首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Spiral galaxies with a reported bend in the slope of the oxygen abundance O/HR 23, derived with the traditionally used R23-method, are examined. It is shown that the artificial origin of the reported bends can be naturally explained. Two causes of the false bend in the slope of O/HR 23 are indicated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
We examine the H I kinematics of the “Bluedisk” ensemble of 48 galaxies selected from the Sloan Digital Sky Survey and observed in H I with the Westerbork Synthesis Radio Telescope. The sample consists of 25 galaxies with a high H I mass fraction and a comparatively large control sample comprising 23 galaxies of comparable stellar mass, stellar mass surface density, redshift, and inclination. By studying the H I velocity fields of these galaxies, we investigate whether there are signatures of ongoing gas accretion: i.e. global asymmetries and indications for warping and kinematical lopsidedness. We find no enhanced kinematical asymmetries between the H I‐rich sample and the control sample galaxies, indicating no significant difference in kinematical signatures such as warping and lopsidedness. Furthermore, we find no difference in position angle and systemic velocity offset with respect to the optical between both sub‐samples. We therefore do not find compelling evidence for enhanced global asymmetry of the H I‐excess galaxies ensemble properties in comparison to the control sample galaxies. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The local face-on disk galaxies are selected as galaxy sample from the main galaxy sample of the Seventh Data Release of Sloan Digital Sky Survey (SDSS DR7). The correlations between the colors and sizes of disk galaxies with equivalent total stellar masses are statistically investigated and their realities are tested. It is found that for the disk galaxies with equivalent masses, the correlation between u-r color and size is very weak. However, there are anticorrelations between g-r, r-i, r-z colors and sizes, i.e., the larger are the sizes of galaxies, the bluer are their colors. This result means that the mass distribution of disk galaxies has a significant influence on their star formation history. The galaxies with more extended mass distributions evolve more slowly.  相似文献   

6.
The H  i surface density maps for a sample of 18 galaxies in the Eridanus group are Fourier analysed. This analysis gives the radial variation of the lopsidedness in the H  i spatial distribution. The lopsidedness is quantified by the Fourier amplitude A 1 of the m = 1 component normalized to the average value. It is also shown that in the radial region where the stellar disc and H  i overlap, their A 1 coefficients are comparable. All the galaxies studied show significant lopsidedness in H  i . The mean value of A 1 in the inner regions of the galaxies (1.5–2.5 scalelengths) is ≥ 0.2. This value of A 1 is twice the average value seen in the field galaxies. Also, the lopsidedness is found to be smaller for late-type galaxies; this is opposite to the trend seen in the field galaxies. These two results indicate a different physical origin for disc lopsidedness in galaxies in a group environment compared to the field galaxies. Further, a large fraction (∼30 per cent) shows a higher degree of lopsidedness ( A 1≥ 0.3). It is also seen that the disc lopsidedness increases with the radius as demonstrated in earlier studies, but over a radial range that is two times larger than done in the previous studies. The average lopsidedness of the halo potential is estimated to be ∼10 per cent, assuming that the lopsidedness in H  i disc is due to its response to the halo asymmetry.  相似文献   

7.
We present three-dimensional (3D) hydrodynamical simulations of ram pressure stripping of massive disc galaxies in clusters. Studies of galaxies that move face-on have predicted that in such a geometry the galaxy can lose a substantial amount of its interstellar medium. But only a small fraction of galaxies is moving face-on. In this work we focus on a systematic study of the effect of the inclination angle between the direction of motion and the galaxy's rotation axis.
In agreement with some previous works, we find that the inclination angle does not play a major role for the mass loss as long as the galaxy is not moving close to edge-on (inclination angle ≲60°). We explain this behaviour by extending Gunn & Gott's estimate of the stripping radius, which is valid for face-on geometries, to moderate inclinations.
The inclination plays a role as long as the ram pressure is comparable to pressures in the galactic plane, which can span two orders of magnitude. For very strong ram pressures, the disc will be stripped completely, and for very weak ram pressures, mass loss is negligible independent of inclination. We show that in non-edge-on geometries the stripping proceeds remarkably similar. A major difference between different inclinations is the degree of asymmetry introduced in the remaining gas disc.
We demonstrate that the tail of gas stripped from the galaxy does not necessarily point in a direction opposite to the galaxy's direction of motion. Therefore, the observation of a galaxy's gas tail may be misleading about the galaxy's direction of motion.  相似文献   

8.
We have constructed a family of simple models for spiral galaxy evolution to allow us to investigate observational trends in star formation history with galaxy parameters. The models are used to generate broad-band colours from which ages and metallicities are derived in the same way as the data. We generate a grid of model galaxies and select only those that lie in regions of parameter space covered by the sample. The data are consistent with the proposition that the star formation history of a region within a galaxy depends primarily on the local surface density of the gas but that one or two additional ingredients are required to explain the observational data fully. The observed age gradients appear steeper than those produced by the density dependent star formation law, indicating that the star formation law or infall history must vary with galactocentric radius. Furthermore, the metallicity–magnitude and age–magnitude correlations are not reproduced by a local density dependence alone. These correlations require one or both of the following: (i) a combination of mass dependent infall and metal enriched outflow, or (ii) a mass dependent galaxy formation epoch. Distinguishing these possibilities on the basis of current data is extremely difficult.  相似文献   

9.
We study the orbital structure in a series of self-consistent N -body configurations simulating rotating barred galaxies with spiral and ring structures. We perform frequency analysis in order to measure the angular and the radial frequencies of the orbits at two different time snapshots during the evolution of each N -body system. The analysis is done separately for the regular and the chaotic orbits. We thereby identify the various types of orbits, determine the shape and percentages of the orbits supporting the bar and the ring/spiral structures, and study how the latter quantities change during the secular evolution of each system. Although the frequency maps of the chaotic orbits are scattered, we can still identify concentrations around resonances. We give the distributions of frequencies of the most important populations of orbits. We explore the phase-space structure of each system using projections of the 4D surfaces of section. These are obtained via the numerical integration not only of the orbits of test particles, but also of the real N -body particles. We thus identify which domains of the phase space are preferred and which are avoided by the real particles. The chaotic orbits are found to play a major role in supporting the shape of the outer envelope of the bar as well as the rings and the spiral arms formed outside corotation.  相似文献   

10.
11.
We describe a new formula capable of quantitatively characterizing the Hubble sequence of spiral galaxies including grand design and barred spirals. Special shapes such as ring galaxies with inward and outward arms are also described by the analytic continuation of the same formula. The formula is   r (φ) = A /log [ B tan   (φ/2 N )]  . This function intrinsically generates a bar in a continuous, fixed relationship relative to an arm of arbitrary winding sweep. A is simply a scale parameter while B , together with N , determines the spiral pitch. Roughly, greater N results in tighter winding. Greater B results in greater arm sweep and smaller bar/bulge, while smaller B fits larger bar/bulge with a sharper bar/arm junction. Thus B controls the 'bar/bulge-to-arm' size, while N controls the tightness much like the Hubble scheme. The formula can be recast in a form dependent only on a unique point of turnover angle of pitch – essentially a one-parameter fit, aside from a scalefactor. The recast formula is remarkable and unique in that a single parameter can define a spiral shape with either constant or variable pitch capable of tightly fitting Hubble types from grand design spirals to late-type large barred galaxies. We compare the correlation of our pitch parameter to Hubble type with that of the traditional logarithmic spiral for 21 well-shaped galaxies. The pitch parameter of our formula produces a very tight correlation with ideal Hubble type suggesting it is a good discriminator compared to logarithmic pitch, which shows poor correlation here similar to previous works. Representative examples of fitted galaxies are shown.  相似文献   

12.
The morphology of the outer rings of early-type spiral galaxies is compared to integrations of massless collisionless particles initially in nearly circular orbits. Particles are perturbed by a quadrupolar gravitational potential corresponding to a growing and secularly evolving bar. We find that outer rings with R1R2 morphology and pseudo-rings are exhibited by the simulations even though they lack gaseous dissipation. Simulations with stronger bars form pseudo-rings earlier and more quickly than those with weaker bars. We find that the R1 ring, perpendicular to the bar, is fragile and dissolves after a few bar rotation periods if the bar pattern speed increases by more than ∼8 per cent, bar strength increases (by ≳140 per cent) after bar growth or the bar is too strong  ( QT > 0.3)  . If the bar slows down after formation, pseudo-ring morphology persists and the R2 ring perpendicular to the bar is populated due to resonance capture. The R2 ring remains misaligned with the bar and increases in ellipticity as the bar slows down. The R2 ring becomes scalloped and does not resemble any ringed galaxies if the bar slows down more than 3.5 per cent suggesting that bars decrease in strength before they slow down this much. We compare the morphology of our simulations to B -band images of nine ringed galaxies from the Ohio State University Bright Spiral Galaxy Survey, and we find a reasonable match in morphologies to R1R2' pseudo-rings seen within a few bar rotation periods of bar formation. Some of the features previously interpreted in terms of dissipative models may be due to transient structure associated with recent bar growth and evolution.  相似文献   

13.
We present a test for the degree of symmetry in the distribution of the Hα brightness along the arms of a sample of spiral galaxies. The test consists of deriving the cross-correlation function of the Hα brightness as a function of curvilinear distance along pairs of opposed arms, after unfolding the arms geometrically. Our results reveal a significantly greater degree of symmetry in the non-barred population than in the barred. We derive parameters for both bar strength and bar ellipticity, and compare these with the derived cross-correlations to strengthen this conclusion. We suggest that density waves are a probable cause for the appearance of global, i.e. disc-wide, two-fold symmetry in spiral discs. Comparison with published work on abundance gradients in the discs of barred and non-barred galaxies indicates that, as for the abundances, mixing in the spiral disc as a result of the bar potential may well be responsible for our observation that stronger bars are related to reduced two-fold symmetry in the distribution of star-forming regions along the spiral arms.  相似文献   

14.
15.
In a previous paper (Voglis et al., Paper I), we demonstrated that, in a rotating galaxy with a strong bar, the unstable asymptotic manifolds of the short-period family of unstable periodic orbits around the Lagrangian points L 1 or L 2 create correlations among the apocentric positions of many chaotic orbits, thus supporting a spiral structure beyond the bar. In this paper, we present evidence that the unstable manifolds of all the families of unstable periodic orbits near and beyond corotation contribute to the same phenomenon. Our results refer to a N -body simulation, a number of drawbacks of which, as well as the reasons why these do not significantly affect the main results, are discussed. We explain the dynamical importance of the invariant manifolds as due to the fact that they produce a phenomenon of 'stickiness' slowing down the rate of chaotic escape in an otherwise non-compact region of the phase space. We find a stickiness time of the order of 100 dynamical periods, which is sufficient to support a long-living spiral structure. Manifolds of different families become important at different ranges of values of the Jacobi constant. The projections of the manifolds of all the different families in the configuration space produce a pattern due to the 'coalescence' of the invariant manifolds. This follows closely the maxima of the observed   m = 2  component near and beyond corotation. Thus, the manifolds support both the outer edge of the bar and the spiral arms.  相似文献   

16.
We compared measurements of 126 501 spiral galaxies to test whether the photometry of galaxies that rotate clockwise is different from the photometry of galaxies that rotate counterclockwise for the purpose of testing whether there is a link between photometry and spin direction of galaxies. The rotation directionality of the galaxies was determined by converting the galaxy image to its radial intensity plot, and then the galaxies in each 30° RA sector were separated into clockwise and counterclockwise rotating galaxies. The mean and standard deviation of SDSS DR7 photometric attributes of clockwise and counterclockwise rotating galaxies were then compared. The results show no significant difference between galaxies that rotate clockwise and galaxies that rotate counterclockwise. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
18.
We present radial velocities for a sample of 723 planetary nebulae in the disc and bulge of M31, measured using the WYFFOS fibre spectrograph on the William Herschel Telescope. Velocities are determined using the [O  iii ] λ5007 emission line. Rotation and velocity dispersion are measured to a radius of 50 arcmin (11.5 kpc), the first stellar rotation curve and velocity dispersion profile for M31 to such a radius. Our kinematics are consistent with rotational support at radii well beyond the bulge effective radius of 1.4 kpc, although our data beyond a radius of 5 kpc are limited. We present tentative evidence for kinematic substructure in the bulge of M31 to be studied fully in a later work. This paper is part of an ongoing project to constrain the total mass, mass distribution and velocity anisotropy of the disc, bulge and halo of M31.  相似文献   

19.
In the presence of a strong   m = 2  component in a rotating galaxy, the phase-space structure near corotation is shaped to a large extent by the invariant manifolds of the short-period family of unstable periodic orbits terminating at L 1 or L 2. The main effect of these manifolds is to create robust phase correlations among a number of chaotic orbits large enough to support a spiral density wave outside corotation. The phenomenon is described theoretically by soliton-like solutions of a Sine–Gordon equation. Numerical examples are given in an N -body simulation of a barred spiral galaxy. In these examples, we demonstrate how the projection of unstable manifolds in configuration space reproduces essentially the entire observed bar–spiral pattern.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号