首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We have studied the spatial distribution of XUV emission in the 14 August, 1973 loop prominence observed with the NRL spectroheliograph on Skylab. The loop prominence consists of two large loops and is observed in lines from ions with temperatures ranging from 5 × 104 K to 3 × 106 K. The loops seen in low temperature (106K) lines such as from He ii, Ne vii, Mg vii, Mg viii, and Si viii are systematically displaced from loops seen in higher temperature lines such as from Si xii, Fe xv, and Fe xvi. The cross section of the loop, particularly in cooler lines is nearly constant along the loop. For hotter loops in Si xii, Fe xv, and Fe xvi, however, emission at the top of the loop is more intense and extended than that near the footpoints, which makes the loops appear wider at the top.There is no evidence that the 14 August loop prominence consists of a cooler core surrounded by a hot sheath as in some active region and sunspot loops reported by Foukal (1975, 1976). Rather, the observed spatial displacement between cooler and hotter loops suggest that the 14 August loop prominence is composed of many magnetic flux tubes, each with its own temperature.Ball Corporation. Now with NASA/Marshall Space Flight Center.  相似文献   

2.
The physical properties in the coronal disturbance (CD) (W90, N25°) associated with an active prominence are investigated on the basis of the intensities and profiles of 5694 Å Caxv and 6702 Å Nixv lines and continuum measured in the eclipse coronal spectra of 31 July, 1981. The spectrograms have been taken with a dispersion of between 7 to 10 Å mm-1 and a solar image of 15 mm in diameter. The following characteristics of the CD have been deduced. The CD occurred cospatially with an active prominence and consisted of two discrete regions with different temperatures penetrating each other. (1) Caxv region: T e= 3.8 × 106 K, the length along the slit of the spectrograph Z 65000 km, the effective line-of-sight length L 20000 km, the average electron density , nonthermal velocities V t= (20–32) km s-1. (2)Nixv-Caxiii region: T e= 2.3 × 106 K, Z 37000 km, L 35000 km, n e 1 × 109 cm-3, V t= (23–30) km s-1. A macroscopic mass motion has been discovered within the Nixv region of the CD from the Doppler shifts of the 6702 Å Nixv line: V r= + 27 km s-1 on the lower and V r= - 12 km s-1 on the upper border of the CD. The average height of the CD was H 0.08 R . The radial velocities in the prominence found from the emission line tilts are + 12 and - 8 km s-1 on its lower and upper borders. A similar picture of the mass motion in the CD and the prominence speaks in favour of an intimate relation between them.  相似文献   

3.
A single loop associated with a flare of 21 January 1974 was studied with NRL spectroheliograms in order to understand the phenomenon of evaporation. The loop seen in the emission lines of Fe xv reached its maximum brightness 15 min after the onset. The loop is different from a flare loop because of the time sequence in which it appeared and is different from a post-flare loop prominence system because of its morphology. The electron density in the loop increases gradually to 4 × 1010 cm–3. The material of the loop is thought to be supplied from the lower atmosphere of the chromosphere or the photosphere. The loop is an associated phenomenon of the main flare event distinguished by a longer rise time (15 min) and a lower peak temperature (2 × 106 K).  相似文献   

4.
Measured values for the total intensity of the continuum and the ratio of integrated intensities I( 5694)/I/(5446) are used to estimate the fraction of electrons along the line of sight contributing to the excitation of Caxv. This estimate of electron density along with an estimate of the dimension of the emitting region are used to find a value of the abundance of Ca in the solar corona. The estimated abundance is logN Ca/N H = -4.35.  相似文献   

5.
A technique developed for analysing line profiles with both speed and high accuracy was used to study the physical conditions of a coronal formation near a quiescent prominence. Detailed analyses of five coronal lines (Fe xiv λ 5303, Fe x λ 6374, Ni xv λ 6702, Fe xv λ 7059, and Fe xi λ 7892) provided total intensities, Doppler width temperatures, ionization temperatures, and velocities. Dissimilar spatial fluctuations in intensity are obvious for ions grouped according to (low vs high) ionization potentials. The intensity of the green line shows a local minimum around the observed quiescent prominence; a corresponding but much more diffuse pattern is visible in the red line intensity. Large differences are observed in temperatures derived by different means. In particular, , while , and . The differences between and are taken as direct evidence of temperature inhomogeneity. One can thus put little significance in T e (xi/x). T D(λ5303) and T e (xv/xiv) fluctuate nearly in parallel at each slit height, with a weak local minimum evident around the prominence. The discrepancy between these two can be removed if a non-thermal turbulent motion of 6–16 km s−1 is assumed. Variations with height of both T D(λ5303) and T e (xv/xiv) suggest that the coronal temperature maximum is located no more than 15000 km above the top of spicules. A negative gradient of about 6 deg km−1 is found in the height variation of T D(λ5303). The height variation of the green line wavelength shows that the majority of coronal material in this region is flowing from west to east on the Sun, with the highest velocity of 12 km s−1 found at the lowest heights. This motion is in the same sense as that of the nearby coronal rain, as determined both from the spectra and wavelength-shifted Hα filtergrams. Superposed on the above flow is a systematic velocity field of up to ±5 km s−1. This field similarly reaches maximum amplitudes at lowest heights showing a local maximum around the prominence. On leave from Institute of Earth Science and Astrophysics, Shiga University, Ohtsu 520, Japan, as 1973–75 National Academy of Science/National Research Council Senior Post-Doctoral Research Associate at Sacramento Peak Observatory.  相似文献   

6.
H. Zirin 《Solar physics》1970,11(3):497-512
Climax coronagraph observations of the accessible Fe lines, as well as the Caxv 5694 line at the time of the 1962 total eclipse, are analyzed. The spectra show that the ionization equilibrium of iron is not substantially changed in an intense coronal condensation, at least for the stages x through xv. The only exception is Fexv 7059, for which density effects are important. The stability of the ionization distribution is explained by the dynamic nature of the Fe ionization, with ions entering on the high side (Fexvi and up) due to rapid heating and then cooling through the visible stages.Comparison of the ionization distributions inferred from radiative and collisional excitation of the iron lines shows that the excitation must be by collisions everywhere at the heights examined (less than 50 000 km).The iron abundance in the corona is found to be 10–4 that of hydrogen, but this figure would be reduced by the amount of cyclic excitation.The peak electron density in the condensation is 8 × 109, and the peak value of the 5694 line/ continuum ratio is 2.5, in good agreement with calculations by Chevalier and Lambert.The ratio of the infrared Fexiii lines is measured along the limb and found to vary with electron density as expected, the 10 747/10 798 ratio is 7 or less at densities much below 109 and saturates at a value of 2 for densities above that amount.  相似文献   

7.
Rozelot  J. P.  Noens  J. C.  Pech  B. 《Solar physics》1974,37(1):173-178
Résumé Les populations des niveaux excités des ions coronaux suivent avec une très bonne approximation une loi analytique du type a × N e b, où N e est la densité électronique du milieu et où a et b sont des coefficients dépendant seulement de la distance du bord et de la température. Cette forme est particulièrement souple d'emploi pour l'interprétation des mesures d'intensités des raies démission coronales.Les coefficients a et b présentés ici, ont été déterminés à partir des résultats de nombreux auteurs, et portent sur les niveaux intervenant dans les transitions responsables des raies observées dans le domaine visible et infra-rouge du spectre coronal concernant les ions: Fe x, xi, xiii, xiv, xv; Ca xiii, xv; Ni xii, xiii, xv, xvi et A xiv. L'examen des coefficients b permet notamment de sélectionner les raies les plus sensibles à la densité électronique.
The populations of the excited levels of coronal ions follow with very great accuracy an analytical law of the type a × N e b, where N e is the electron density of the medium and where a and b are only temperature and solar limb distance dependant coefficients. This form is particularly well adapted for the interpretation of the intensities measurements of coronal emission lines.The coefficients a and b here presented have been determined according to the results of various authors, and deal with the levels concerning the transitions responsible for the lines observed in the visible and infrared coronal field, and chiefly bear on the following ions: Fe x, xi, xiii, xiv, xv; Ca xiii, xv; Ni xii, xiii, xv, xvi, and A xiv. The most sensitive lines to the electron density can be selected thanks to the examination of the coefficient b.
  相似文献   

8.
Multi-telescope observations of the coronal transient of 15–16 April, 1980 provide simultaneous data from the Solar Maximum Mission Coronagraph/Polarimeter, the Solwind Coronagraph, and the new Emission Line Coronagraph of the Sacramento Peak Observatory. An eruptive prominence-associated white light transient is for the first time seen as an unusual wave or brightening in Fe x gl6374 (but not in Fe xiv gl5303). Several interpretations of this fleeting enhancement are offered.The prominence shows a slowly increasing acceleration which peaks at the time of the Fe event. The white light loop transient surrounding the prominence expands at a well-documented constant speed to 10R , with an extrapolated start time at zero height coincident with the surface activity.This loop transient exemplifies those seen above 1.7R in that leading the disturbance is a bright (N e-enhanced) loop rather than dark. This is consistent with a report of the behavior of another eruptive event observed by Fisher and Poland (1981) which began as a density depletion in the lower corona, with a bright loop forming at greater altitudes. The top of the bright loop ultimately fades in the outer corona while slow radial growth continues in the legs.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
We compute a new grid of plage models to determine the difference in temperature versus mass column density structure T(m) between plage regions and the quiet solar chromosphere, and to test whether the solar chromosphere is geometrically thinner in plages. We compare partial redistribution calculations of Mg ii h and k and Ca ii K to NRL Skylab observations of Mg ii h and k in six active regions and Ca ii K intensities obtained from spectroheliograms taken at approximately the same time as the Mg ii observations. We find that the plage observations are better matched by models with linear (in log m) temperature distributions and larger values of m 0 (the mass column density at the 8000 K layer in the chromosphere), than by models with larger low chromosphere temperature gradients but values of m 0 similar to the quiet Sun. Our derived temperature structures are in agreement with the grid originally proposed by Shine and Linsky, but our analysis is in contrast to the study by Kelch which implies that stellar chromospheric geometrical thickness is not affected by chromospheric activity. We conclude that either the stellar Mg ii observations upon which the Kelch study was based are of poorer quality than had been assumed, or that the spatial averaging of inhomogeneous structures, which is inherent in the stellar data, does not lead to a best fit one-component model similar in detail to that of a stellar or a solar plage.Visiting Astronomer at Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Staff member, Quantum Physics Division, National Bureau of Standards.  相似文献   

10.
Extreme ultraviolet spectra of several active regions are presented and analyzed. Spectral intensities of 3 active regions observed with the NRL Skylab XUV spectroheliograph (170–630 Å) are derived. From this data density sensitive line ratios of Mg viii, Si x, S xii, Fe ix, Fe x, Fe xi, Fe xii, Fe xiii, Fe xiv, and Fe xv are examined and typically yield, to within a factor of 2, electron pressures of 1 dyne cm–2 (n e T = 6 × 1015 cm–3 K). The differential emission measure of the brightest 35 × 35 portion of an active region is obtained between 1.4 × 104 K and 5 × 106 K from HCO OSO-VI XUV (280–1370 Å) spectra published by Dupree et al. (1973). Stigmatic EUV spectra (1170–1710 Å) obtained by the NRL High Resolution Telescope and Spectrograph (HRTS) are also presented. Doppler velocities as a function of position along the slit are derived in an active region plage and sunspot. The velocities are based on an absolute wavelength scale derived from neutral chromospheric lines and are accurate to ±2 km s–1. Downflows at 105 K are found throughout the plage with typical velocities of 10 km s–1. In the sunspot, downflows are typically 5 to 20 km s–1 over the umbra and zero over the penumbra. In addition localized 90 and 150 km s–1 downflows are found in the umbra in the same 1 × 1 resolution elements which contain the lower velocity downflows. Spectral intensities and velocities in a typical plage 1 resolution element are derived. The velocities are greatest ( 10 km s–1) at 105 K with lower velocities at higher and lower temperatures. The differential emission measure between 1.3 × 104 K and 2 × 106 K is derived and is found to be comparable to that derived from the OSO-VI data. An electron pressure of 1.4 dynes cm–2 (n e T = 1.0 × 1016 cm–3 K) is determined from pressure sensitive line ratios of Si iii, O iv, and N iv. From the data presented it is shown that convection plays a major role in determining the structure and dynamics of the active region transition zone and corona.  相似文献   

11.
We have examined seven active regions of the Skylab period in the EUV (Harvard College Observatory), and in H and K3 (Observatoire de Meudon, spectroheliograms and patrols) in order to elucidate the magnetic geometry in the coronal environment of filaments. We have also looked for signatures of magnetic reconfigurations associated with instabilities (i.e. velocities or disappearances) of filaments. Out of sixteen H filaments observed, six were stable (lifetime 48h). All the filaments lay within coronal cavities as seen in lines formed above 1.5 × 106 K (Mgx 625, Sixii 521, Fexvi 417, Fexv 361). None of the stable filaments had arcades or arches spanning the cavities except (sometimes) at the ends of the filaments. On the other hand, most (8/10) of the unstable filaments (having concurrent Doppler shifts or a subsequent DB within 24h) had arcades or single arches spanning their cavities. The arches were observed in EUV lines with formation temperatures as low as 2–4 × 105 K (Oiv 554, Ovi 1032, Ne vii 465), as well as in hotter lines. A statistical test shows that the arcade/instability vs non-arcade/stability association is significant at the 99% confidence level. We suggest 2 types of scenario relating arcades to instabilities. The more preferable scenario is closely related to the Kuperus/Van Tend model of filament disruptions.  相似文献   

12.
High spatial resolution spectral observations of five hedgerow prominences were made in H, He i D3 and Ca ii H and K.The observed relations between the lines were not the same in all prominences. The Ca ii H and K lines were 2–4 times brighter relative to H and D3 than predicted theoretically. The optical thickness of H was less than for the H and K lines, the H was optically thin in medium faint prominence structures. Faint structures appeared slightly hotter than bright structures.On leave from Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, Oslo 3, Norway.  相似文献   

13.
The excitation of the 2s22p2 ground configuration of Caxv is calculated for coronal densities and temperatures. The calculations include electron and proton excitation of the forbidden transitions and electron excitation via the first excited (2s2p3) configuration. It is shown that measurements of the line intensity ratio I( 5694)/I( 5446) are in good agreement with the predictions. The line to continuum observations for limb flares and coronal condensations are discussed. It is suggested that the calcium abundance in condensations is enhanced owing to diffusion processes.Present address: Department of Astronomy, University of Texas, Austin, Texas, U.S.A.  相似文献   

14.
T. Takakura 《Solar physics》1984,91(2):311-324
In some gradual hard X-ray bursts with high intensity, hard X-ray source (15–40 keV) is steadily located in the corona along with softer X-ray source (5–10 keV).Two stationary models, high density and high temperature models, are proposed to solve the difficult problem of confinement of hot (or nonthermal) plasma in the direction of the magnetic field along the loops in the corona. In both models, an essential point is that the effective X-ray source is composed of fine dense filamentary loops imbeded in a larger rarefied coronal loop, and the electron number density in the filaments is so high as 1011–1012 cm-3. If the density is so high heat conduction can be as reasonably small as of the order of 1027 erg s -1 for the given emission measures of observed X-rays, since the required cross-sectional area is small and also classical conduction is valid. Collisional confinement of thermal tail, and nonthermal electrons if any, up to 50–60 keV in the filaments is also possible, so that the hard X-ray images can be loop like structure instead of double source (foot points).High density model is applicable to the coronal filamentary loops with temperature T m < 5 × 107 K at the loop summit. The heat flow from the summit downwards is lost almost completely by the radiation from the loop during the conduction to the foot points. A continuous energy release is assumed near the summit to maintain the stationary temperature T m, and pressure balance is maintained along the loop. In this model, the number density at the summit is given by n m - 106 T m 2 /sm, where s m is the length of the loop from the summit to the foot point, and the distribution of temperature and density along the loop are given by T = T m(s/sm)1/3 and n = n m(s/sm)-1/3, respectively.High temperature model is applicable to the filamentary loops with higher temperature up to about 108.5 K and comparatively lower number density as 1011 cm-3 for the requirement of magnetic confinement of the hot plasma in radial direction. The radiation from the loop is negligibly small in this model so that the heat flux is nearly conserved down to the foot points. In this case, temperature gradient is smaller than that of the high density model, depending on the tapering of the magnetic bottle.In both models, the differential emission measure is maximum at the highest temperature T m and the brightness distribution along the loop shows a maximum around the summit of the loop if some magnetic tapering is taken into account.  相似文献   

15.
A post flare loop system was observed on the west limb at the total solar eclipse of February 16, 1980 in Kenya. Analyzing the monochromatic images and the flash spectra, we obtained the following results: (1) the lower part of the post flare loop system is characterized mainly by distinct cool loops of H and Fe x 6374. Fe x 6374 emitting plasma (T e = 1.0 × 106 K) is highly concentrated in the loops. The 6374 loops are broader in diameter and located very close to but a little higher than the corresponding H loops. The electron densities of the dense part in H and Fe x 6374 loops are 1011 cm-3 and 6 × 109cm-3, respectively; (2) the Ca xv emitting region (3.5 × 106 K) is confined to the upper part of the post flare loops. The electron density of this hot region is estimated as 8 × 109 cm-3 from the Ca xv line intensity ratio, I(5694)I(5445). These observational results led us to construct an empirical model of the post flare loop system which is consistent with the reconnection model of Kopp and Pneuman (1976).Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 267.  相似文献   

16.
O. Bely  M. Blaha 《Solar physics》1968,3(4):563-577
Relative intensities of 12 spectral lines of Fexv were calculated for various values of N e and T e. Nine levels of the ion were taken into account and all excitation and de-excitation processes were considered. The results are represented in Figures 2a, b, c.Research associate at J.I.L.A. for the year 1965–66.Visiting fellow of J.I.L.A. for the year 1965–66. On leave from: Astronomical Institute, Czechoslovak Academy of Sciences, Ondejov, Czechoslovakia.  相似文献   

17.
We outline a method to explore the column density of the Local Interstellar Medium (LISM) using absorptions in the resonance H and K lines of Mgii. The intrinsic strengths of these lines in the temperature and density conditions prevailing in warm clouds (T eff<104 K) in the LISM allows them to be used to explore many lines of sight where lines such a NaD and Caii H and K are too weak, but where L is saturated. The number of measurable lines-of-sight is greatly enhanced by using cool stars as the background emitters, but this implies reliable separation of the LISM components from stellar chromospheric selfabsorptions. We explain how to do this, and how to use a combination of column density and radial velocity data to measure the spatial extent and the physical parameters of the single cloud in which the Sun is embedded. This proves to be an oblate spheroid, of characteristic diameter 8 pc, withT eff 104 K,n(Hi) of 0.1 cm–3 and a mass <5M , streaming in the LSR from a point 1=4°,B=+16° with velocity equal to 16 km s–1, and is surrounded by the much hotter lower density ionized gas of the local supernova bubble.  相似文献   

18.
A sequence of images taken at different positions in the resonance lines of Ca ii, Mg ii, and H i was obtained over a quiescent prominence with the LPSP instrument on OSO-8. Ca ii K (and H) profiles are reconstructed at different locations in the prominence with a (10 × 5) arc sec2 resolution. Significant variations of FWHM and line shifts are found: FWHM range from 0.14 Å to 0.5 Å; blue shifts reach about 14 km s-1. The ratio of K to H absolute intensities shows a large spread around the average value of 1.2. The same ratio for the Mg ii lines in the whole prominence is higher (1.7), a fact already noticed at the edge of an active prominence (Vial et al., 1979). The ionization degree, as measured by the L/Ca K ratio, shows noticeable variations within the prominence. The L intensity is about 0.3 times the intensity measured in the quiet Sun, and the L/L ratio is less than one half the disk value. These results indicate important variations of the thermal conditions inside the prominence.DASOP, Observatoire de Paris, 92190 Meudon, France.  相似文献   

19.
With the aid of the spectra taken in the years 1959–1968, a physical analysis of the atmosphere of P Cygni has been carried out and the motions of the atmosphere have been studied. The variations of radial velocities, the velocity progressions of Balmer and Hei lines, the high rate of mass loss (2×10–5 M yr–1), the features of the observed line profiles, especially that of H-K lines of Caii andD 1-D 2 lines of Nai confirm the conclusion of Van Blerkom (1978), concerning the assumption of an accelerating atmosphere for P Cygni. The electron density variation with the radius seems to ben e r –5/2, with an average value of 7×1011cm–3 at the lower boundary of the atmosphere.In order to explain the two absorption components of observed lines, an atmospheric model based on the assumption of three envelopes, two of which accelerate gradually with two different velocity laws (up to 11.2r c ), and the third of which accelerates rapidly with a standard velocity law (beyond 11.2r c ) has been developed. From this model and the observed profiles, the geometrical thicknesses of the line-forming regions of H, H, H, and H are derived.The observations were obtained at Haute Provence Observatory (CNRS).  相似文献   

20.
The coronal hole observed on May 31, 1973 is studied using extreme ultraviolet and radio observations. The EUV line is the Fe xv at = 284 Å and the radio frequencies are 169 and 408 MHz. An unsuccessful attempt to deduce an homogeneous model of the hole from these observations, shows that EUV and radio observations are inconsistent if interpreted in such a frame and if the EUV line intensity measurements in the hole are reliable.Inhomogeneities are therefore required to account for both observations. An inhomogeneous model consisting of hot (T2×106K) elements covering 10% of the hole surface surrounded by regions of colder gas (T8×105K) is able to explain both observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号