首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hamdache  M.  Pel&#;ez  J. A.  Kijko  A.  Smit  A. 《Natural Hazards》2016,86(2):273-293

We estimate the energetic and spatial characteristics of seismicity in the Algeria–Morocco region using a variety of seismic and statistical parameters, as a first step in a detailed investigation of regional seismic hazard. We divide the region into five seismotectonic regions, comprising the most important tectonic domains in the studied area: the Moroccan Meseta, the Rif, the Tell, the High Plateau, and the Atlas. Characteristic seismic hazard parameters, including the Gutenberg–Richter b-value, mean seismic activity rate, and maximum possible earthquake magnitude, were computed using an extension of the Aki–Utsu procedure for incomplete earthquake catalogs for each domain, based on recent earthquake catalogs compiled for northern Morocco and northern Algeria. Gutenberg–Richter b-values for each zone were initially estimated using the approach of Weichert (Bull Seismol Soc Am 70:1337–1346, 1980): the estimated b-values are 1.04 ± 0.04, 0.93 ± 0.10, 0.72 ± 0.03, 0.87 ± 0.02, and 0.77 ± 0.02 for the Atlas, Meseta, High Plateau, Rif, and Tell seismogenic zones, respectively. The fractal dimension D 2 was also estimated for each zone. From the ratio D 2/b, it appears that the Tell and Rif zones, with ratios of 2.09 and 2.12, respectively, have the highest potential earthquake hazard in the region. The Gutenberg–Richter relationship analysis allows us to derive that in the Tell and Rif, the number of earthquake with magnitude above Mw 4.0, since 1925 normalized to decade and to square cell with 100-km sides is equal to 2.6 and 1.91, respectively. This study provides the first detailed information about the potential seismicity of these large domains, including maximum regional magnitudes, characteristics of spatial clustering, and distribution of seismic energy release.

  相似文献   

2.
We estimate the energetic and spatial characteristics of seismicity in the Algeria–Morocco region using a variety of seismic and statistical parameters, as a first step in a detailed investigation of regional seismic hazard. We divide the region into five seismotectonic regions, comprising the most important tectonic domains in the studied area: the Moroccan Meseta, the Rif, the Tell, the High Plateau, and the Atlas. Characteristic seismic hazard parameters, including the Gutenberg–Richter b-value, mean seismic activity rate, and maximum possible earthquake magnitude, were computed using an extension of the Aki–Utsu procedure for incomplete earthquake catalogs for each domain, based on recent earthquake catalogs compiled for northern Morocco and northern Algeria. Gutenberg–Richter b-values for each zone were initially estimated using the approach of Weichert (Bull Seismol Soc Am 70:1337–1346, 1980): the estimated b-values are 1.04 ± 0.04, 0.93 ± 0.10, 0.72 ± 0.03, 0.87 ± 0.02, and 0.77 ± 0.02 for the Atlas, Meseta, High Plateau, Rif, and Tell seismogenic zones, respectively. The fractal dimension D 2 was also estimated for each zone. From the ratio D 2/b, it appears that the Tell and Rif zones, with ratios of 2.09 and 2.12, respectively, have the highest potential earthquake hazard in the region. The Gutenberg–Richter relationship analysis allows us to derive that in the Tell and Rif, the number of earthquake with magnitude above Mw 4.0, since 1925 normalized to decade and to square cell with 100-km sides is equal to 2.6 and 1.91, respectively. This study provides the first detailed information about the potential seismicity of these large domains, including maximum regional magnitudes, characteristics of spatial clustering, and distribution of seismic energy release.  相似文献   

3.
A probabilistic seismic hazard analysis for the states of Tripura and Mizoram in North East India is presented in this paper to evaluate the ground motion at bedrock level. Analyses were performed considering the available earthquake catalogs collected from different sources since 1731–2010 within a distance of 500 km from the political boundaries of the states. Earthquake data were declustered to remove the foreshocks and aftershocks in time and space window and then statistical analysis was carried out for data completeness. Based on seismicity, tectonic features and fault rupture mechanism, this region was divided into six major seismogenic zones and subsequently seismicity parameters (a and b) were calculated using Gutenberg–Richter (G–R) relationship. Faults data were extracted from SEISAT (Seismotectonic atlas of India, Geological Survey of India, New Delhi, 2000) published by Geological Survey of India and also from satellite images. The study area was divided into small grids of size 0.05° × 0.05° (approximately 5 km × 5 km), and the hazard parameters (rock level peak horizontal acceleration and spectral accelerations) were calculated at the center of each of these grid cells considering all the seismic sources within a radius of 500 km. Probabilistic seismic hazard analyses were carried out for Tripura and Mizoram states using the predictive ground motion equations given by Atkinson and Boore (Bull Seismol Soc Am 93:1703–1729, 2003) and Gupta (Soil Dyn Earthq Eng 30:368–377, 2010) for subduction belt. Attenuation relations were validated with the observed PGA values. Results are presented in the form of hazard curve, peak ground acceleration (PGA) and uniform hazard spectra for Agartala and Aizawl city (respective capital cities of Tripura and Mizoram states). Spatial variation of PGA at bedrock level with 2 and 10 % probability of exceedance in 50 years has been presented in the paper.  相似文献   

4.
Nava  F.  Reynoso  H.  Glowacka  E. 《Mathematical Geosciences》2023,55(4):579-605

Space–time seismic clusters, localized bursts of seismic activity, are a feature of background seismicity before the occurrence of large earthquakes, a feature that agrees with observations of diminishing Gutenberg–Richter b-value, fractal dimension, and entropy, and is therefore suggestive of high stress. However, identification and quantification of these space–time clusters, particularly when they are small, is not an easy task and requires a priori assumptions. A novel method for space–time cluster identification, based on an extension of the concept of apparent velocities, is proposed because space–time clusters in the background seismicity have a particular signature in the apparent velocity domain. The contents of histogram peaks due to clusters in the apparent velocity histogram can be used to quantify the cluster activity compared with null hypothesis levels. Identification of the earthquakes corresponding to the apparent velocities in the peaks allows identification of cluster activity in time and space. Apparent velocity peaks do appear in real catalog data for southern California and northern Baja California before the Landers 1992 M = 7.3, Hector Mine 1999 M = 7.1, El Mayor-Cucapah 2010 M = 7.2, and Ridgecrest 2019 M = 7.1 earthquakes, and they appear only within 15 to 25 years before the occurrence of large earthquakes. They are not observed either long before the large earthquakes or after them, and hence could be related to high local states of stress and be of value as a possible precursory observable.

  相似文献   

5.
This article presents the results of deterministic and probabilistic seismic hazard analyses (DSHA and PSHA) of the city of Hamedan and its neighboring regions. This historical city is one of the developing cities located in the west of Iran. For this reason, the DSHA and PSHA approaches have been used for the assessment of seismic hazards and earthquake risk evaluation. To this purpose, analyses have been carried out considering the historic and instrumented earthquakes, geologic and seismotectonic parameters of the region covering a radius of 100?km, keeping Hamedan as the center. Therefore, in this research, we studied the main faults and fault zones in the study area and calculated the length and distance of faults from the center of Hamedan. In the next step, we measured the maximum credible earthquake (MCE) and peak ground acceleration (PGA) using both DSHA and PSHA approaches and utilized the various equations introduced by different researchers for this purpose. The results of DSHA approach show that the MCE-evaluated value is 7.2 Richter, which might be created by Nahavand fault activities in this region. The PGA value of 0.56?g will be obtained from Keshin fault. The results of PSHA approach show that the MCE-evaluated value is 7.6 Richter for a 0.64 probability in a 50-year period. The PGA value of 0.45?g will be obtained from Keshin fault. Seismic hazard parameters have been evaluated considering the available earthquake data using Gutenberg?CRichter relationship method. The ??a?? and ??b?? parameters were estimated 5.53 and 0.68, respectively.  相似文献   

6.
The course of the active North Anatolian Fault system from Lake Abant to Lake Sapanca was traced by its high micro-earthquake activity. If approaching from the east this section includes a broad south to north overstep (fault offset) of the main fault. Local seismicity has been recorded in this area by a semi-permanent network of 8 stations since 1985 within the frame of the Turkish–German Joint Project for Earthquake Research. The effect of the overstep and its complex fracture kinematics are reflected by the seismicity distribution, the variations of composite fault-plane solutions, and by the spatial coda-Q distribution. Areas of different stress orientation can be distinguished and assigned to different groups of faults. The stresses and the tectonic pattern only in part correspond to a simple model of an extensional overstep and its correlative pull-apart basin. Other types of deformation involved are characterized by normal faulting on faults parallel to the general course of the main strike-slip fault and by synthetic strike-slip faults oriented similar to Riedel shears. Shear deformation by this fault group widely distributed in an area north and east of the main fault line may play an important role in the evolution of the overstep. The development of a pull-apart basin is inhibited along the eastern half of the overstep and compatibility of both strands of the main fault (Bolu–Lake Abant and Lake Sapanca– Izmit–Marmara Sea) seems to be achieved with the aid of the fault systems mentioned. The extension of the missing part of the pull-apart basin seems to be displaced to positions remote from the Lake Abant–Lake Sapanca main fault line, i.e. to the Akyaz?–Düzce basin tract. Highest Q-values (lowest attenuation of seismic waves) were found in the zone of highest seismicity north and west of the overstep which is the zone of strongest horizontal tension. If high coda-Q is an indicator for strong scattering of seismic waves it might be related to extensional opening of fractures.  相似文献   

7.
新疆阿尔泰地区断裂控矿的多重分形机理   总被引:3,自引:2,他引:1  
新疆阿尔泰地区断裂构造非常发育并对热液成矿有重要控制作用。分形分析表明该区断裂和矿床的空间分布均为多重分形分布,断裂的奇异指数为1.597~2.403,多重分维谱值为0.551~1.706;矿床的奇异指数为0.925~2.287,分维谱值为0.138~1.363。断裂的高的奇异指数和分维谱值表明该区断裂构造具有较高的成熟度和连通性,有利于提高岩石渗透性、促进流体流动和热液矿床的形成。断裂构造的多重分形分布导致该区热液成矿作用的多重分形分布。断裂体系演化过程中不同断裂部位变形和渗透性存在明显差异,数值模拟表明断裂与岩性和流体之间存在强烈的耦合作用并导致不同岩性的断裂具有明显不同的断裂渗透率。断裂-脉体系演化是一个自组织过程,元胞自动机模拟表明只有在分形渗透临界以上连通性较好的脊骨断裂部位是最有利于流体流动和成矿作用的。因此只有在部分有利的断裂部位才能形成矿床,并导致了断裂构造的奇异指数和多重分维谱值明显高于矿床。  相似文献   

8.
The NW–SE shortening between the African and the Eurasian plates is accommodated in the eastern Betic Cordillera along a broad area that includes large N‐vergent folds and kilometric NE–SW sinistral faults with related seismicity. We have selected the best exposed small‐scale tectonic structures located in the western Huércal‐Overa Basin (Betic Cordillera) to discuss the seismotectonic implications of such structures usually developed in seismogenic zones. Subvertical ESE–WNW pure dextral faults and E–W to ENE–ESW dextral‐reverse faults and folds deform the Quaternary sediments. The La Molata structure is the most impressive example, including dextral ESE–WNW Neogene faults, active southward‐dipping reverse faults and associated ENE–WSW folds. A molar M1 assigned to Mimomys savini allows for precise dating of the folded sediments (0.95–0.83 Ma). Strain rates calculated across this structure give ~0.006 mm a?1 horizontal shortening from the Middle Pleistocene up until now. The widespread active deformations on small‐scale structures contribute to elastic energy dissipation around the large seismogenic zones of the eastern Betics, decreasing the seismic hazard of major fault zones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The most of shallow earthquakes are followed, just after the main shock, by increased residual seismicity known as “aftershocks” or “aftershock sequences”. Because of their disparity in time and space, aftershock sequences are more or less obvious and their productivity is spread out in time. Several studies have been regularly proposed to explain or to understand the mechanisms of the occurrence and the behaviour of these small earthquakes. In a theoretical context, many factors can induce the aftershock triggering: residual friction, subcritical crack growth, pore fluid flow etc. Just after the occurrence of the most destructive main shock of the 21 May 2003 Boumerdes (Algeria) earthquake, a wide sequence of aftershocks was recorded at different geographical locations and with various magnitudes. Based on the fact that the region of Boumerdes (40 km east of the capital Algiers) did not develop major earthquakes in the past, a geostatistical investigation of the data for this aftershock sequence is a valuable input for better seismogeological identification of this area. In the present analysis, after an overview of the geological factors in the likely occurrence of the earthquake, fundamental statistical parameters were chosen: the b value from the Gutenberg–Richter law, the p factor of the extracted respectively from the b value and the fractal variogram defined as a graphic tool to describe the continuity or the roughness of data. Jointly to the geostatistical parameters provided by the variogram like the fractal dimension. The main objective of the calculation and interpretation of these parameters is oriented towards a better understanding of the seismicity of the region of Boumerdes (Algeria) now classified as seismogenic zone.  相似文献   

10.
The seismic hazard for the Lake Van basin is computed using a probabilistic approach, along with the earthquake data from 1907 to present. The spatial distribution of seismic events between the longitudes of 41–45° and the latitudes of 37.5–40°, which encompasses the region, indicates distinct seismic zones. The positions of these zones are well aligned with the known tectonic features such as the Tutak-Çald?ran fault zone, the Özalp fault zone, the Geva? fault zone, the Bitlis fault zone and Karl?ova junction where the North Anatolian fault zone and East Anatolian fault zone meet. These faults are known to have generated major earthquakes which strongly affected cities and towns such as Van, Mu?, Bitlis, Özalp, Muradiye, Çald?ran, Erci?, Adilcevaz, Ahlat, Tatvan, Geva? and Gürp?nar. The recurrence intervals of M s ≥ 4 earthquakes were evaluated in order to obtain the parameters of the Gutenberg–Richter measurements for seismic zones. More importantly, iso-acceleration maps of the basin were produced with a grid interval of 0.05 degrees. These maps are developed for 100- and 475- year return periods, utilizing the domestic attenuation relationships. A computer program called Sistehan II was utilized to generate these maps.  相似文献   

11.
The aim of this study is to understand the seismic characteristics of fault systems, which play key roles in the geodynamics of the Mt. Etna and the ascending magma. Understanding the seismic behaviour of fault systems and their relationship to volcanic and seismic phenomena may provide a useful contribution to a better understanding of dynamic processes at Mt. Etna. The seismicity in two periods (1874–1913 and 1981–1996), which include some important eruptions, have been analysed. Quantitative analysis of seismicity has been performed. Calculating fractal dimension allows us to distinguish between random, periodic and clustered scale-invariant time distributions of volcanic events. Correlations between fractal clustering evolution at long, mid and short term and eruptive processes has been found.  相似文献   

12.
K–Ar clay fraction ages of brittle faults often vary with grain size, decreasing in the finer size fractions, producing an inclined age–grain‐size spectrum. K–Ar ages and mineralogical characterization of gouges from two normal faults in the Kongsberg silver mines, southern Norway, suggest that inclined spectra derived from brittle fault rocks reflect the mixing of inherited components with authigenic mineral phases. The ages of the coarsest and finest fractions constrain faulting at c. 260–270 Ma and reactivation around 200–210 Ma, respectively. This study demonstrates how wall‐rock contamination influences the K–Ar age of the coarsest size fractions and that authigenic illite and K‐feldspar can crystallize synkinematically under equivalent conditions and thus yield the same K–Ar ages.  相似文献   

13.
河北平原地区断层系的分形特征分析   总被引:1,自引:0,他引:1  
断层形成机理的复杂性和时空展布的不规则性,传统的评价方法往往很难取得令人满意的定量化结果,应用分形理论可以对断裂构造系进行定量评价,断层分维是断层数量、规模、组合方式及动力学机制的综合体现,因此分维值的大小可以作为断层构造复杂程度一个定量化指标。运用分形理论,对河北平原区主要断裂构造带进行了定量评价。得出河北平原区NNE向分维值为1.358,纬向断层系分维值为1.183,河北平原区活断层系空间分维值较高,这和研究区地震活动频繁、地质灾害多发一致。最后对河北平原区、渭河盆地和川滇断层系分形值和地震活动性进行了分析对比,发现地震空间分布和分形值的大小有对应关系,且渭河盆地、川滇的分形值大于河北平原地区,河北平原所发生的地震多沿NNE向呈带状分布。  相似文献   

14.
The noise component in the time series of Earth surface displacements that were obtained with the Global Positioning System (GPS) is analyzed for 19 points. The methods of dynamic system and fractal set theory are applied. The analyzed parameters include the correlation dimension, spectral scaling parameter, fractal dimension, and the Hurst exponent. We detect that GPS time series demonstrate fractal properties in a range of over one order of magnitude of frequency (flicker noise). The fractal characteristics of the studied series and seismotectonic features of the studied regions are characterized by a relationship that can be explained by the dynamic characteristics of the block models and seismicity.  相似文献   

15.
Displacement, length and linkage of deformation bands have been studied in Jurassic sandstones in southeastern Utah. Isolated deformation bands with lengths (L) that span more than three orders of magnitude show similar displacement (D) profiles with more or less centrally located maxima and gently increasing gradient toward the tips. Soft- and hard-linked examples exhibit steeper displacement gradients near overlap zones and immature hard links, similar to previously described fault populations. The deformation band population shows power-law length and displacement distributions, but with lower exponents than commonly observed for populations of larger faults or small faults with distinct slip surfaces. Similarly, the Dmax-L relationship of the deformation bands shows a well-defined exponent of ca 0.5, whereas the general disagreement for other fault populations is whether the exponent is 1 or 1.5. We suggest that this important difference in scaling law between deformation bands and other faults has to do with the lack of well-developed slip surfaces in deformation bands. During growth, deformation bands link to form zones of densely spaced bands, and a slip surface is eventually formed (when 100 m < L < 1 km). The growth and scaling relationship for the resulting populations of faults (slip surfaces) is expected to be similar to ‘ordinary’ fault populations. A change in the Dmax-L scaling relationship at the point when zones of deformation bands develop slip surfaces is expected to be a general feature in porous sandstones where faults with slip surfaces develop from deformation bands. Down-scaling of ordinary fault populations into the size domain of deformation bands in porous sandstones is therefore potentially dangerous.  相似文献   

16.
The Sierra de San Miguelito is a relatively uplifted area and is constituted by a large amount of silicic volcanic rocks with ages from middle to late Cenozoic. The normal faults of the Sierra de San Miguelito are Domino-style and nearly parallel. The cumulative length and displacement of the faults obey power-law distribution. The fractal dimension of the fault traces is -1.49. Using the multi-line one-dimensional sampling, the calculated exponent of cumulative fault displacements is -0.66. A cumulative curve combining measurements of all four sections yielded a slope of -0.63. The displacement-length plot shows a non-linear relationship and large dispersion of data. The large dispersion in the plot is mainly due to the fault linkage during faulting. An estimation of extensional strain due to the normal faults is ca. 0.1830.The bed extension strain is always less than or equal to the horizontal extension strain. The deformation in the Sierra de San Miguelito occurred near the surface, producing pervasive faults and many faults are too small to appear in maps and sections at common scales. The stretching produced by small faults reach ca. 33% of the total horizontal elongation.  相似文献   

17.
Seismic hazard analysis of the northwest Himalayan belt was carried out by using extreme value theory (EVT). The rate of seismicity (a value) and recurrence intervals with the given earthquake magnitude (b value) was calculated from the observed data using Gutenberg–Richter Law. The statistical evaluation of 12,125 events from 1902 to 2017 shows the increasing trend in their inter-arrival times. The frequency–magnitude relation exhibits a linear downslope trend with negative slope of 0.8277 and positive intercept of 4.6977. The empirical results showed that the annual risk probability of high magnitude earthquake M?≥?7.7 in 50 years is 88% with recurrence period of 47 years, probability of M?≤?7.5 in 50 years is 97% with recurrence period of 27 years, and probability of M?≤?6.5 in 50 years is 100% with recurrence period of 4 years. Kashmir valley, located in the NW Himalaya, encompasses a peculiar tectonic and structural setup. The patterns of the present and historical seismicity records of the valley suggest a long-term strain accumulation along NNW and SSE extensions with the decline in the seismic gap, posing a potential threat of earthquakes in the future. The Kashmir valley is characterized by the typical lithological, tectono-geomorphic, geotechnical, hydrogeological and socioeconomic settings that augment the earthquake vulnerability associated with the seismicity of the region. The cumulative impact of the various influencing parameters therefore exacerbates the seismic hazard risk of the valley to future earthquake events.  相似文献   

18.
ABSTRACT Laboratory experiments on rock faulting show that processes of particle comminution in fault rocks are influenced by several parameters, including fault strike and normal stress across faults. In nature, normal stress across faults increases with increasing transpressional strike of faults. Accordingly, different structural fabrics and particle size distributions are expected for cataclastic rocks that have developed along faults with different transpressional orientations and comparable displacements within regional-scale strike-slip fault zones. Adjacent bands of cataclastic gouge and breccia were analysed from four small-scale fault zones. All have comparable displacements and very similar protolith (i.e. shallow-water limestone), structure, kinematics, size, and tectonic environment, but different transpressional strikes within the regional-scale left-lateral Mattinata strike-slip fault, Italy. An inverse linear relationship is found between fault transpressional angles and fractal dimensions of particle size distributions from cataclastic rock samples.  相似文献   

19.
In order to investigate the seismicity of western Anatolia limited with the coordinates of 36°–40° N, 26°–32° E, Gutenberg–Richter magnitude–frequency relation, seismic risk and recurrence period have been computed. The data belonging to both the historical period before 1900 (I0 ≥ 5.0 corresponding to MS ≥ 4.4) and the instrumental period until the end of 2006 (MS ≥ 4.0) has been used in the analysis. The study area has been divided into 13 sub-regions due to certain seismotectonic characteristics, plate tectonic models and geology of the region. All the computations have been performed for these sub-regions, separately. According to the results, a and b values in the computed magnitude–frequency relations are in the intervals 3.19±0.17 – 5.15±0.52 and 0.42±0.05 – 0.66±0.07, respectively. The highest b values have been determined for sub-regions 3 and 12 (Demirci-Gediz and Gökova Gulf-Mu?la-Gölhisar). The lowest b values have also been determined for sub-regions 1 and 9 (Bal?kesir and Bodrum-?stanköy). Finally, seismic risk and recurrence period computations from a and b values have shown as expected that sub-regions 1 and 9 which have the lowest b values and the highest risks and the shortest-recurrence periods.  相似文献   

20.
Although the U.K. is in an area of only low to moderate seismicity, the seismic hazard is sufficient to pose a threat to sensitive structures such as chemical plants and nuclear facilities. In quantifying the level of hazard by conventional probabilistic methodology, however, some problems arise in attempting to interpret earthquake data in terms of geological structure and faults. In the U.K., not only is it impossible to identify any demonstrably active faults, but also it is extremely difficult to discern any relationship between the pattern of seismicity and local or regional geological structure.This study discusses the use of two zonation approaches which complement each other in such a way that the general character and trend of seismicity is preserved. In one approach, the zonation is informed by the structural geology, where possible; geological zonation is avoided if it produces sources with heterogeneous seismicity. In the other approach, the record of past earthquakes is divided up into very small zones around individual epicentres or groups of epicentres, the size of each zone usually being proportional to the uncertainty in the epicentral determination of the appropriate event. This zonation preserves an observed tendency of some British earthquakes to repeat themselves. It is suggested that, in intraplate areas such as the U.K., it is often inappropriate to attempt to model individual fault sources. No faults in the U.K. are provably active. Because an earthquake of moderate size can occur on a very short fault segment, it is impractical to restrict fault modelling to major features. Even the two largest U.K. faults, suspected to be active, pose problems in attributing historical seismicity to them as distinct features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号