首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Higher Himalayan Shear Zone (HHSZ) contains a ductile top-to-N/NE shear zone—the South Tibetan detachment system-lower (STDSL) and an out-of-sequence thrust (OOST) as well as a top-to-N/NE normal shear at its northern boundary and ubiquitously distributed compressional top-to-S/SW shear throughout the shear zone. The OOST that was active between 22 Ma and the Holocene, varies in thickness from 50 m to 6 km and in throw from 1.4 to 20 km. Channel flow analogue models of this structural geology were performed in this work. A Newtonian viscous polymer (PDMS) was pushed through a horizontal channel leading to an inclined channel with parallel and upward-diverging boundaries analogous to the HHSZ and allowed to extrude to the free surface. A top-to-N/NE shear zone equivalent to the STDSU developed spontaneously. This also indirectly connotes an independent flow confined to the southern part of the HHSZ gave rise to the STDSL. The PDMS originally inside the horizontal channel extruded at a faster rate through the upper part of the inclined channel. The lower boundary of this faster PDMS defined the OOST. The model OOST originated at the corner and reached the vent at positions similar to the natural prototype some time after the channel flow began. The genesis of the OOST seems to be unrelated to any rheologic contrast or climatic effects. Profound variations in the flow parameters along the HHSZ and the extrusive force probably resulted in variations in the timing, location, thickness and slip parameters of the OOST. Variation in pressure gradient within the model horizontal channel, however, could not be matched with the natural prototype. Channel flow alone presumably did not result in southward propagation of deformation in the Himalaya.  相似文献   

2.
Thin-section studies of the Zanskar Shear Zone (ZSZ) rocks reveal a top-to-SW and subsequent primary and secondary top-to-NE ductile shearing; brittle–ductile and brittle extensions; top-to-SW brittle shear, steep normal faulting and fracturing. In the proposed two-phase model of ductile extrusion of the Higher Himalayan Shear Zone (HHSZ), a top-to-SW simple shearing during 22–18 Ma was followed by a combination of top-to-SW simple shear and channel flow at 18–16 Ma. The second phase simulates a thin ZSZ characterized by a top-to-NE shearing. The channel flow component ceased around 16 Ma, the extruding HHSZ entered the brittle regime but the top-to-SW shearing continued until perturbed by faults and fractures. Variation in the extrusion parameters led to variable thickness of the ZSZ. Shear strain after the extrusion is presumably maximum at the boundaries of the HHSZ and falls towards the base of the ZSZ, which crudely matches with the existing data. The other predictions: (1) spatially uniform shear strain after the first stage, (2) fastest extrusion rate at the base of the ZSZ, and (3) a lack of continuation of the ZSZ along the Himalayan trend are not possible to validate due to paucity of suitable data. Non-parabolic shear fabrics of the ZSZ indicate their heterogeneous deformation.  相似文献   

3.
The Higher Himalayan Shear Zone (HHSZ) in the Sutlej section reveals (1) top-to-SW ductile shearing, (2) top-to-NE ductile shearing in the upper- and the lower strands of the South Tibetan Detachment System (STDSU, STDSL), and (3) top-to-SW brittle shearing corroborated by trapezoid-shaped minerals in micro-scale. In the proposed extrusion model of the HHSZ, the E1-phase during 25–19 Ma is marked by simple shearing of the upper sub-channel defined by the upper strand of the Main Central Thrust (MCTU) and the top of STDSU as the lower- and the upper boundaries, respectively. Subsequently, the E2a-pulse during 15–14 Ma was characterized by simple shear, pure shear, and channel flow of the entire HHSZ. Finally, the E2b-pulse during 14–12 Ma observed simple shearing and channel flow of the lower sub-channel defined by the lower strand of the Main Central Thrust (MCTL) and the top of the STDSL as the lower- and the upper boundaries, respectively. The model explains the constraints of thicknesses of the STDSU and the STDSL along with spatially variable extrusion rate and the inverted metamorphism of the HHSZ. The model predicts (1) shear strain after ductile extrusion to be maximum at the boundaries of the HHSZ, which crudely matches with the existing data. The other speculations that cannot be checked are (2) uniform shear strain from the MCTU to the top of the HHSZ in the E1-phase; (3) fastest rates of extrusion of the lower boundaries of the STDSU and the STDSL during the E2a- and E2b-pulses, respectively; and (4) variable thickness of the STDSL and rare absence of the STDSU. Non-parabolic shear fabrics of the HHSZ possibly indicate heterogeneous strain. The top-to-SW brittle shearing around 12 Ma augmented the ductile extruded rocks to arrive a shallower depth. The brittle–ductile extension leading to boudinage possibly did not enhance the extrusion.  相似文献   

4.
The Tso Morari crystalline (TMC) gneiss dome in the Indian Himalaya extruded from a depth of?~120?km through an inclined subduction channel of sub-elliptical cross-section at the leading edge of the Indian plate. The velocity profile of this gneiss dome is derived after (1) presuming its incompressible Newtonian rheology, (2) finding the “best fit” of the outcrop of the gneiss dome to an ellipse, (3) taking into account different lithologies to have existed at the top of the extruding gneiss body, (4) considering the extrusion to have been driven by the buoyant push of the denser mantle beneath the lighter gneiss, and (5) assigning a range of plausible densities for different litho-units. Fitting the known rates of extrusion—from a few centimetres up to about one-hundredth of a millimetre per year—from?~53?Ma onwards of this gneiss dome to its velocity profile constrains its maximum possible viscosity to?~7.5?×?1022 Pa?s. This magnitude is?102–104 times higher than previous estimates for gneisses and granites. Alternative explanations of our data are the following: (1) There was a fall in extrusion rates of the TMC gneiss from 53?to?<30?Ma because of an increase in the estimated maximum viscosity from 6.2?×?1020 to 7.5?×?1022 Pa?s, possibly indicating a fall in temperature and/or compositional change of the TMC gneiss. (2) Lower the extrusion rates, higher are the estimated viscosities. (3) The TMC gneiss was more viscous probably due to its eclogite content. (4) The estimated maximum viscosity is?~102 times higher than that in collision zones and?102–104 times than that in the Tibetan lower crust, but broadly conforms to that for the crustal channel, and average lithospheric and asthenospheric values. The high magnitude of maximum possible Prandtl number of?~1028 of the TMC gneiss might be related to isothermal decompression of the gneiss during its extrusion.  相似文献   

5.
The Plattengneis shear zone is a 250–600 m thick, flat lying, Cretaceous, eclogite facies, mylonitic shear zone, with north-over-south transport direction, that is exposed over almost 1000 km2 in the Koralpe region along the eastern margin of the Alps. Although the shear zone is one of the largest in the Alps, its role in the Eoalpine metamorphic evolution and the subsequent exhumation of the region, remain enigmatic and its large-scale geometry is not well understood. The outcrop pattern suggests that the shear zone is made up of a single sheet that is folded into a series of open syn- and antiforms with wavelengths of about 10 km. Eclogite bodies occur above, within and below the shear zone and there is no metamorphic grade change across the shear zone. In the south, the fold axes strike east–west and plunge shallowly to the east. In the north, the fold axes are oriented in north–south direction and form a dome shaped structure of the shear zone. Total shortening during this late stage warping event was of the order of 5%. Indirect evidence constrains this folding event to have occurred between 80 and 50 Ma and the fold geometry implies that the final exhumation in the Koralpe occurred somewhat later than further north. Interestingly, the shear zone appears to strike out of the topography in the south and dip into the topography in the north, so that north of the shear zone only hanging-wall rocks are exposed and south of it only foot-wall rocks. Possibilities for the geometric relationship of the Plattengneis shear zone with the surrounding south dipping detachments are discussed.  相似文献   

6.
鲁西青邑韧性剪切带运动学涡度及剪切作用类型   总被引:3,自引:0,他引:3  
青邑韧性剪切带是晚太古代末期发育在鲁西前寒武纪基底花岗岩中一条规模较大的韧性剪切带。剪切带NW走向,面理直立,线理水平,剪切标志反映右行剪切。石英光轴法求得运动学涡度在0.96~0.99之间变化,极摩尔圆法求得糜棱岩化岩石运动学涡度为0.91,初糜棱岩运动学涡度为0.87,糜棱岩运动学涡度为0.81,超糜棱岩运动学涡度为0.60。运动学涡度表明,剪切带剪切作用类型为一般剪切,变形初期以单剪为主,随应变的增大,运动学涡度值逐渐减小,变形的纯剪分量不断增加,最后以纯剪为主。剪切作用类型及三维参照变形分析表明,青邑韧性剪切带属加长一变宽类型的一般剪切带并且在Y轴方向上有所增长。韧性剪切在太古代末期克拉通化过程中具有加厚陆壳的作用。  相似文献   

7.
采自广东南澳韧性剪切带和莲花山韧性剪切带的6个单矿物的40Ar/39Ar年龄谱数据可分为3组:151~162Ma、117.5~129.7Ma、66~97Ma。第1组年龄代表较深层次逆冲、褶皱和动热变质的时代,该期间沿莲花山断裂带开始出现火山活动;第2组年龄(2/3样品40Ar/39Ar坪年龄值集中于这一组范围内),代表强烈韧性剪切、左行平移兼逆断层活动的时代,即韧性剪切带的形成时代,此期在南澳断裂带还发生了混合岩化和花岗岩化作用;第3组年龄代表后期热扰动,即韧脆性转化、右行平移正断层活动和地壳伸展的时代。  相似文献   

8.
在我国西部山区地震、地质活跃带,泥石流灾害对位于泥石流沟道、沟口等位置处的桥墩构成重大威胁。如何量化描述泥石流冲击桥墩的动力过程,是泥石流减灾领域拟要解决的一个重要科学问题。以泥石流灾害威胁成兰铁路沿线桥墩的工程背景为基础,依托大型泥石流模拟系统,进行多组室内大比例泥石流冲击桥墩物理模型试验。研究泥石流流速、流深以及流体特征参数与泥石流冲击压力的相关性。试验结果表明:冲击过程主要受到弗汝德数Fr和雷诺数Re两个无量纲数控制,稀性泥石流冲击压力主要控制参数为Fr,而对于黏性泥石流则同时有Fr和Re的影响;不论是对于峰值冲击力还是冲击功率谱,不同类型泥石流差别显著;在相同重度等条件下,稀性泥石流具有更大的冲击能量;此外,各种类型泥石流通过临界Fr线得到了本质上的区分。研究成果将为桥墩抗泥石流冲击结构设计提供技术支持及科学依据。  相似文献   

9.
An integrated approach to resolve the kinematics of the controversial Achankovil Shear Zone (AKSZ) has been attempted involving remote sensing data, shaded relief topo-maps, ground details of lithology and mesoscopic structures. An excellent correlation of structural trends exists on all scales of observation. The AKSZ is distinctly defined by NW–SE trending foliation fabrics with steep dips to southwest. The adjacent Madurai block and Trivandrum block show contrasting lithological and structural characteristics as shown in structural cross-sections.The mesoscopic structural studies reveal the presence of sub-horizontal stretching lineations, asymmetric structures like S–C′ fabrics, porphyroclasts, ‘S’ shaped folds and shear bands confirming the strike-slip component of shear along AKSZ. The deformation undergone by the AKSZ could be described in terms of an initial dextral deformation — D1, reactivated and superimposed by sinistral kinematics — D2, which is also supported by megascopic structural interpretation of remote sensing data. The megascopic structural interpretation of AKSZ displays en-echelon pattern of lineaments with right overstepping arrangement, which can be interpreted as an evidence of the latest sinistral transpressional deformation.  相似文献   

10.
自然界中的剪切带通常是由简单剪切(simple shear)和纯剪切(pure shear)叠加的一般剪切带(general shear)。运动学涡度(kinematic vorticity)的引入提供了一个定量表示两种剪切成分的工具。通过测量剪切带的运动学涡度,可以清楚的了解一般剪切带中究竟是简单剪切还是纯剪切占优势。本文将运动学涡度的基本理论和极摩尔圆法对雁林寺金矿所在的湘东雁林寺韧性剪切带中所表现的运动学涡度进行测量,得出该韧性剪切带的Wk值为0.6,指示其变形以纯剪切为主,且简单剪切作用应变速率比纯剪切作用的应变速率慢。本文从微观运动学层面揭示了湘东雁林寺韧性剪切带对于雁林寺金矿的形成具有重要的意义。  相似文献   

11.
The concentration of ultrafine aerosol particles of aitken and nucleation mode having size in the range of 1–20 nm was monitored with water-based Condensation Particle Counter. The monitoring was carried out from midnight-to-midnight in every alternate day on a fortnightly basis to represent summer, monsoon and winter (autumn) seasons of 2008 at Mohal (1154 m amsl) and Kothi (2530 m amsl) in Kullu-Manali area of the northwestern Himalayan region of India. The results indicate that diurnal pattern has faint bimodal structure with two peaks, one in morning and the other in evening at both the sites but it is not as distinct as found in plains. There is rather a constant particle density pattern of large magnitude consistent with vehicular movement from morning till evening. The monthly 24 h average particle density gradually picks up from January, increases rapidly in summer months and then decreases in monsoon season at Mohal but at Kothi it keeps on rising from April to October with a slight more increase in September. The particle density is more in summer than in monsoon season at Mohal, a trend opposite to plains. It may be due to the development of warm thermal layer on valley floor while a cold layer develops along snowy hilltops in winter leading to convection of fine particle up the slopes of valley during daytime. At Kothi, the trend is same as it is in continental plains but opposite to Mohal. The relatively more value of particle density in September and October at both the sites may be due to month long International Kullu Dussehra fair in the valley. The vehicular survey conducted agrees well with entire study period averaged diurnal variations and monthly 24 h averaged value of fine particle density. The average value of ultrafine particle density at each hour of a day for entire study period is 20369 ± 1230 Ncm − 3 and 14389 ± 1464 Ncm − 3 at Mohal and Kothi sites, respectively. The comparison with earlier results shows a significant increase indicating impact of vehicular onslaught on pure air of this hilly region.  相似文献   

12.
糜棱岩及花岗质原岩组分特征,结果表明花岗质岩石容矿的金矿床剪切变形过程中组分发生分异,动力分异与流体分异对金矿化所起作用及相对程度不同,研究区金成矿主要与流体分异作用有关。流体分异作用过程中,相对于高应变带,低应变带内强分异形成的高Fe环境及扩容空间为金矿化、沉淀提供更有利条件,且碱(Na)交代排出的s1为浅层次硅化蚀变糜棱岩型及石英脉型矿化提供物源基础,K、Ca、Mg形成绢云母化、碳酸盐化、绿泥石化等蚀变,从而为区内金矿化定位及共生蚀变提供了合理解释。结合已有研究成果,认为钠长石化带下部应发育钾长石化带.且作为矿根相存在,矿带东、西段深部均有较好金矿化前景。  相似文献   

13.
现今出露在北大别穹隆北界上的晓天—磨子潭韧性剪切带是早白垩世造山后伸展活动的产物。野外观测、室内石英C轴组构与运动学涡度测量指示,这一NWW—SEE走向、倾向NNE的韧性剪切带,呈现为正左旋走滑运动,以简单剪切变形为主。该剪切带内现今所保留运动学特征及其在空间上的变化反映其形成后经历过旋转改造。以实测组构为约束的变形模拟揭示,该剪切带在早期伸展活动时为中地壳内上盘向280°方位运动的水平韧性剪切带,后在北大别穹隆上拱中被动地抬升而成为现今状态。北大别穹隆西强东弱的上隆幅度是晓天—磨子潭韧性剪切带被不均匀抬升和旋转的主要原因。该剪切带与北大别穹隆皆为早白垩世造山后重力垮塌中形成的,具有科迪勒拉型变质核杂岩特征。  相似文献   

14.
印藏碰撞导致了青藏高原内部及周边地区形成巨量储量的成矿带。虽然这一地区的成矿研究非常深入,但仍然需要 完善对“源-运-储”的综合研究,需要从地壳上地幔结构角度对成矿源的起源进行探索。位于哀牢山剪切带南段的大坪- 长安金矿具有幔源成因迹象,该文研究了该矿区及邻区的岩石圈结构,从深部研究成矿来源。通过接收函数方法获得的研 究区剖面,揭示壳幔边界(Moho) 深度在30~40 km,但在金矿矿区下表现为Moho转换震相强烈横向不连续,表现为东西 两侧约3~5 km的下沉。岩石圈软流圈边界(LAB) 的转换震相揭示,研究区的岩石圈厚度为60~80 km,有效约束了研究区 强烈岩石圈减薄后剩余岩石圈的厚度。金矿区西侧思茅块体的岩石圈厚度最薄,位于前人层析成像工作揭示上地幔顶部一 低速体的上方。金矿区下方的岩石圈厚度为~80 km且LAB的转换震相表现为强烈的横向不连续。金矿下Moho和LAB的横 向不连续暗示了金矿区下方存在岩石圈尺度的岩浆通道,即软流圈的地幔物质可以较快速地到达浅表。笔者认为,研究区 的岩石圈结构支持由俯冲驱动的幔源成矿模型,但大坪-长安金矿矿区下的岩石圈尺度的岩浆通道的形成与哀牢山剪切带 的剪切变形直接相关。由Burma俯冲导致的地幔物质上涌对该通道的形成贡献有限。  相似文献   

15.
宝库河韧性剪切带是发育在中祁连地块北缘上的一条向北陡倾,走向近东西,宽约6 km的右行平移型韧性剪切带.剪切带内岩石原岩为泥质岩、基性岩和花岗岩,变质程度达角闪岩相,变形变质温度在685~763±46℃之间,压力在0.62~0.83±0.13 GPa范围内.其内长英质条带非常发育,规模变化较大,分布局部相对集中且受剪切带控制,走向与剪切带一致,平行于叶理,孤立无根,并在后期递进变形过程中发生不同程度的糜棱岩化、布丁化和褶皱,主要成分为长石和石英,明显不同于韧性剪切前或后侵入的花岗岩脉或岩体.长英质条带特征、REE配分模式及剪切带内岩石的变形变质温度说明剪切带内发育的长英质条带与基体是同源的,是在剪切应变过程中剪切热使围岩内部分物质发生动态熔融形成的,是同构造熔融作用的产物.  相似文献   

16.
景德镇韧性剪切带位于新元古代江南造山带的核部,其构造变形特征和形成时代对华南新元古代至早古生代构造演 化具有重要的制约意义。景德镇韧性剪切带呈北东向展布,全长约180 km,最大出露宽度为~7 km。通过详细的野外地质 调查和室内定向薄片鉴定,在景德镇韧性剪切带中识别出了两期韧性走滑构造变形,并研究了其运动学指向和形成时的温 压条件。早期构造变形表现为左旋韧性走滑兼逆冲作用,形成温度为420~530℃,差应力为40~300 MPa;晚期变形主要表 现为右旋走滑,形成温度为300~420℃,差应力为120~350 MPa。结合前人资料,景德镇韧性剪切带左旋走滑兼逆冲作用形 成于新元古代造山作用的晚期(810~800 Ma),是由同造山挤压到后造山伸展调整的结果;而右旋走滑形成于早古生代,是 华南早古生代陆内造山作用的产物。  相似文献   

17.
郯庐断裂带南段晚期韧性剪切带涡度分析及其构造意义   总被引:2,自引:0,他引:2  
天然剪切带通常都是简单剪切和纯剪切叠加的一般剪切的产物。通过测量韧性剪切带的运动学涡度,可以很好地解决剪切带变形过程中究竟是简单剪切占优势还是纯剪切占优势的问题。本次研究中利用石英C轴组构与主应变比值的方法以及石英C轴组构与斜列颗粒形态的方法,测量了郯庐断裂带南段晚期韧性剪切带的运动学涡度。获得的运动学涡度主要介于0.80~0.95之间,明显大于0.75且小于1,指示郯庐晚期左旋走滑韧性剪切带的变形以简单剪切为主的同时,还存在一个纯剪切分量。根据本次研究获得的涡度值、断层产状以及断裂带的运动学特征综合分析,可以认为郯庐晚期韧性剪切带是一个具有压扭性质的走滑构造。并且,本次工作中获得的运动学涡度支持伊佐奈崎板块与欧亚板块的边界为典型的汇聚型板块边界的现有成果。  相似文献   

18.
We used a numerical model of the ocean circulation with a high spatial resolution to obtain estimates of the kinematic characteristics of Antarctic Bottom Water flow through the abyssal Vema Channel in the southwestern part of the Atlantic Ocean. The results of simulations correspond to the data of direct velocity measurements made at several locations in the channel. The high horizontal and vertical resolution of the model in the bottom layer allowed us to study in detail the hydrodynamics of this flow over its entire length.  相似文献   

19.
Numerous transcurrent NE-SW, mainly sinistral, and E-W dextral-trending shear zones transect Borborema Province, northeastern Brazil. The most important kinematic event involving those shear zones reflects deformation related to the Brasiliano (Pan-African) tectonic cycle. The Afogados da Ingazeira shear zone (AISZ) is probably the most important of the NE-SW-trending lineaments, having continuity for over 250 km. Field work associated with petrographic studies (including quartz c-axis patterns), conducted in an area encompassing the north-central part of this shear zone, indicate that sinistral transcurrent deformation was responsible for the main banding/foliation (C-S) observed in the rocks. Mineral assemblages and microstructural features are suggestive of a deformational history starting under low- to medium-amphibolite facies (thermal peak conditions) and decreasing until greenschist facies.  相似文献   

20.
Interpretations of deformation processes within ductile shear zones are often based on the characterisation of microstructures preserved in exhumed rocks. However, exhumed microstructures provide only a snapshot of the closing stages of deformation and we need ways of understanding how microstructures change through time and at what rate this occurs. To address this problem, we study optical microstructures and electron backscatter diffraction (EBSD) data from samples of quartz layers deflected around garnet porphyroclasts (which generate local stress and strain rate perturbations) during mylonitic deformation in the Alpine Fault Zone of New Zealand.During shearing around rigid garnet porphyroclasts, quartz undergoes grain size reduction in response to locally increased stresses, while c-axes reveal increasing components of rhomb <a> and prism <a> slip, reflecting a local increase in shear strain and strain rate. TitaniQ thermobarometry and quartz microstructures suggest a rather narrow range of recorded quartz deformation temperatures around 450–500 °C, which we propose reflects the cessation of grain boundary migration driven deformation. Given that temperatures well above the brittle–ductile transition for quartz (∼350 °C) are preserved, we anticipate that rapid cooling and exhumation must have occurred from the 500 °C isotherm. Ultimately, we propose a modified geotherm for the central Alpine Fault Zone hanging wall, which raises the 500 °C isotherm to 11 km depth, near the brittle–ductile transition. Our updated Alpine Fault Zone geotherm implies a hotter and weaker middle to lower crust than previously proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号