首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grassland is one of the most widespread vegetation types worldwide and plays a significant role in regional climate and global carbon cycling. Understanding the sensitivity of Chinese grassland ecosystems to climate change and elevated atmospheric CO2 and the effect of these changes on the grassland ecosystems is a key issue in global carbon cycling. China encompasses vast grassland areas of 354 million ha of 17 major grassland types, according to a national grassland survey. In this study, a process-based terrestrial model the CENTURY model was used to simulate potential changes in net primary productivity (NPP) and soil organic carbon (SOC) of the Leymus chinensis meadow steppe (LCMS) under different scenarios of climatic change and elevated atmospheric CO2. The LCMS sensitivities, its potential responses to climate change, and the change in capacity of carbon stock and sequestration in the future are evaluated. The results showed that the LCMS NPP and SOC are sensitive to climatic change and elevated CO2. In the next 100 years, with doubled CO2 concentration, if temperature increases from 2.7-3.9˚C and precipitation increases by 10% NPP and SOC will increase by 7-21% and 5-6% respectively. However, if temperature increases by 7.5-7.8˚C and precipitation increases by only 10% NPP and SOC would decrease by 24% and 8% respectively. Therefore, changes in the NPP and SOC of the meadow steppe are attributed mainly to the amount of temperature and precipitation change and the atmospheric CO2 concentration in the future.  相似文献   

2.
Terrestrial ecosystems are an important part of Earth systems, and they are undergoing remarkable changes in response to global warming. This study investigates the response of the terrestrial vegetation distribution and carbon fluxes to global warming by using the new dynamic global vegetation model in the second version of the Chinese Academy of Sciences (CAS) Earth System Model (CAS-ESM2). We conducted two sets of simulations, a present-day simulation and a future simulation, which were forced by the present-day climate during 1981–2000 and the future climate during 2081–2100, respectively, as derived from RCP8.5 outputs in CMIP5. CO2 concentration is kept constant in all simulations to isolate CO2-fertilization effects. The results show an overall increase in vegetation coverage in response to global warming, which is the net result of the greening in the mid-high latitudes and the browning in the tropics. The results also show an enhancement in carbon fluxes in response to global warming, including gross primary productivity, net primary productivity, and autotrophic respiration. We found that the changes in vegetation coverage were significantly correlated with changes in surface air temperature, reflecting the dominant role of temperature, while the changes in carbon fluxes were caused by the combined effects of leaf area index, temperature, and precipitation. This study applies the CAS-ESM2 to investigate the response of terrestrial ecosystems to climate warming. Even though the interpretation of the results is limited by isolating CO2-fertilization effects, this application is still beneficial for adding to our understanding of vegetation processes and to further improve upon model parameterizations.  相似文献   

3.
Previous research has shown that various fluxes of carbon from and into ecosystems are correlated with summary climatic measures, such as actual evapotranspiration (AET). The best known of these is a regression of net primary production of terrestrial vegetation against AET published by Rosenzweig (1968). Rosenzweig intended this regression to represent steady state relationships of net primary production to climate. Nevertheless, it is tempting to use such regressions to predict transient responses of carbon flux to climate change, and several models take such an approach. Here, using a more detailed ecosystems model, we show that lags in population responses to climate change and non-linear changes in soil nitrogen availability that limit tree growth cause large departures from this regression during the transition between current climate and a 2 × CO2 climate. Simple models that do not consider population or soil dynamics may err when applied to the period of transition during a changing climate.  相似文献   

4.
Human activities have altered the distribution and quality of terrestrial ecosystems. Future demands for goods and services from terrestrial ecosystems will occur in a world experiencing human-induced climate change. In this study, we characterize the range in response of unmanaged ecosystems in the conterminous U.S. to 12 climate change scenarios. We obtained this response by simulating the climatically induced shifts in net primary productivity and geographical distribution of major biomes in the conterminous U.S. with the BIOME 3 model. BIOME 3 captured well the potential distribution of major biomes across the U.S. under baseline (current) climate. BIOME 3 also reproduced the general trends of observed net primary production (NPP) acceptably. The NPP projections were reasonable for forests, but not for grasslands where the simulated values were always greater than those observed. Changes in NPP would be most severe under the BMRC climate change scenario in which severe changes in regional temperatures are projected. Under the UIUC and UIUC + Sulfate scenarios, NPP generally increases, especially in the West where increases in precipitation are projected to be greatest. A CO2-fertilization effect either amplified increases or alleviated losses in modeled NPP. Changes in NPP were also associated with changes in the geographic distribution of major biomes. Temperate/boreal mixed forests would cover less land in the U.S. under most of the climate change scenarios examined. Conversely, the temperate conifer and temperate deciduous forests would increase in areal extent under the UIUC and UIUC + Sulfate scenarios. The Arid Shrubland/Steppe would spread significantly across the southwest U.S. under the BMRC scenario. A map overlay of the simulated regions that would lose or gain capacity to produce corn and wheat on top of the projected distribution of natural ecosystems under the BMRC and UIUC scenarios (Global mean temperature increase of +2.5 °C, no CO2 effect) helped identify areas where natural and managed ecosystems could contract or expand. The methods and models employed here are useful in identifying; (a) the range in response of unmanaged ecosystem in the U.S. to climate change and (b) the areas of the country where, for a particular scenario of climate change, land cover changes would be most likely.  相似文献   

5.
Tropical rainforest plays an important role in the global carbon cycle, accounting for a large part of global net primary productivity and contributing to CO2 sequestration. The objective of this work is to simulate potential changes in the rainforest biome in Central America subject to anthropogenic climate change under two emissions scenarios, RCP4.5 and RCP8.5. The use of a dynamic vegetation model and climate change scenarios is an approach to investigate, assess or anticipate how biomes respond to climate change. In this work, the Inland dynamic vegetation model was driven by the Eta regional climate model simulations. These simulations accept boundary conditions from HadGEM2-ES runs in the two emissions scenarios. The possible consequences of regional climate change on vegetation properties, such as biomass, net primary production and changes in forest extent and distribution, were investigated. The Inland model projections show reductions in tropical forest cover in both scenarios. The reduction of tropical forest cover is greater in RCP8.5. The Inland model projects biomass increases where tropical forest remains due to the CO2 fertilization effect. The future distribution of predominant vegetation shows that some areas of tropical rainforest in Central America are replaced by savannah and grassland in RCP4.5. Inland projections under both RCP4.5 and RCP8.5 show a net primary productivity reduction trend due to significant tropical forest reduction, temperature increase, precipitation reduction and dry spell increments, despite the biomass increases in some areas of Costa Rica and Panama. This study may provide guidance to adaptation studies of climate change impacts on the tropical rainforests in Central America.  相似文献   

6.
The uncertainties and sources of variation in projected impacts of climate change on agriculture and terrestrial ecosystems depend not only on the emission scenarios and climate models used for projecting future climates, but also on the impact models used, and the local soil and climatic conditions of the managed or unmanaged ecosystems under study. We addressed these uncertainties by applying different impact models at site, regional and continental scales, and by separating the variation in simulated relative changes in ecosystem performance into the different sources of uncertainty and variation using analyses of variance. The crop and ecosystem models used output from a range of global and regional climate models (GCMs and RCMs) projecting climate change over Europe between 1961–1990 and 2071–2100 under the IPCC SRES scenarios. The projected impacts on productivity of crops and ecosystems included the direct effects of increased CO2 concentration on photosynthesis. The variation in simulated results attributed to differences between the climate models were, in all cases, smaller than the variation attributed to either emission scenarios or local conditions. The methods used for applying the climate model outputs played a larger role than the choice of the GCM or RCM. The thermal suitability for grain maize cultivation in Europe was estimated to expand by 30–50% across all SRES emissions scenarios. Strong increases in net primary productivity (NPP) (35–54%) were projected in northern European ecosystems as a result of a longer growing season and higher CO2 concentrations. Changing water balance dominated the projected responses of southern European ecosystems, with NPP declining or increasing only slightly relative to present-day conditions. Both site and continental scale models showed large increases in yield of rain-fed winter wheat for northern Europe, with smaller increases or even decreases in southern Europe. Site-based, regional and continental scale models showed large spatial variations in the response of nitrate leaching from winter wheat cultivation to projected climate change due to strong interactions with soils and climate. The variation in simulated impacts was smaller between scenarios based on RCMs nested within the same GCM than between scenarios based on different GCMs or between emission scenarios.  相似文献   

7.
The effects of terrestrial ecosystems on the climate system have received most attention in the tropics, where extensive deforestation and burning has altered atmospheric chemistry and land surface climatology. In this paper we examine the biophysical and biogeochemical effects of boreal forest and tundra ecosystems on atmospheric processes. Boreal forests and tundra have an important role in the global budgets of atmospheric CO2 and CH4. However, these biogeochemical interactions are climatically important only at long temporal scales, when terrestrial vegetation undergoes large geographic redistribution in response to climate change. In contrast, by masking the high albedo of snow and through the partitioning of net radiation into sensible and latent heat, boreal forests have a significant impact on the seasonal and annual climatology of much of the Northern Hemisphere. Experiments with the LSX land surface model and the GENESIS climate model show that the boreal forest decreases land surface albedo in the winter, warms surface air temperatures at all times of the year, and increases latent heat flux and atmospheric moisture at all times of the year compared to simulations in which the boreal forest is replaced with bare ground or tundra. These effects are greatest in arctic and sub-arctic regions, but extend to the tropics. This paper shows that land-atmosphere interactions are especially important in arctic and sub-arctic regions, resulting in a coupled system in which the geographic distribution of vegetation affects climate and vice versa. This coupling is most important over long time periods, when changes in the abundance and distribution of boreal forest and tundra ecosystems in response to climatic change influence climate through their carbon storage, albedo, and hydrologic feedbacks.  相似文献   

8.
A coupled climate–carbon cycle model composed of a process-based terrestrial carbon cycle model, Sim-CYCLE, and the CCSR/NIES/FRCGC atmospheric general circulation model was developed. We examined the multiple temporal scale functions of terrestrial ecosystem carbon dynamics induced by human activities and natural processes and evaluated their contribution to fluctuations in the global carbon budget during the twentieth century. Global annual net primary production (NPP) and heterotrophic respiration (HR) increased gradually by 6.7 and 4.7%, respectively, from the 1900s to the 1990s. The difference between NPP and HR was the net carbon uptake by natural ecosystems, which was 0.6 Pg C year?1 in the 1980s, whereas the carbon emission induced by human land-use changes was 0.5 Pg C year?1, largely offsetting the natural terrestrial carbon sequestration. Our results indicate that monthly to interannual variation in atmospheric CO2 growth rate anomalies show 2- and 6-month time lags behind anomalies in temperature and the NiNO3 index, respectively. The simulated anomaly amplitude in monthly net carbon flux from terrestrial ecosystems to the atmosphere was much larger than in the prescribed air-to-sea carbon flux. Fluctuations in the global atmospheric CO2 time series were dominated by the activity of terrestrial vegetation. These results suggest that terrestrial ecosystems have acted as a net neutral reservoir for atmospheric CO2 concentrations during the twentieth century on an interdecadal timescale, but as the dominant driver for atmospheric CO2 fluctuations on a monthly to interannual timescale.  相似文献   

9.
C. Tague  L. Seaby  A. Hope 《Climatic change》2009,93(1-2):137-155
Global Climate Models (GCMs) project moderate warming along with increases in atmospheric CO2 for California Mediterranean type ecosystems (MTEs). In water-limited ecosystems, vegetation acts as an important control on streamflow and responds to soil moisture availability. Fires are also key disturbances in semi-arid environments, and few studies have explored the potential interactions among changes in climate, vegetation dynamics, hydrology, elevated atmospheric CO2 concentrations and fire. We model ecosystem productivity, evapotranspiration, and summer streamflow under a range of temperature and precipitation scenarios using RHESSys, a spatially distributed model of carbon–water interactions. We examine the direct impacts of temperature and precipitation on vegetation productivity and impacts associated with higher water-use efficiency under elevated atmospheric CO2. Results suggest that for most climate scenarios, biomass in chaparral-dominated systems is likely to increase, leading to reductions in summer streamflow. However, within the range of GCM predictions, there are some scenarios in which vegetation may decrease, leading to higher summer streamflows. Changes due to increases in fire frequency will also impact summer streamflow but these will be small relative to changes due to vegetation productivity. Results suggest that monitoring vegetation responses to a changing climate should be a focus of climate change assessment for California MTEs.  相似文献   

10.
This study aims to demonstrate the potential of a process-based regional ecosystem model, LPJ-GUESS, driven by climate scenarios generated by a regional climate model system (RCM) to generate predictions useful for assessing effects of climatic and CO2 change on the key ecosystem services of carbon uptake and storage. Scenarios compatible with the A2 and B2 greenhouse gas emission scenarios of the Special Report on Emission Scenarios (SRES) and with boundary conditions from two general circulation models (GCMs) – HadAM3H and ECHAM4/OPYC3 – were used in simulations to explore changes in tree species distributions, vegetation structure, productivity and ecosystem carbon stocks for the late 21st Century, thus accommodating a proportion of the GCM-based and emissions-based uncertainty in future climate development. The simulations represented in this study were of the potential natural vegetation ignoring direct anthropogenic effects. Results suggest that shifts in climatic zones may lead to changes in species distribution and community composition among seven major tree species of natural Swedish forests. All four climate scenarios were associated with an extension of the boreal forest treeline with respect to altitude and latitude. In the boreal and boreo-nemoral zones, the dominance of Norway spruce and to a lesser extent Scots pine was reduced in favour of deciduous broadleaved tree species. The model also predicted substantial increases in vegetation net primary productivity (NPP), especially in central Sweden. Expansion of forest cover and increased local biomass enhanced the net carbon sink over central and northern Sweden, despite increased carbon release through decomposition processes in the soil. In southern Sweden, reduced growing season soil moisture levels counterbalanced the positive effects of a longer growing season and increased carbon supply on NPP, with the result that many areas were converted from a sink to a source of carbon by the late 21st century. The economy-oriented A2 emission scenario would lead to higher NPP and stronger carbon sinks according to the simulations than the environment-oriented B2 scenario.  相似文献   

11.
A process-based approach to modelling the effects of land use change and climate change on the carbon balance of terrestrial ecosystems was applied at global scale. Simulations were run both with and without land use change. In the absence of land use change between 1700 and 1990, carbon storage in terrestrial ecosystems was predicted to increase by 145 Pg C. When land use change was represented during this period, terrestrial ecosystems became a net source of 97 Pg C. Land use change was directly responsible for a flux of 222 Pg C, slightly higher but close to estimates from other studies. The model was then run between 1990 and 2100 with a climate simulated by a GCM. Simulations were run with three land use change scenarios: 1. no land use change; 2. land use change specified by the SRES B2 scenario, and; 3. land use change scaled with population change in the B2 scenario. In the first two simulations with no or limited land use change, the net terrestrial carbon sink was substantial (358 and 257 Pg C, respectively). However, with the population-based land-use change scenario, the losses of carbon through land use change were close to the carbon gains through enhanced net ecosystem productivity, resulting in a net sink near zero. Future changes in land use are highly uncertain, but will have a large impact on the future terrestrial carbon balance. This study attempts to provide some bounds on how land use change may affect the carbon sink over the nextcentury.  相似文献   

12.
Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation   总被引:31,自引:3,他引:31  
Part of the uncertainty in predictions by climate models results fromlimited knowledge of the stability of the thermohaline circulation ofthe ocean. Here we provide estimates of the response of pre-industrial surface climatevariables should the thermohalinecirculation in the Atlantic Ocean collapse. For this we have usedHadCM3, an ocean-atmosphere general circulation model that is run without fluxadjustments. In this model a temporary collapse was forced by applying a strong initial freshening to the top layers of the NorthAtlantic. In the first five decades after the collapse surface air temperatureresponse is dominated by cooling of much of the NorthernHemisphere (locally up to 8 °C, 1–2 °C on average) and weakwarming of theSouthern Hemisphere (locally up to 1 °C, 0.2 °C onaverage). Response is strongest around the North Atlantic but significant changesoccur over the entire globe and highlight rapidteleconnections.Precipitation is reduced over large parts of the Northern Hemisphere.A southward shift of the IntertropicalConvergence Zone over the Atlantic and eastern Pacific createschanges in precipitation that are particularly large in South America andAfrica. Colder and drier conditions in much of the Northern Hemisphere reducesoil moisture and net primary productivity of the terrestrial vegetation. Thisis only partlycompensated by more productivity in the Southern Hemisphere.The total global net primary productivity by the vegetation decreases by5%. It should be noted, however, that in this version of the model thevegetation distribution cannotchange, and atmospheric carbon levels are also fixed. After about 100 yearsthe model's thermohaline circulation has largelyrecovered, and most climatic anomalies disappear.  相似文献   

13.
Background insect herbivory, in addition to insect outbreaks, can have an important long term influence on the performance of tree species. Since a projected warmer climate may favour insect herbivores, we use a dynamic ecosystem model to investigate the impacts of background herbivory on vegetation growth and productivity, as well as distribution and associated changes in terrestrial ecosystems of northern Europe. We used the GUESS ecosystem modelling framework and a simple linear model for including the leaf area loss of Betula pubescens in relation to mean July temperature. We tested the sensitivity of the responses of the simulated ecosystems to different, but realistic, degrees of insect damage. Predicted temperature increases are likely to enhance the potential insect impacts on vegetation. The impacts are strongest in the eastern areas, where potential insect damage to B. pubescens can increase by 4–5%. The increase in insect damage to B. pubescens results in a reduction of total birch leaf area (LAI), total birch biomass and birch productivity (Net Primary Production). This effect is stronger than the insect damage to leaf area alone would suggest, due to its second order effect on the competition between tree species. The model's demonstration that background herbivory may cause changes in vegetation structure suggests that insect damage, generally neglected by vegetation models, can change predictions of future forest composition. Carbon fluxes and albedo are only slightly influenced by background insect herbivory, indicating that background insect damage is of minor importance for estimating the feedback of terrestrial ecosystems to climate change.  相似文献   

14.
Terrestrial carbon fluxes are an important factor in regulating concentrations of atmospheric carbon dioxide (CO2). In this study, we use a coupled climate model with interactive biogeochemistry to benchmark the simulation of net primary productivity (NPP) and its response to elevated atmospheric CO2. Short-term field experiments such as Free-Air Carbon Dioxide Enrichment (FACE) studies have examined this phenomenon but it is difficult to infer trends from only a few years of field data. Here, we employ the University of Victoria's Earth System Climate Model (UVic ESCM) version 2.8 to compare simulated changes in NPP due to an elevated atmospheric CO2 concentration of 550 ppm to observed increases in NPP of 23% ±2% from four temperate forest FACE studies between 1997 and 2002. We further compare two scenarios: elevated CO2 with climate change, and elevated CO2 without climate change, the latter being consistent with FACE methodology. In the climate change scenario global terrestrial and forest-only NPP increased by 24.5% and 27.9%, respectively, while these increases were 21.0% and 17.2%, respectively, in the latitude band most representative of the location of the FACE studies. In the scenario without climate change, terrestrial and forest-only NPP increased instead by 28.3% and 30.6%, respectively, while these increases were 24.3% and 14.4%, respectively, in the FACE latitudes. This suggests that the model may underestimate temperate forest NPP increases when compared to results from temperate forest FACE studies and highlights the need for both increased experimental study of other forest biomes and further model development.  相似文献   

15.
Impacts of extreme precipitation on tree plantation carbon cycle   总被引:2,自引:0,他引:2  
Extreme precipitation events are expected to increase in frequency and magnitude in future due to global warming, but relevant impacts on tree plantation ecosystem carbon cycle are unknown. In this study, we use an atmosphere–vegetation interaction model (AVIM2) to estimate the likely impacts of extreme precipitation events on carbon fluxes and carbon stocks of a tree plantation in south China. Our results indicate that shifting from moderate precipitation events to extreme precipitation events whilst keeping monthly precipitation unchanged could decrease the tree plantation carbon accumulation. Tree plantation net primary productivity, net ecosystem productivity, soil carbon stock and vegetation carbon stock could decrease by 4.2, 28, 4.3 and 1.4 % during the studying period of 1962–2004, respectively. Though reductions in net primary productivity and net ecosystem productivity are relatively smaller than their annual variations, our sensitivity test shows that the tree plantation carbon stock could decrease by 3.3 % if the assumed extreme precipitation regime lasts for 500 years. Observed and simulated gross primary productivity, ecosystem respiration and net ecosystem productivity have significant positive correlation with soil water content (SWC), especially the deep SWC. The mechanism for the extreme precipitation effect is that the increase in extreme precipitation events will cause SWC to decrease, consequently, reducing carbon fluxes and stocks.  相似文献   

16.
The interest in the national levels of the terrestrial carbon sink and its spatial and temporal variability with the climate and CO2 concentrations has been increasing. How the climate and the increasing atmospheric CO2 concentrations in the last century affect the carbon storage in continental China was investigated in this study by using the Modified Sheffield Dynamic Global Vegetation Model (M-SDGVM). The estimates of the M-SDGVM indicated that during the past 100 years a combination of increasing CO2 with historical temperature and precipitation variability in continental China have caused the total vegetation carbon storage to increase by 2.04 Pg C, with 2.07 Pg C gained in the vegetation biomass but 0.03 Pg C lost from the organic soil carbon matter. The increasing CO2 concentration in the 20th century is primarily responsible for the increase of the total potential vegetation carbon. These factorial experiments show that temperature variability alone decreases the total carbon storage by 1.36 Pg C and precipitation variability alone causes a loss of 1.99 Pg C. The effect of the increasing CO2 concentration alone increased the total carbon storage in the potential vegetation of China by 3.22 Pg C over the past 100 years. With the changing of the climate, the CO2 fertilization on China's ecosystems is the result of the enhanced net biome production (NBP), which is caused by a greater stimulation of the gross primary production (GPP) than the total soil-vegetation respiration. Our study also shows notable interannual and decadal variations in the net carbon exchange between the atmosphere and terrestrial ecosystems in China due to the historical climate variability.  相似文献   

17.
We examined if climate change in two dry ecosystems—Mediterranean (DME) and Semiarid (SAE)—would cause substantial reduction in the production of annual vegetation. Field measurements and computer simulations were used to examine the following six climate change scenarios: (1) rainfall amount reduction; (2) increases of 10 % in annual evaporation rate and 5 % in annual temperature; (3) increase in magnitude of rainfall events, accompanied by reductions in frequency and seasonal variation; (4) postponement of the beginning of the first rainfall event of the growing season; (5) long dry spells during the growing season; and (6) early ending of the growing season. The results revealed the following outcomes. a) Reduction by 5–35 % in annual rainfall amount did not significantly affect productivity in the DME, but a large (25–35 %) decrease in rainfall would change vegetation productivity in the SAE and lead to a patchier environment. b) Similar results were observed: when temperature and evaporation rate were increased; when the magnitude of rainfall events increased but their frequency decreased; and during a long mid-season dry spell. c) In both ecosystems, changes in the temporal distribution of rainfall, especially at the beginning of the season, caused the largest reduction in productivity, accompanied by increased patchiness. d) Long-term data gathered during the last three decades indicated that both environments exhibited high resilience of productivity under rainfall variability. These results imply that the response of dry ecosystems to climate change is not characterized by a dramatic decrease in productivity. Moreover, these ecosystems are more resilient than expected, and their herbaceous productivity might undergo drastic changes only under more severe scenarios than those currently predicted in the literature.  相似文献   

18.
Tropical forests are responsible for a large proportion of the global terrestrial C flux annually for natural ecosystems. Increased atmospheric CO2 and changes in climate are likely to affect the distribution of C pools in the tropics and the rate of cycling through vegetation and soils. In this paper, I review the literature on the pools and fluxes of carbon in tropical forests, and the relationship of these to nutrient cycling and climate. Tropical moist and humid forests have the highest rates of annual net primary productivity and the greatest carbon flux from soil respiration globally. Tropical dry forests have lower rates of carbon circulation, but may have greater soil organic carbon storage, especially at depths below 1 meter. Data from tropical elevation gradients were used to examine the sensitivity of biogeochemical cycling to incremental changes in temperature and rainfall. These data show significant positive correlations of litterfall N concentrations with temperature and decomposition rates. Increased atmospheric CO2 and changes in climate are expected to alter carbon and nutrient allocation patterns and storage in tropical forest. Modeling and experimental studies suggest that even a small increase in temperature and CO2 concentrations results in more rapid decomposition rates, and a large initial CO2 efflux from moist tropical soils. Soil P limitation or reductions in C:N and C:P ratios of litterfall could eventually limit the size of this flux. Increased frequency of fires in dry forest and hurricanes in moist and humid forests are expected to reduce the ecosystem carbon storage capacity over longer time periods.  相似文献   

19.
The micrometeorological technique of eddy covariance is a powerful tool for characterizing the carbon (C) budget of terrestrial ecosystems. Eddy covariance method was used for estimating Net Ecosystem Exchange (NEE) of carbon dioxide between atmosphere and revegetated manganese mine spoil dump at Gumgaon, India. In this paper, we analyzed the diel CO2 flux pattern and its response to various physical environmental conditions. The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes. Study of diel pattern of CO2 flux showed that carbon uptake was dependent on sunlight. Effect of temperature and latent heat on the CO2 flux showed that rate of CO2 uptake increased proportionally, but later declined due to various factors like stomatal response, high evaporative demand, circadian rhythm and/or a combination of all three. Net ecosystem production of revegetated land was found to be 28.196 KgC/ha/day whereas average net carbon release by the ecosystem, through respiration was observed to be 5.433 KgC/ha/day. Thus, quantifying net carbon (C) storage in degraded land is a necessary step in the validation of carbon sequestration estimates and in assessing the possible role of these ecosystems in offsetting adverse impacts of fossil fuel emissions.  相似文献   

20.
Vulnerability of the Asian Typical Steppe to Grazing and Climate Change   总被引:1,自引:0,他引:1  
The vulnerability of grassland vegetation in Inner Mongolia to climate change and grazing was examined using an ecosystem model. Grazing is an important form of land use in this region, yet there are uncertainties as to how it will be affected by climate change. A sensitivity analysis was conducted to study the effects of increased minimum and maximum temperatures, ambient and elevated CO2, increased or decreased precipitation, and grazing on vegetation production. Simulations showed that herbaceous above ground net primary production was most sensitive to changes in precipitation levels. Combinations of increased precipitation, temperature, and CO2 had synergistic effects on herbaceous production, however drastic increases in these climate scenarios left the system vulnerable to shifts from herbaceous to shrub-dominated vegetation when grazed. Reduced precipitation had a negative effect on vegetation growth rates, thus herbaceous growth was not sustainable with moderate grazing. Shifts in temporal biomass patterns due to changed climate have potentially significant implications for grazing management, which will need to be altered under changing climate to maintain system stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号