首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We study non-thermal emissions from cascade processes in accreting X-ray binary pulsars.In the framework of the magnetospheric gap model,we consider three photon fields,which are respectively from the polar cap of a pulsar,its surrounding accretion disk and a massive companion star with a circumstellar disk,to shield the gap.The gap-accelerated ultra-relativistic electrons emit high-energy photons via curvature radiation and an inverse Compton scattering process,in which part of these high-energy photons absorbed by interactions with the surrounding photon fields can facilitate the following electromagnetic cascades.We first carry out numerical calculations of the cascade processes in order to obtain the predicted emission spectra.As an example,we subsequently apply this model to reproduce observations of LS I +61?303.We find that the results can fit observations ranging from hard X-ray to γ-ray bands.In particular,they can explain the spectral cutoff feature at a few GeV.Finally,we suggest that the emissions detected by the Fermi Large Area Telescope from X-ray binary pulsars originate in the magnetosphere region of the pulsar.  相似文献   

2.
We analyzed the spectral properties and pulse profile of PSR J1811-1925,a pulsar located in the center of composite supernova remnant(SNR) G11.2-0.3,by using high timing resolution archival data from the Nuclear Spectroscopic Telescope Array Mission(NuSTAR).Analysis of archival Chandra data over different regions rules out the SNR shell as the site of the hard X-ray emission while spectral analysis indicates that the NuSTAR photons originate in the pulsar and its nebula.The pulse profile exhibit...  相似文献   

3.
With the successful launch of Swift satellite,more and more data of early X-ray afterglows from short gamma-ray bursts have been collected.Some interesting features such as unusual afterglow light curves and unexpected X-ray flares are revealed.Especially,in some cases,there is a fiat segment in the X-ray afterglow light curve.Here we present a simplified model in which we believe that the flattening part is due to energy injection from the central engine.We assume that this energy injection arises from the magnetic dipole radiation of a millisecond pulsar formed after the merger of two neutron stars.We check this model with the short GRB 060313.Our numerical results suggest that energy injection from a millisecond magnetar could make part of the X-ray afterglow light curve flat.  相似文献   

4.
We investigate theγ-ray and X-ray properties of the flat spectrum radio quasar(FSRQ)4C 50.11 at redshift z=1.517.The Fermi-LAT data indicate that this source was in an active state since July 2013.During this active period,the source’s emission appeared harder inγ-rays,with the flux having increased by more than a factor of three.We analyze two distinct flares seen in the active state and find that the variability is as short as several hours.The Swift-XRT data show that the source was variable at X-ray energies,but no evidence is found for flux or spectral changes related to theγ-ray activity.The broad-band X-ray spectrum obtained with Swift-XRT and Nu STAR is described well by a broken power law model,with an extremely flat spectrum(Γ_1~0.1)below the break energy,E_(break)~2.1 keV,and Γ_2~1.5 above the break energy.The spectral flattening below~3 keV is likely due to the low energy cut-off in the energy distribution of the photon-emitting electron population.We fit the broad-band spectral energy distribution of the source during both the active and quiescent states.The X-ray andγ-ray emission from the jet is mainly due to the inverse-Compton scattering process,with seed photons provided from the broad line region,and the jet is estimated to be larger than the accretion power if the jet is mainly composed of electron-proton pairs.  相似文献   

5.
W Comae has significant variability in multi-wavelengthes, from radio to gamma-ray bands. A bright outburst in optical and X-ray bands was observed in 1998, and most recently, a strong TeV flare was detected by VERITAS in 2008. It is the first TeV intermediate-frequency-peaked BL Lacertae source. I find that both the broadband spectral energy distributions (SEDs) which were quasi-simultaneously obtained during the TeV flare and during the optical/X-ray outburst are well fit by using a single-zone synchrotron + synchrotron-self-Compton model. The satisfactory fitting requires a large beaming factor, i.e., δ- 25 and δ- 20 for the TeV flare and the optical/X-ray outburst, respectively, suggesting that both the optical/X-ray outburst and the TeV flare are from a relativistic jet. The size of the emission region of the TeV flare is three times larger than that of the optical/X-ray outburst, and the strength of the magnetic field for the TeV flare is - 14 times smaller than that of the X-ray/optical outburst, likely indicating that the region of the TeV flare is more distant from the core than that of the X-ray/optical outburst. The inverse Compton component of the TeV flare peaks around 1.3 GeV, but it is around 20 MeV for the X-ray/optical outburst, lower than that for the TeV flare by two orders of magnitude. The model predicts that the optical/X-ray outburst might be accompanied by a strong MeV/GeV emission, but the TeV flare may be not associated with the X-ray/optical outburst. The GeV emission is critical for characterizing the SEDs of the optical/X-ray outburst and the TeV flare. The predicted GeV flux is above the sensitivity of Fermi/LAT, and it could be verified with the observations by Fermi/LAT in the near future.  相似文献   

6.
The spectral energy distribution (SED) of the γ-ray flare observed in July 1997 in BL Lacertae is re-considered. It is pointed out that the optical observations made by Webb et al. showed the associated optical flare has a hard spectrum (the average spectral index αopt~0.48, Fν∝ν^-α), and the ASCA observations made by Tanihata et al. showed very steep spectra in the soft X-ray band (0.7-1.5 keV) (αx~3-4). We find that the flux densities and spectral indices in both the optical and soft X-ray bands are closely consistent with a ‘canonical‘ synchrotron spectrum emitted by relativistic electrons of a power-law energy distribution with a high energy cutoff, and thus the peak of the SED of the synchrotron radiation (in representation of νFν) is located in the EUV - soft X-ray bands. Therefore, the GeV γ-ray emission observed in the July 1997 outburst may be mainly due to the synchrotron self-Compton (SSC) process, contrasting with the current explanations in terms of external radiation Compton (ERC) process, in which the seed photons are mostly taken to be the UV emission from the clouds of the broad emission line region. We argue that the hard optical spectra observed during the γ-ray outburst may be an important signature for the acceleration of high energy electrons (γe-10^4) in the γ-ray emitting region.  相似文献   

7.
We present long term optical variability studies of bright X-ray sources in four nearby elliptical galaxies with the Chandra Advanced CCD Imaging Spectrometer array(ACIS-S) and observations from the Hubble Space Telescope(HST) Advanced Camera for Surveys.Out of the 46 bright(X-ray counts 60)sources that are in the common field of view of the Chandra and HST observations,34 of them have potential optical counterparts,while the rest of them are optically dark.After taking into account systematic errors,estimated using optical sources in the field as a reference,we find that four of the X-ray sources(three in NGC 1399 and one in NGC 1427) have variable optical counterparts at a high level of significance.The X-ray luminosities of these sources are ~ 10~(38) erg s~(-1) and are also variable on similar time scales.The optical variability implies that the optical emission is associated with the X-ray source itself rather than being the integrated light from a host globular cluster.For one source,the change in optical magnitude is 0.3,which is one of the highest reported for this class of X-ray sources and this suggests that the optical variability is induced by the X-ray activity.However,the optically variable sources in NGC 1399 have been reported to have blue colors(g- z 1).All four sources have been detected in the infrared(IR) by Spitzer as point sources,and their ratios of 5.8 to 3.6 μm flux are 0.63,indicating that their IR spectra are like those of Active Galactic Nuclei(AGNs).While spectroscopic confirmation is required,it is likely that all four sources are background AGNs.We find none of the X-ray sources having optical/IR colors different from AGNs to be optically variable.  相似文献   

8.
Using data from the Large Area X-ray Proportional Counter(LAXPC) on the AstroSat satellite,we observed Type-1 thermonuclear X-ray bursts from the low mass X-ray binary neutron star 4 U 1323-62.Observations of 4 U 1323-62 that were carried out during the performance verification phase of the AstroSat satellite indicated six thermonuclear X-ray bursts in a total effective exposure of ~49.5 ks for about two consecutive days.Recurrence time of the detected thermonuclear bursts is in accordance with the orbital period of the source,~9400 s.Moreover,the light curve of 4 U 1323-62 revealed the presence of two dips.We present the results from time-resolved spectroscopy performed during all of the six X-ray bursts and also report the detection of a known low frequency quasi-periodic oscillation(LFQPO) at ~1 Hz from the source.However,any evidence of kilohertz QPO was not found.We have shown the burst profile at different energy ranges.Assuming a distance of 10 kpc,we observed a mean flux of ~1.8×10~(-9) erg cm~2 s~(-1).The radius of the blackbody is found to be highly consistent with the blackbody temperature and the blackbody flux of the bursts.  相似文献   

9.
Using long-term optical, ultraviolet(UV) and X-ray data, we present a study of a classical T Tauri star CV Cha. The V-band light curve obtained from the All Sky Automated Survey(ASAS) shows short as well as long-term variability. The short-term variability could be due to rotational modulation of CV Cha. We derive the rotational period of 3.714 ± 0.001 d for CV Cha. UV light curves obtained from Swift also show the variations. X-ray light curves from XMM-Newton and Swift do not show any significant short as well as long-term variability. However, the light curve from Chandra appears to be variable, which could be due to the emergence of flaring activities. X-ray spectra from all observations are explained well by the single temperature plasma of 0.95 keV with X-ray luminosity of 1030.4erg s-1in the 0.5–7.5 keV energy band. It appears that variability in optical and UV bands could be due to the presence of both hot and cool spots on the surface, while X-ray emission is dominated by magnetic processes.  相似文献   

10.
X-ray flares are the most common phenomena in the afterglow phase of gamma-ray bursts(GRBs) in the Swift era,and are known as a canonical component in X-ray afterglows.In this work,we constrain the Lorentz factor of X-ray flares with an updated sample.We extensively search for X-ray light curves showing flare and jet break simultaneously.A smooth broken power law function is used to fit the jet breaks in 11 GRBs.We also use a smooth broken power law function to fit the profile of X-ray flares,and the total number of the flares is 20.We obtain the lower and upper limits of Lorentz factor(Γ_X) with the timescale,half-opening angle and mean luminosity of the X-ray flares for interstellar medium(ISM) and wind cases.The lower limits on Γ_X range from tens to a few hundred,and the upper limits are mainly about a few hundred.We also apply the limited Lorentz factor to test correlations of Γ_0-E_(γ,iso) and Γ_0-L_(γ,iso) for GRBs,and find X-ray flares in the ISM case are much more consistent with those of prompt emission than the wind case in a statistical sense for both correlations.X-ray flares are almost consistent with the trend in the correlations of Γ_0-E__(γ,iso)(L_(γ,iso)) for prompt GRBs,indicating X-ray flares and prompt bursts may have the same physical origin.  相似文献   

11.
We study the influence of X-rays on the wind structure of selected O stars. For this purpose we use our non-local thermodynamic equilibrium (NLTE) wind code with inclusion of additional artificial source of X-rays, assumed to originate in the wind shocks.
We show that the influence of shock X-ray emission on wind mass-loss rate is relatively small. Wind terminal velocity may be slightly influenced by the presence of strong X-ray sources, especially for stars cooler than   T eff≲ 35 000 K  .
We discuss the origin of the   L X/ L ∼ 10−7  relation. For stars with thick wind this relation can be explained assuming that the cooling time depends on wind density. Stars with optically thin winds exhibiting the 'weak wind problem' display enhanced X-ray emission which may be connected with large shock cooling length. We propose that this effect can explain the 'weak wind problem'.
Inclusion of X-rays leads to a better agreement of the model ionization structure with observations. However, we do not find any significant influence of X-rays on P  v ionization fraction implying that the presence of X-rays cannot explain the P  v problem.
We study the implications of modified ionization equilibrium due to shock emission on the line transfer in the X-ray region. We conclude that the X-ray line profiles of helium-like ions may be affected by the line absorption within the cool wind.  相似文献   

12.
A technique for timescale analysis of spectral lags performed directly in the time domain is developed. Simulation studies are made to compare the time domain technique with the Fourier frequency analysis for spectral time lags. The time domain technique is applied to studying rapid variabilities of X-ray binaries and γ-ray bursts. The results indicate that in comparison with the Fourier analysis the timescale analysis technique is more powerful for the study of spectral lags in rapid variabilities on short time scales and short duration flaring phenomena.  相似文献   

13.
We have obtained high time resolution (seconds) photometry of LMC X-2 in 1997 December, simultaneously with the Rossi X-ray Timing Explorer ( RXTE ), in order to search for correlated X-ray and optical variability on time-scales from seconds to hours. We find that the optical and X-ray data are correlated only when the source is in a high, active X-ray state. Our analysis shows evidence for the X-ray emission leading the optical with a mean delay of <20 s. The time-scale for the lag can be reconciled with disc reprocessing, driven by the higher-energy X-rays, only by considering the lower limit for the delay. The results are compared with a similar analysis of archival data of Sco X-1.  相似文献   

14.
We present temporal and spectral characteristics of X-ray flares observed from six late-type G–K active dwarfs (V368 Cep, XI Boo, IM Vir, V471 Tau, CC Eri and EP Eri) using data from observations with the XMM–Newton observatory. All the stars were found to be flaring frequently and altogether a total of 17 flares were detected above the 'quiescent' state X-ray emission which varied from 0.5 to  8.3 × 1029 erg s−1  . The largest flare was observed in a low-activity dwarf XI Boo with a decay time of 10 ks and ratio of peak flare luminosity to 'quiescent' state luminosity of 2. We have studied the spectral changes during the flares by using colour–colour diagram and by detailed spectral analysis during the temporal evolution of the flares. The exponential decay of the X-ray light curves, and time evolution of the plasma temperature and emission measure are similar to those observed in compact solar flares. We have derived the semiloop lengths of flares based on the hydrodynamic flare model. The size of the flaring loops is found to be less than the stellar radius. The hydrodynamic flare decay analysis indicates the presence of sustained heating during the decay of most flares.  相似文献   

15.
The observations of the black hole binary Cygnus X-l were made in the energy band of 20–100keV with a balloon-borne Xenon-filled multiwire proportional counter telescope on 5th April 1992. Timing analysis of the data revealed the presence of Quasi-Periodic Oscillations (QPO) in the hard X-ray emission from the source. The QPO feature in the power density spectrum is broad with a peak at a frequency of 0.06 Hz. This result is compared with similar reports of QPOs in Cyg X-l in soft and hard X-rays. Short time scale random intensity variations in the X-ray light curve are described with a shot noise model.  相似文献   

16.
An atlas of high resolution (R = 60 000) CCD-spectra in the wavelength range 3500-5000A is presented for four objects in metallicity range -3.0 < [Fe/H] < -0.6, temperature range 4750 < Teff < 5900 K, and surface gravity range 1.6 < lgg < 5.0. We describe the calibration of the stellar atmospheric parameters using Alonso's formula based on the method of infrared flux and outline the determination of the abundances of a total number of 25 chemical elements. An analysis of the abundance determination errors for different chemical elements is carried out, and a method is provided for the observations and reduction of spectral material. Properties of the method of producing an atlas of spectra and line identifications are described.  相似文献   

17.
The surface differential rotation of active solar‐type stars can be investigated by means of Doppler and Zeeman‐Doppler Imaging, both techniques enabling one to estimate the short‐term temporal evolution of photospheric structures (cools spots or magnetic regions). After describing the main modeling tools recently developed to guarantee a precise analysis of differential rotation in this framework, we detail the main results obtained for a small number of active G and K fast rotating stars. We evoke in particular some preliminary trends that can be derived from this sample, bearing the promise that major advances in this field will be achieved with the new generation of spectropolarimeters (ESPaDOnS/CFHT, NARVAL/TBL). (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We present the results of a 2.5-yr multiwavelength monitoring programme of Cygnus X-1, making use of hard and soft X-ray data, optical spectroscopy, UBVJHK photometry and radio data. In particular, we confirm that the 5.6-d orbital period is apparent in all wavebands, and note the existence of a wavelength dependence to the modulation, in the sense that higher energies reach minimum first. We also find a strong modulation at a period of 142±7 d, which we suggest is caused by precession and/or radiative warping of the accretion disc. Strong modulation of the hard and soft X-ray flux at this long period may not be compatible with simple models of an optically thin accretion flow and corona in the low state. We present the basic components required for more detailed future modelling of the system – including a partially optically thick jet, quasi-continuous in the low state, the base of which acts as the Comptonizing corona. In addition, we find that there are a number of flares that appear to be correlated in at least two wavebands and generally in more. We choose two of these flares to study in further detail, and find that the hard and soft X-rays are well correlated in the first, and that the soft X-rays and radio are correlated in the second. In general, the optical and infrared show similar behaviour to each other, but are not correlated with the X-rays or radio.  相似文献   

19.
X-rays from massive OB stars: thermal emission from radiative shocks   总被引:1,自引:0,他引:1  
Chandra grating spectra of a sample of 15 massive OB stars were analysed under the basic assumption that the X-ray emission is produced in an ensemble of shocks formed in the winds driven by these objects. Shocks develop either as a result of radiation-driven instabilities or due to confinement of the wind by a relatively strong magnetic field, and since they are radiative, a simple model of their X-ray emission was developed that allows a direct comparison with observations. According to our model, the shock structures (clumps, complete or fractional shells) eventually become 'cold' clouds in the X-ray sky of the star. As a result, it is expected that for large covering factors of the hot clumps, there is a high probability for X-ray absorption by the 'cold' clouds, resulting in blueshifted spectral lines. Our analysis has revealed that such a correlation indeed exists for the considered sample of OB stars. As to the temperature characteristics of the X-ray emission plasma, the studied OB stars fall in two groups: (i) one with plasma temperature limited to ∼0.1–0.4 keV and (ii) the other with X-rays produced in plasmas at considerably higher temperatures. We argue that the two groups correspond to different mechanisms for the origin of X-rays: in radiation-driven instability shocks and in magnetically confined wind shocks, respectively.  相似文献   

20.
The transient black-hole binary XTE J1118+480 exhibited dramatic rapid variability at all wavelengths which were suitably observed during its 2000 April–July outburst. We examine time-resolved X-ray, ultraviolet, optical and infrared data spanning the plateau phase of the outburst. We find that both X-ray and infrared bands show large amplitude variability. The ultraviolet and optical variability is more subdued, but clearly correlated with that seen in the X-rays. The ultraviolet, at least, appears to be dominated by the continuum, although the lines are also variable. Using the X-ray variations as a reference point, we find that the ultraviolet (UV) variability at long wavelengths occurs later than that at short wavelengths. Uncertainty in the Hubble Space Telescope timing prohibits a determination of the absolute lag with respect to the X-rays, however. The transfer function is clearly not a delta-function, exhibiting significant repeatable structure. For the main signal we can rule out an origin in reprocessing on the companion star – the lack of variation in the lags is not consistent with this, given a relatively high orbital inclination. Weak reprocessing from the disc and/or companion star may be present, but is not required, and another component must dominate the variability. This could be variable synchrotron emission correlated with X-ray variability, consistent with our earlier interpretation of the infrared (IR) flux as due to synchrotron emission rather than thermal disc emission. In fact, the broad-band energy distribution of the variability from IR to X-rays is consistent with expectations of optically thin synchrotron emission. We also follow the evolution of the low-frequency quasi-periodic oscillation in X-rays, UV, and optical. Its properties at all wavelengths are similar, indicating a common origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号