首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Brownstones form the highest Lower Old Red Sandstone in South Wales and the Welsh Borderlands. Sections from the Brecon Beacons of Central South Wales consist of laterally extensive sheets of interbedded sandstone and siltstone. Facies sequence A consists of parallel laminated sheet sandstones and siltstones and is interpreted as a sandy sheetflood and distal muddy floodflat association. Facies sequence B comprises sheet sandstones composed of multistorey channel fills, small calcrete-clast filled channels and massive siltstones with thin interbedded sandstones. This sequence is interpreted as low sinuosity channel deposits merging laterally and downslope into a muddy flood-basin, with calcrete clasts infilling intrabasinal channel systems. Facies sequence C consists of multistorey sandstones and is interpreted as a proximal low sinuosity channel system. The Brownstones of the Brecon Beacons formed on an extensive alluvial plain with low sinuosity sand-bed channels merging downslope into sheetfloods and muddy floodflats, in a system broadly analogous to that of the Eyre Basin of South Australia.  相似文献   

2.
A succession of about 300 m of fluvial sediments from the Lower Carboniferous of northwest Ireland is described and interpreted. A lower, mainly red, formation contains fluvial channel deposits dominated by flat laminated sandstone. These are separated by interbedded sandstones and mudrocks with local caliche horizons and abundant mudcracks interpreted as levee and flood basin deposits. An upper, mainly non-red, formation contains fluvial channel deposits with common trough cross-stratification and epsilon cross-stratification also separated by interbedded sandstones and mudrocks. Evidence of desiccation is less common in the uppermost beds which pass transitionally upwards into marine sediments.The change in fluvial channel style is interpreted as due to increasing sinuosity and permanence of flow which may have been partly temporally and partly spatially controlled. The predominance of coarse sediments is thought to be largely controlled by limited subsidence. The Lower Carboniferous transgression was the major overall control of alluviation.  相似文献   

3.
Pennsylvanian strata of the Hazard coalfield, Eastern Kentucky, contain fluvial, upper-delta plain facies characterized by thick localized coals, bay-fill shales, levee silt- and sandstones, and channel-fill sands and gravels. Although the deltaic nature of these sediments has long been established, mining and exploration activities in the district require a thorough understanding of small areas within the delta environment. Coal quantity and quality trends in the Hazard #7 seam, the major producer in the area, have been examined in detail.The #7 coal accumulated in a peat swamp restricted laterally by a major fluvial channel. Three types of non-coal parting are recognized. Thin, tabular, fine-grained partings resulted from periods of increased terrigenous influx into the swamp. Lenticular crevasse-splay deposits locally split the coal. Wedge-shaped, fine- to coarse-grained partings, of probable levee origin, are found along the channel margin. Post-swamp deposits consist of thick bay-fill shales, thin shales, silt- and sandstones deposited on floodplains, and channel-fill sandstones and gravels.The modeling technique discussed provides guidance for mine development and regional exploration by prediction of coal seam quantity and quality trends from local geologic features. The thickest #7 coal is split by thin tabular partings and is overlain by thick shale sequences. Coal overlain by silt and sandstone is thinner and unsplit, and typically of higher heat value. Regional seam thinning due to channel scour is recognized. Factors which control the configuration of the coal seam include position within the peat swamp, proximity to the fluvial channel, swamp burial processes, and paleochannel sinuosity.  相似文献   

4.
The Upper Cretaceous Juniper Ridge Conglomerate (JRC) near Coalinga, California, provides a rare, high-quality exposure of a submarine channel to overbank transition. The facies architecture of the JRC comprises a thick, predominantly mudstone sequence overlain by a channellized conglomerate package. Conglomeratic bounding surfaces truncate successions of interbedded turbiditic sandstones and mudstones both vertically and laterally. Thick-bedded, massive sandstones are interbedded with conglomerates. Facies architecture, palaeocurrent indicators, slump features, sandstone percentages and sandstone bed thickness trends lead to the interpretation that these elements comprise channel and overbank facies. A vertical sequence with conglomerate at the base, followed by thick-bedded sandstone, and capped by interbedded turbiditic sandstone and mudstone form a fining-upward lithofacies association that is interpreted as a single channel-fill/overbank system. Three similar lithofacies associations can be related to autocyclic processes of thalweg migration and submarine fan aggradation or to allocyclically driven changes in sediment calibre.  相似文献   

5.
The Castissent Formation represents a phase of strong fluvial progradation within the fluvio-deltaic Montanyana Group, probably enhanced by the late Ypresian sea-level fall. The structural setting is characterized by the emplacement of the South Pyrenean nappes. The major architectural feature of the Formation is the superposition of three multilateral and multistorey sheet sandstone complexes (A, B and C), interbedded in finer floodplain deposits and dark-grey mudstones of brackish transitional origin. The structure of the sheet sandstone complexes is exemplified by the detailed analysis of the lower sheet sandstone complex (A), 25 m thick, 6 km wide and exposed over 25 km of its length. Three types of channel-fill sandstones serve as components: (1) lenticular-bedded bodies, interpreted as braided stream deposits, (2) lateral accretion-bedded bodies, intepreted as meandering stream deposits, and (3) ribbons, originating from laterally stable and short-lived offshoot or crevasse channels. By coalescence and/or stacking of these channel-fill types, higher-order architectural units (A1, A2, A3) have been formed that together build the sheet sandstone complex. On the basis of downstream variation in proportion and geometrical relation between the channel-fill components, three depositional zones have been differentiated within the fluvial system. Each zone is characterized by specific architectural processes: (1) alternation of minor aggradational-degradational cycles in the proximal valley, (2) generation of new alluvial belts in the intermediate nodal avulsion zone, and (3) successive random avulsion processes with development of semipermanent crevasse channels or minor distributaries in the distal distributive zone. The sedimentation of the Castissent Formation was structurally controlled by an interplay of vertical basement movement due to thrust stacking in the hinterland and surficial thrust displacement to the foreland resulting in alternating southward and northward shift of the fluvial system.  相似文献   

6.
Understanding sequence stratigraphy architecture in the incised-valley is a crucial step to understanding the effect of relative sea level changes on reservoir characterization and architecture. This paper presents a sequence stratigraphic framework of the incised-valley strata within the late Messinian Abu Madi Formation based on seismic and borehole data. Analysis of sand-body distribution reveals that fluvial channel sandstones in the Abu Madi Formation in the Baltim Fields, offshore Nile Delta, Egypt, are not randomly distributed but are predictable in their spatial and stratigraphic position. Elucidation of the distribution of sandstones in the Abu Madi incised-valley fill within a sequence stratigraphic framework allows a better understanding of their characterization and architecture during burial. Strata of the Abu Madi Formation are interpreted to comprise two sequences, which are the most complex stratigraphically; their deposits comprise a complex incised valley fill. The lower sequence (SQ1) consists of a thick incised valley-fill of a Lowstand Systems Tract (LST1)) overlain by a Transgressive Systems Tract (TST1) and Highstand Systems Tract (HST1). The upper sequence (SQ2) contains channel-fill and is interpreted as a LST2 which has a thin sandstone channel deposits. Above this, channel-fill sandstone and related strata with tidal influence delineates the base of TST2, which is overlain by a HST2. Gas reservoirs of the Abu Madi Formation (present-day depth ~3552 m), the Baltim Fields, Egypt, consist of fluvial lowstand systems tract (LST) sandstones deposited in an incised valley. LST sandstones have a wide range of porosity (15 to 28%) and permeability (1 to 5080mD), which reflect both depositional facies and diagenetic controls. This work demonstrates the value of constraining and evaluating the impact of sequence stratigraphic distribution on reservoir characterization and architecture in incised-valley deposits, and thus has an important impact on reservoir quality evolution in hydrocarbon exploration in such settings.  相似文献   

7.
At Ducabrook property, central Queensland, the mid-Viséan Ducabrook Formation has yielded a diverse vertebrate fauna (fish and one tetrapod taxon) from a thin unit among siltstone interbedded with sandstone, minor oolitic limestone and conglomerate. Five lithofacies can be distinguished: the Oolitic Facies, distinguished by oolitic limestone and straight parallel ripple crests; the Sandy Facies, composed of plane-laminated and current-rippled sandstones; the Conglomeratic Facies, represented by pebble conglomerate displaying planar cross-bedded megaripples; the Silty Facies of siltstone with abundant calcrete nodules or sand/silt/clay interlaminations; and the Lime-Flake Facies, characterised by abundant locally derived lime flakes. The last includes the fossiliferous tetrapod unit. The Oolitic Facies was deposited in the inner (proximal) and outer (distal) zones of an estuary, based on identification of tidal sedimentary structures (e.g. mud drapes) and estuarine oolitic fabrics; the Lime-Flake Facies and Silty Facies were deposited in the estuary and lower reaches of a river and its surrounds; and the Sandy and Conglomeratic Facies represent braid-river deposits. Overall, the sequence represents intermittent deposition throughout an estuary, both within the tidal channel and the surrounding tidal flats, with additional deposition from the feeder river. The tetrapod unit, from the Lime-Flake Facies, represents a twin-peaked storm-induced flood event onto the tidal channel floor. The vertebrate bones have a shared taphonomic history and have undergone only local transport. The tetrapod and fish were spatially and temporally concurrent, probably in a shallow tidally influenced proximal estuarine habitat experiencing monsoonal conditions. Estuarine adaptations of these vertebrate taxa can explain migration along shallow-water continental shelves between the supercontinents during the Late Devonian and Early Carboniferous.  相似文献   

8.
The Lower Jurassic East Berlin Formation exposed in the centre of the Hartford Basin can be divided into six facies: (1) laminated black mudstone is composed of very finely-laminated, organic-bearing clay-stone with common millimetre-scale lenses of dolomitic siltstone; (2) planar laminated mudstone is commonly mudcracked and composed of thickly-laminated, red, green or grey mudstone with common centimetre-scale lenses of sandstones; (3) disrupted mudstone has a complex, desiccation-cracked fabric; (4) planar- and large-scale trough cross-stratified sandstones are composed of moderately well-sorted medium- to coarse-grained arkoses; (5) small-scale, cross-stratified silty sandstones with common climbing-ripple structure; and (6) interbedded sandstones and mudstones which commonly carry desiccation cracks. Mudstone facies are organized into repetitive, metre-scale facies sequences which change gradationally upwards from laminated black mudstones to planar-laminated mudstones to disrupted mudstones. Facies sequences have sharp tops and bottoms and record increasing desiccation upwards. There are 15 such cycles in the upper 100 m of the formation in central Connecticut. They record long periods of dry playa mudflat aggradation punctuated by the rapid expansion and contraction of perennial lakes. The sandy facies occur as single, decimetre-scale sedimentation units or as two or more stacked sedimentation units up to 1 m thick. These record sheet floods across ephemeral floodplains.  相似文献   

9.
An understanding of fluvial-aeolian deposition derived from modern case-examples in a previous study is applied to the Permian Cutler Formation and Cedar Mesa Sandstone on the Colorado Plateau. These formations supply an excellent three-dimensional exposure of intertonguing fluvial and aeolian strata. Four distinct facies associations form the bulk of the Cutler Formation and Cedar Mesa Sandstone: (1) aeolian dune deposits; (2) wet interdune deposits; (3) fluvial channel deposits; and (4) overbank-interdune deposits. In addition, two distinctive types of erosion surfaces are found within the Cutler Formation and Cedar Mesa Sandstone: pebble- to granule-rich erosion surfaces (aeolian deflation surfaces) and flood surfaces. Fluvial and aeolian intertonguing result in extensive tabular sheets of aeolian sandstone separated by flood surfaces and overbank-interdune deposits. Fluvial channels are associated with the deposits overlying flood surfaces and are incised into the underlying aeolian sandstones. Overbank-interdune deposits and wet interdune deposits cover flood surfaces and intertongue with overlying aeolian sandstones. The primary characteristics of ancient fluvial-aeolian deposition are overbank-interdune deposits and pronounced extensive erosion surfaces (flood surfaces), which are parallel to underlying fluvial sandstones and thus trend parallel to the palaeoslope and palaeohydrological gradient.  相似文献   

10.
通过露头实测、岩心观察及测录井资料分析等结果表明,克拉玛依油田一中区克拉玛依组S7、S5和S4砂层组沉积时期以发育辫状河为特征,可进一步划分为近源砾质辫状河、远源砾质辫状河和砂质辫状河沉积3种类型。上述3种类型的辫状河沉积在沉积特征、河道空间叠置样式及组合关系等方面存在明显的差异。近源砾质辫状河河道岩性以砾岩为主,为中孔低渗储层。单河道沉积厚度2~4.5m,宽度500~800m,表现为河道-河道直接接触的连片组合方式;远源砾质辫状河河道岩性仍以砾岩为主,含少量砂岩,物性较近源砾质辫状河略好,为中孔低渗储层。单河道沉积厚度为1.5~4m,河道砂体宽度400~750m,表现为河道-溢岸-河道的连片组合方式;砂质辫状河河道岩性以砂岩为主,为中孔低渗储层,物性优于砾质辫状河。单层厚度为0.5~2.5m,宽度为300~700m,但河道沉积分布范围有限,河道之间多为带状或交织带状组合方式。根据上述对比分析认为砾质辫状河河道砂体虽然物性相对较差、非均质性较强,但砂体厚度大、分布广泛、连通性好,目前为全区主要油气开发的目的层;砂质辫状河河道砂体尽管物性较好,但由于厚度较薄,分布局限,仅在东部地区其累计厚度较大,当与其它成藏条件匹配时,可形成具有开发潜力的目的层。  相似文献   

11.
Stratigraphically limited intervals from the Lower Eocene Willwood Formation contain laterally extensive carbonaceous shales and ribbon sandstone networks associated with channel avulsion. We present data from one such interval that documents the avulsion sequence. Vertical sections measured along the outcrop of this interval are similar and comprise a basal carbonaceous shale overlain by fine-grained deposits on which weakly developed, hydromorphic paleosols formed. The paleosols enclose and are locally incised by ribbon sandstones, some of which cut down to and partly through the carbonaceous shale. The ribbons have width/thickness ratios between 3 and 13. Some ribbons cluster at a particular stratigraphic level, which, together with paleocurrent trends, suggests that they formed channel networks. Sections are capped by yellow-brown paleosols showing moderate pedogenic development. We suggest that the carbonaceous shales developed in low-lying topogeneous swamps in distal portions of the floodplain far from the trunk channel. Such a location set limits on the sediment that they received. The mudrocks with weakly developed paleosols and associated ribbon sandstones are interpreted as crevasse-splay complexes resulting from avulsion of the trunk river. The ribbon sandstones represent ancient feeder channels of the avulsion complex. The rapid influx of avulsion deposits appears to have been crucial to preserving the organic material, and this study reveals an important and as yet uncharacterized link between trunk channel processes and the accumulation of organic-rich deposits in distal alluvial swamps. Similar deposits are found in other stratigraphic units in the Rocky Mountain region, and the development of these and other organic-rich deposits should be reassessed in terms of channel avulsion.  相似文献   

12.
Precambrian fluvial deposits have been traditionally described as architecturally simple, forming shallow and wide braidplains with sheet‐like geometry. The varied architecture and morphodynamics of the 1·6 Ga Ellice Formation of Elu Basin, Nunavut, Canada, are examined from detailed studies of section and planform exposures along coastal platforms and stepped cliffs. The Ellice Formation overlies older Proterozoic sandstones and Archean crystalline rocks, recording sedimentation in fluvial, aeolian, coastal and nearshore‐marine environments. The fluvial deposits display palaeoflow towards the west/north‐west, while overlying shallow‐marine deposits record transgression towards the east/south‐east. The Ellice Formation displays dispersed palaeoflow at its base, and also at higher stratigraphic levels, where fluvial and aeolian deposits are associated. Elsewhere, mainly unimodal palaeoflow points to extensive low‐sinuosity fluvial deposition. Within the terrestrial deposits, fluvial, fluvial–aeolian and coastal architectural elements are recognized. Fluvial elements comprise cross‐bedded sandstone and minor conglomerate, exhibiting an overall fining‐upward trend with associated decrease in preservation, dimension and amalgamation of channel bodies. These motifs are interpreted to portray a shift in depositional environment from proximal trunk rivers to distal alluvial plains. Low‐sinuosity fluvial elements are the most common, and include major channel bodies, elongate side bars and mid‐channel bars with well‐developed scroll topography. High‐sinuosity channel‐bar complexes exhibit upbar‐flow rotation and yield evidence of bar expansion coupled with rotation and translation. Fluvial–aeolian elements are composed of aeolian dunes juxtaposed with isolated channel bodies and bank‐attached bars. Minor mixed fluvial–aeolian sheets record local deposition in unconfined settings (possibly floodbasins) or inter‐distributary highlands. Finally, coastal elements comprise small deltaic complexes composed of sand‐rich distributary‐channel bodies feeding heterolithic mouth bars. Overall, the sedimentary record of the Ellice Formation demonstrates an example from the Precambrian where alluvium was locally characterized by a higher geomorphic variability than previously recognized.  相似文献   

13.
The Upper Devonian to Lower Carboniferous Skrinkle Sandstones of the Pembroke Peninsula are predominantly continental deposits from the post-Caledonian synrift succession at the southern margin of the Upper Palaeozoic Welsh Landmass. The lower part of the Sandstones record deposition in the 30 × 10 km Tenby–Angle fault block, from which a 6- to 68-m-thick interval is described and interpreted as a lacustrine deposit succeeded by a high-energy sandy braidplain succession. The lacustrine deposit is dominated by red mudstones and ripple cross-laminated sandstones. Interbedded quartzose sandstones form a coarsening-upward sequence from the red mudstones in the basin centre, suggesting a deltaic origin, and a smooth-fronted braidplain delta model is proposed. The sequence introduces the braidplain succession, composed of groups of horizontal/low-angle laminated and trough cross-bedded sandstones. These are compared with recent ephemeral stream and sheetflood sediments and their characteristics used to depict a system of mutually erosive sheetflood and channel bodies, the latter produced during the rising and falling stages of flood events, which alternate to produce a thick multistorey sandstone. Palaeocurrent data indicate an axial drainage system from the north-west, running parallel to the main faults of the area. This is supported by the maturity and sandy nature of the sediments. Basin closure towards the south and the postulated Bristol Channel Landmass is inferred.  相似文献   

14.
The Santonian-Campanian Milk River Formation of Southern Alberta represents the transition from an open shelf, through a storm-dominated shoreface into a non-marine sequence of shales and sandstones, with coal. The open shelf deposits consist of interbedded bioturbated mudstones with sharp-based hummocky cross-stratified sandstones. There are no indications of fairweather reworking of the sandstones, which are therefore interpreted as having been deposited below fairweather wavebase. The shoreface sequence consists of a 28 m thick sandstone. It has a very sharp, loaded base, and is dominated by swaley cross-stratification, a close relative of hummocky cross-stratification. Angle of repose cross-bedding is preserved in scattered patches only in the top 5 m of the sand body. Channels up to 180 m wide and 7 m deep are cut into this sand body, with channel margins characterized by lateral accretion surfaces. Regional dispersal trends, as well as local palaeocurrent readings suggest flow toward the NW. Within the channels there is some herringbone cross-bedding and at least two examples of neap-spring bundle cycles, suggesting that the channels are tidally-influenced. Above the channels there is a sequence of carbonaceous shales with in situ root casts and lignitic coal seams. No marine, brackish or lagoonal fauna was identified, and the sequence appears to represent a distal floodplain. The sequence from interbedded hummocky cross-stratified sandstones and bioturbated mudstones into a 10–20 m thick, sharp-based shoreface sandstone characterized by swaley cross-stratification is uncommon. The scarcity or absence of angle of repose cross-bedding in the shoreface, and the dominance of swaley cross-stratification suggests that the shoreface was so storm-dominated that almost no fairweather record was preserved. Other examples of swaley cross-stratified shorefaces are reviewed in the paper.  相似文献   

15.
Hybrid event beds comprising clay‐poor and clay‐rich sandstone are abundant in Maastrichtian‐aged sandstones of the Springar Formation in the north‐west Vøring Basin, Norwegian Sea. This study focuses on an interval, informally referred to as the Lower Sandstone, which has been penetrated in five wells that are distributed along a 140 km downstream transect. Systematic variations in bed style within this stratigraphic interval are used to infer variation in flow behaviour in relatively proximal and distal settings, although individual beds were not correlated. The Lower Sandstone shows an overall reduction in total thickness, bed amalgamation, sand to mud ratio and grain size in distal wells. Turbidites dominated by clay‐poor sandstone are at their most common in relatively proximal wells, whereas hybrid event beds are at their most common in distal wells. Hybrid event beds typically comprise a basal clay‐poor sandstone (non‐stratified or stratified) overlain by banded sandstone, with clay‐rich non‐stratified sandstone at the bed top. The dominant type of clay‐poor sandstone at the base of these beds varies spatially; non‐stratified sandstone is thickest and most common proximally, whereas stratified sandstone becomes dominant in distal wells. Stratified and banded sandstone record progressive deposition of the hybrid event bed. Thus, the facies succession within hybrid event beds records the longitudinal heterogeneity of flow behaviour within the depositional boundary layer; this layer changed from non‐cohesive at the front, through a region of transitional behaviour (fluctuating non‐cohesive and cohesive flow), to cohesive behaviour at the rear. Spatial variation in the dominant type of clay‐poor sandstone at the bed base suggests that the front of the flow remained non‐cohesive, and evolved from high‐concentration and turbulence‐suppressed to increasingly turbulent flow; this is thought to occur in response to deposition and declining sediment fallout. This research may be applicable to other hybrid event bed prone systems, and emphasizes the dynamic nature of hybrid flows.  相似文献   

16.
The Early Devonian, Maccullochs Range beds (new) of the Winduck Interval largely comprise non-marine fine-grained sheet-flood-deposited sandstones which lie in the southeast sector of the Darling Basin Conjugate Fault System. Deposition of the >2.5 km-thick sequence occurred on the Wilcannia, Towers and Coolabah Bore alluvial fans, that were sourced largely from lightly indurated sandstone caps overlying a large basement high lying north of the Darling River Lineament, and also from west of Maccullochs Range (Coolabah Bore Fan). Four lithofacies are recognised. Lithofacies 1, massive sandstone, is proximal and was deposited from hyperconcentrated sheet floods. The more distal lithofacies 2 is partly massive, partly laminated and partly affected by soft sediment slumping during its deposition. It contains 1.3 – 3.5 m-thick sheet-flood successions that rarely show cross-bedding. Lithofacies 3 and 4 are minor: lithofacies 3, stream-flood deposited, comprises coarse-grained, pebbly sandstone and lithofacies 4, transient playa lake deposits that are locally intercalated with lithofacies 2. In lithofacies 2, thick massive fine-grained sandstone is commonly overlain by laminated sandstone that was deformed when soft. Incised channel deposits in lithofacies 2 deposits are rare and palaeosols were not discovered. Permanency of the positions of two of the alluvial fans, and by inference their feeder streams, remained unchanged for ~9 million years. The fans overlie probable floodplain deposits observed in a quarry in the easternmost part of the study area. Marine fossils are very minor in the range—the brachiopod Howellella jaqueti at one locality indicates an Early Devonian age for one of the brief marine incursions into what was normally an alluvial-fan environment. Very brief marine incursions elsewhere in the group are deduced from the presence of very rare fossil gastropods.  相似文献   

17.
深水沉积层序特点及构成要素   总被引:6,自引:0,他引:6  
蒋恕  王华  Paul  Weimer 《地球科学》2008,33(6):825-833
本文在回顾当前国际上深水沉积研究热点的基础上,结合在墨西哥湾深水研究的成果系统描述了深水沉积的定义、形成机理、深水沉积层序及深水沉积构成要素的特点.深水沉积主要是在重力流作用下深水环境的沉积,主要形成于相对水平面下降和早期上升的时期,主要分布在低位体系域中.深水层序以凝缩段为边界,块状搬运沉积最早形成并直接位于层序界面上,其上被河道-天然堤沉积所覆盖.典型深水沉积的要素主要由河道、天然堤及越岸沉积、板状砂、块状搬运沉积等构成,这些沉积要素时空上有序地分布.深水河道是物源的主要通道和沉积的重要场所,从上游至下游河道弯曲度增加,能量逐渐减弱.侧向迁移明显,垂向上由富砂的顺直河道演化为相对富泥的弯曲河道.天然堤及越岸沉积以泥质为主,天然堤沿河道呈楔状分布,其近端砂岩含量高,地层厚且倾角较陡;远端砂岩含量低,地层薄且平缓,侧向连续性好但垂向连续性差.板状砂主要为深水扇前缘非限制性沉积,可分为块型和层型.块型侧向连续性好,同时垂向连通性高.层型侧向连续性好,垂向连通性差.块状搬运沉积主要是低水位期坡上沉积物失稳形成的各类滑塌体及碎屑流,其对下伏地层侵蚀明显,分布广泛,变形构造常见,可作为油气良好的封盖层.  相似文献   

18.
The continental Upper Triassic Tadrart Ouadou Sandstone Member was deposited in an extensional setting on the Pangaean continent, strongly influenced by a low‐latitude climatic regime (10° to 20° north). Complex interaction of basin subsidence and climatically driven processes led to high facies variability and a lack of correlatable units across the Argana Valley exposures. A process‐orientated approach integrating detailed facies with architectural element analysis was undertaken, which resulted in a multistage depositional model for the Tadrart Ouadou Sandstone Member. The basin‐scale model shows that basal alluvial fan and braided river systems are confined to the centre of the Argana Valley exposures. Aeolian deposits occur throughout the sequence, but dominate in the north. After a phase of playa deposition, prominent basin‐wide fluvial incision of up to 8 m marks the onset of perennial fluvial flow. These well‐sorted, internally complex and locally highly amalgamated fluvial sandstones are widespread throughout the basin and are focused in a north to south (south‐west) flowing channel system. After a final stage of aeolian sedimentation, sandstone deposition of the Tadrart Ouadou Sandstone Member in the Argana Valley is terminated rapidly by the onlap of lacustrine mudstones of the Sidi Mansour Member. The study revealed that, except for one pronounced period of perennial conditions, sedimentation is controlled largely by ephemeral fluvial flow, alternating ground water tables, deflation processes and periods with limited periodic local run‐off. The study highlights that facies architecture in the basin is the result of complex interaction of local syn‐sedimentary tectonics and the climatic regime within the basin, but also the climate of the catchment area to the east. The data suggest a proximal to mid‐distal basin setting in the rain‐shadow to the west of a mountain range (Massif Ancien), which exerted a strong control on the depositional environments of Triassic deposits exposed in this part of South‐west Morocco.  相似文献   

19.
惠民凹陷孔店组末端扇沉积及其储层特征   总被引:1,自引:0,他引:1  
惠民凹陷孔店组为末端扇沉积,中部亚相是其沉积砂体的主体.根据岩芯观察并结合地震资料,将末端扇中部亚相划分为分流河道、河道漫溢和泥滩三种沉积微相.孔店组砂岩类型主要为中细粒的长石砂岩和岩屑长石砂岩.末端扇储层中发生了多种类型的成岩作用,主要的自生矿物包括黏土矿物、碳酸盐、石英和长石等.孔店组砂岩主要受到埋藏成岩作用的影响...  相似文献   

20.
Over 70 m thick interbedded sandstone, siltstone and claystone of the upper member of the Gharif Formation are exposed in western Huqf area in Oman Interior Sedimentary Basin. The Gharif Formation, particularly its upper member hosts major hydrocarbon reservoir in the subsurface of the Oman Interior Sedimentary Basin. The upper member of the Gharif Formation is comprised of interbedded thick sandstone, siltstone, carbonaceous clays and intraformational conglomerates. The sandstone lithofacies, on average, constitute 10 m thick multistoreyed sequences, which are composed internally of 2–3 m thick and 100 s of metres across vertically and laterally amalgamated sandstone bodies. Two major types of sandstones (types 1 and 2) are identified on the basis of their lithofacies association and internal architecture. The type 1 sandstone constitutes the lower part of the member and is comprised of pebbly to coarse-grained, planar and trough cross-bedded sandstone, plane bedded sandstone and pebble lags at the base of major sandstone bodies. The cross-beds are, on average, 30 cm thick exhibiting a dominant paleoflow direction towards NW (280–300° N). It is interpreted to be deposited by low sinuosity braided streams. The type 2 sandstone constitutes the upper part of the member and is comprised of medium-grained sandstone, trough to low angle plane bedding associated with lateral accretion surfaces. It is commonly interbedded with carbonaceous clays. Silicified plant fragments are commonly distributed in the upper part of the sandstone. Interbedded clays and siltstones are red, mottled and extensively bioturbated due to root burrows. It is interpreted to be deposited by high sinuosity meandering streams. In the uppermost part of the section, several dark grey to black carbonaceous clay/coal beds with plant matter are interbedded with sandstone and red clay indicating development of swampy conditions during onset of the coastal setting in the uppermost part of the formation. About 30 cm thick bioclastic sandstone deposited by the marine coastal bars mark transition from the Gharif Formation to carbonate dominated Khuff Formation. The sandstone of the Gharif Formation is arkosic in composition. Very small amount of cement and negligible compaction of constituent grains in sandstone indicates shallow burial before uplift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号