bayerische Wald reflect crystallisation from melt at 850–800 °C and persistence of older grains at these temperatures during a comparatively short thermal peak. The U–Pb ages of titanite (321 Ma) and 40Ar/39Ar ages of hornblende (322–316 Ma) and biotite (313–309 Ma) reflect cooling through the respective closure temperatures of approximately 700, 570–500 and 345–310 °C published in the literature. Most of the feldspars' ages (305–296 Ma) probably record cooling below 150–300 °C, while two grains most likely have higher closure temperatures. The temperature–time paths are characterised by a short thermal peak, by moderate average cooling rates and by a decrease in cooling rates from 100 °C/my at temperatures between 850–800 and 700 °C to 11–16 °C/my at temperatures down to 345–310 °C. Further cooling to feldspar closure for Ar was probably even slower. The lack of decompressional features, the moderate average cooling rates and the decline of cooling rates with time are not easily reconciled with a model of asthenospheric heating, rapid uplift and extension due to lithospheric delamination as proposed elsewhere. Instead, the high peak temperatures at comparatively shallow crustal levels along with the short thermal peak require external advective heating by hot mafic or ultramafic material. Received: 7 July 1999 / Accepted: 28 October 1999  相似文献   

11.
The origin of plutonic complexes that stitch suture zones developed during collision is not well understood. In southern Iberia, the Pulo du Lobo suture zone (PDLZ) is intruded by the syn- to postcollisional Gil Marquez pluton (GMP), thought to be part of the Sierra Norte Batholith. U–Pb (LA-ICPMS, zircon) data on various phases of the GMP yield from oldest to youngest: (1) a 354.4 ± 7.6 Ma unfoliated gabbro; (2) a 345.6 ± 2.5 Ma foliated intermediate phase; (3) a 346.5 ± 5.4 Ma unfoliated porphyritic granite; (4) a 335.1 ± 2.8 Ma unfoliated biotite granite. This sequence is consistent with cross-cutting relationships observed in the field. The range in ages is consistent with interpretations that the GMP is part of the composite (ca. 350–308 Ma) SNB. Inherited ages preserved in the GMP intermediate and felsic phases indicate that its magmas traversed through South Portuguese Zone and PDLZ crust during emplacement. The ca. 345 Ma emplacement of the late kinematic foliated intermediate phase constrains the age of late-stage strike slip deformation within the PDLZ, and the lack of a foliation in the older gabbro indicates that is was not proximal to a shear zone neither at the time of emplacement, nor during its subsequent history. The unfoliated porphyritic granite and unfoliated biotite granite cut the foliation of the intermediate phase indicating emplacement during the waning stages of collision, while the ca. 335 Ma biotite granite intrudes the Santa Ira Flysch, thereby providing a tight constraint for the latest stage of deformation in the PDLZ.  相似文献   

12.
Zhai  Qing-guo  Jahn  Bor-ming  Li  Xian-hua  Zhang  Ru-yuan  Li  Qiu-li  Yang  Ya-nan  Wang  Jun  Liu  Tong  Hu  Pei-yuan  Tang  Suo-han 《International Journal of Earth Sciences》2017,106(4):1239-1255
International Journal of Earth Sciences - Zircon is probably the most important mineral used in the dating formation of high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks. The origin...  相似文献   

13.
Metamorphosed during the Variscan orogeny, sediments of the ca. 560 Ma M?ynowiec Formation and ca. 530 Ma Stronie Formation in the Bystrzyckie and Orlickie Mountains (Central Sudetes, Poland) contain metabasites with a range of basaltic compositions. Immobile trace element and Nd isotope features allow distinction of dominant, either E-MORB-like (Group 1: Zr/Nb 9–20, εNd530 +2.6 to +6.7) or mildly enriched N-MORB-like tholeiites (Group 2: Zr/Nb 21–27, εNd530 +0.2 to +6.7), and scarce but genetically important OIB-like alkaline (Group 3: Zr/Nb 5, εNd530 +2.2) or depleted tholeiitic rocks (Group 4: Zr/Nb 67, εNd530 +7.9). Neither the radiogenic age nor age relationships between these four groups are known. However, field evidence suggests that the metabasites are younger than the M?ynowiec Formation and that their emplacement must have been coeval with the accumulation of the Stronie Formation sediments. The OIB affinity of Group 3 is interpreted to reflect an enriched mantle (EM)-type asthenopheric source whilst the groups of tholeiitic rocks indicate involvement of depleted (locally slightly residual) MORB-type mantle (DMM). Several geochemical signatures, the decoupling between Nd isotope and trace element characteristics, and melting models indicate variable enrichment of the DMM-like source, here ascribed to asthenosphere-derived OIB-like melts (Group 1 and 2) and a contribution from a supra-subduction zone (Group 2 and 4). Based on contrasting back-arc basin (BAB)- and within-plate-like affinities of the metabasites, and on petrogenetic constraints from the spatially related infill of the Stronie Formation rift basin, the studied magmatic episode is suggested be related to cessation of the supra-subduction zone activity, presumably induced by ridge-trench collision. This event might have led to slab break-off, the development of a transform plate boundary, opening of a slab window and upward migration of sub-slab enriched asthenosphere. Decompression melting of the upwelling asthenosphere could then have produced OIB-like melts which segregated and infiltrated into the mantle of the former subduction zone, with randomly distributed slab-derived components. In an extensional regime, magmas generated at shallow levels from heterogeneous mantle regions were emplaced within sedimentary rocks of the overlying rift basin. The vestiges of subduction-related processes and within-plate style of mantle enrichment suggest that the metabasites could be related to final stages of the Cadomian orogeny and incipient Early Palaeozoic rifting of Gondwana that heralded the opening of the Rheic Ocean.  相似文献   

14.
U–Pb zircon dating is combined with petrology, Zr-in-rutile thermometry and mineral equilibria modelling to discuss zircon petrogenesis and the age of metamorphism in three units of the Variscan Vosges Mountains (NE France). The monotonous gneiss unit shows results at 700–500?Ma, but no Variscan ages. The varied gneiss unit preserves ages between 600 and 460?Ma and a Variscan group at 340–335?Ma. Zircon analyses from the felsic granulite unit define a continuous array of ages between 500 and 340?Ma. In varied gneiss samples, zoned garnet includes kyanite and rutile and is surrounded by matrix sillimanite and cordierite. In a pseudosection, it points to peak conditions of?~16 kbar/850?°C followed by isothermal decompression to 8–10 kbar/820–860?°C. In felsic granulite samples, the assemblage K-feldspar–garnet–kyanite–Zr-rich rutile is replaced by sillimanite and Zr-poor rutile. Modelling these assemblages supports minimum conditions of?~13 kbar/925?°C, and a subsequent P–T decrease to 6.5–8.5 kbar/800–820?°C. The internal structure and chemistry of zircons, and modelling of zircon dissolution/growth along the inferred P–T paths are used to discuss the significance of the U–Pb ages. In the monotonous unit, inherited zircon ages of 700–500?Ma point to sedimentation during the Late Cambrian, while medium-grade metamorphism did not allow the formation of Variscan zircon domains. In both the varied gneiss and felsic granulite units, zircons with a blurred oscillatory-zoned pattern could reflect solid-state recrystallization of older grains during HT metamorphism, whereas zircons with a dark cathodoluminescence pattern are thought to derive from crystallization of an anatectic melt during cooling at middle pressure conditions. The present work proposes that U–Pb zircon ages of ca. 340?Ma probably reflect the end of a widespread HT metamorphic event at middle crustal level.  相似文献   

15.
An extinct hydrothermal barite-silica chimney from the Franklin Seamount of the Woodlark Basin, in the southwestern Pacific Ocean, was investigated for mineral distribution and geochemical composition. Six layers on either side of the orifice of a chimney show significant disparity in color, mineral assemblage and major element composition. Electron microscope(SEM) images reveal that the peripheral wall of the chimney is composed of colloform silica, suggesting that incipient precipitation of silica-saturated hydrothermal fluid initiated the development of the chimney wall. Intermediate layers, between the exterior wall and the inner fluid-orifice, dominate with barite and sulfides. Low Sr-to-Ba ratios(SrO/BaO = 0.015–0.017) indicate restricted fluid-seawater mixing, which causes relatively high-temperature formation of the intermediate layers. Whereas the innermost layer bordering the chimney orifice is characterized by more silica and a higher Sr-to-Ba ratio(SrO/BaO = 0.023), could have formed due to a paragenetic shift from a high-temperature active phase to a cooler waning stage of formation. A paragenetic shift is also probably responsible for the change in mineral formation mechanism that resulted in the textural variation of barite and colloform silica developed during different growth phases of this barite-silica chimney.  相似文献   

16.
This paper records, for the first time, the mineralization of gold (0.98–2.76 ppm) and uranium (133–640 ppm) in marbles from the Arabian-Nubian Shield of the Eastern Desert of Egypt. These auriferous and uraniferous marbles are hosted by sheared and altered ophiolitic serpentinized ultramafic rocks of Gebel El-Rukham (ER), Wadi Daghbag (DG), and Wadi Al Barramiyah (BM). They occur as massive or banded in pod-like or bedded shapes. The ER and BM-mineralized marbles are impure calcitic, whereas the DG marble is impure calcitic to impure dolomitic. Their protolith are pure limestones and dolomitic limestones with probable argillaceous components (BM marble), and their metamorphism (Pan-African) was retrograde. Peaks of metamorphism were at granulite-amphibolite facies for the ER and BM marbles, forming diopside (Al2O3?=?0.17–1.07 wt.%) at 600–900°C and augite (Al2O3?=?2.45–9.40 wt.%) at 825–975°C, and at the amphibolite facies for DG marble, recrystallising the carbonate minerals and forming tremolite. The lowest temperatures of metamorphism were at the upper subgreenschist facies as chlorite (ER and BM marbles) and kaolinite (DG marble) were formed. Metamorphic fluids were, most probably, essentially binary H2O–CO2 mixtures with low NaCl and HF concentrations. Gold in the studied mineralized marbles occurs as native nuggets (10–35 μm) having globule, rod, crescent, and streak shapes, in pores, vugs, and fissures. The source of gold in all marbles is mostly the country ultramafic rocks. Timing of gold mineralization relative to the marblization and metamorphism of the country source ultramafic rocks was both syn- and post-metamorphic. Concerning the ER and DG marbles, it was syn-metamorphic, where Au liberation and transportation were mostly by the metamorphic fluids. The composition and temperature of these fluids were most probably inappropriate for formation of the sulfide complexes of gold. The gold mineralization of BM marble, on the other hand, was mostly post-metamorphic. The mineralising fluid was of surficial origin under oxidizing conditions. The encountered uranium minerals are of secondary origin such as autunite, uranophane, and carnotite. These minerals occur as fine oval aggregates and irregular grains (10–50 μm) usually filling fissures and vugs. The uranium mineralization can be classified as surficial of ages <1.5 Ma. It is proposed that the U was transported from its source (might be flesite and trachyte dikes for the ER and DG marbles and granite rocks for BM marble) to the marble rocks by surface and/or underground water related to the pluvial periods in Egypt. In BM marble, U and Au have mutual mineralizing fluid but different paragenesis.  相似文献   

17.
《Geodinamica Acta》2013,26(5):363-374
Granitoid rocks of the southern Menderes Massif, SW Turkey include widespread possibly Ediacaran high-grade granitic orthogneisses and younger (Tertiary) sheets, sills and/or dikes of variably deformed tourmaline-bearing leucogranites. The latter are confined to the immediate footwall of the regional-scale ductile southern Menderes shear zone. Although both sets of granitoid rocks are essentially calc-alkaline and peraluminous, the syn- to post-collisional tourmaline-bearing leucogranites are chemically distinguishable from both the granitoid orthogneisses and from two sets of mostly sodic siliceous dyke rocks. The leucogranites were generated by partial melting induced by shear heating during the waning stages of the Eocene main Menderes metamorphism and associated top-to-the-NNE thrusting along the southern Menderes ductile shear zone, which transported schists northwards over the granitoid orthogneisses of the core Menderes complex. Upward migration and emplacement of leucogranitic melt weakened formerly sheared rocks, so that when thrust-related deformation ceased it facilitated rapid crustal extension along the shear zone. The emplacement of leucogranites, in turn, promoted the reactivation of the southern Menderes shear zone as a top-to-the-SSW extensional feature. Continued extensional deformation affected the leucogranites which became parallel to the shear-zone foliation; local S-C fabrics were also generated. The additional occurrence of less or almost undeformed leucogranites suggests that the latest stages of extension might have induced adiabatic decompressional melting. Hence the leucogranite melt generation and emplacement in the southern Menderes Massif occurred in pulses. Both compressional and extensional processes played key roles in melt generation, emplacement, deformation and exhumation of the massif.

A clear distinction may also be made between the composition of granite-hosted tourmalines and those from metasedimentary schists. Tourmalines from a pebble of uncertain provenance in the Gökçay metaconglomerate plotted with schist-hosted tourmalines, suggesting that it was unlikely to be derived from granitoid gneiss. This crucial piece of evidence suggests that the presence of a major (Pan-African) unconformity at the so-called “core (orthogneiss)-cover (schist)” boundary in the southern Menderes Massif is unnecessary.  相似文献   

18.
Summary Minute inclusions of phlogopite and a chlorite-vermiculite intergrade mineral occur in the vesuvianite from rodingite at Przemiów (Lower Silesia). The same inclusions were found in its blackwall, i.e. outer metasomatic zone formed at the expense of adjacent ultrabasic rock. These findings demonstrate that potassium was released from the rodingite protolith during the Ca-metasomatism that accompanied low-temperature serpentinization and was consumed by phlogopite formed in the rodingite blackwall. Fresh phlogopite persists as small inclusions in vesuvianite. The abundant phlogopite-derived intergrade chlorite-vermiculite in the blackwall documents the potassium-rich composition of the protolith of the rodingite, though its primary chemistry is highly modified during metasomatic processes. The rodingite blackwall can be useful as tracer of the metamorphic and tectonic episodes obscured during complex geological evolution of the ophiolite.
Schichtsilikate von Rodingit- Blackwalls aus Przemiów (Niederschlesien, Polen): Mineralogische Dokumentation metasomatischer Prozesse während der Serpentinisierung und der Rekristallisation von Serpentinit
Zusammenfassung Winzige Einschlüsse von Phlogopit und einem K-führenden Chlorit-Vermiculit Mineral wurden in Vesuvian aus Rodingiten von Przemiów (Niederschlesien) gefunden. Dieselben Minerale treten in der sogenannten Blackwall, i.e. der äußeren metasomatischen Zone, die sich auf Kosten der angrenzenden Ultrabasite gebildet hat, auf. Diese Ergebnisse zeigen, daß Kalium aus dem Rodingit-Protolith während der Ca-Metasomatose, die die Niedrig-Temperatur 5erpentinisierung begleitete, freigesetzt wurde und von Phlogopit, der sich in der Blackwall bildete, konsumiert wurde. Frische kleine Phlogopite sind als Einschlüsse in Vesuvian erhalten geblieben. Das aus dem Phlogopit entstandene verbreitete Chlorit-Vermiculit Mineral belegt eine Kaliumreiche Zusammensetzung des Rodingit-Protoliths, obwohl die primäre Chemie durch metasomatische Prozesse stark verändert wurde.


With 7 Figures  相似文献   

19.
Dioritic and granodioritic rocks coexist in the Gęsiniec Intrusion in SW Poland showing typical relationships in many mafic–felsic mingling zones worldwide, such as dioritic syn-putonic dykes and microgranular enclaves within granodioritic host. Plagioclase zonation from granodioritic rocks suggests late stage mixing probably with dioritic magma, whereas no magma mixing is recorded in plagioclase from dioritic rocks. The diorites seem to show effects of interaction with evolved, leucocratic melts derived from granodiorite, not with the granodioritic melt itself. We conclude that the diorites’ compositions were modified after their emplacement within the granodioritic host, when the diorites were essentially solidified and injection of evolved melt from granodiorite did not involve marked modification of plagioclase composition. Compositional zoning patterns of plagioclase in diorites can be modeled by closed system fractional crystallization interrupted by resorption induced probably by decompression. Granodioritic plagioclase seems to be affected by the same resorption event. Plagioclase that crystallized in dioritic magma before the resorption does not record interaction between dioritic and granodioritic magmas, suggesting that both magmas evolved separately. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号