首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper we present the current geological knowledge and the results of new geological and structural investigations in the Cho Oyu-Sagarmatha-Makalu region (Eastern Nepal and Southern Tibet).The tectonic setting of the middle and upper part of the Higher Himalayan Crystallines (HHC) and Tibetan Sedimentary Sequence is characterized by the presence of pervasive compressive tectonics with south-verging folds and shear zones overprinted by extensional tectonics.In the middle and upper part of the HHC two systems of folds (F2a and F2b) have been recognized, affecting the S1 high-grade schistosity causing kilometer-scale upright antiforms and synforms. The limbs of these upright folds are affected by F3 collapse folds, top-to-SE extensional shear zones and extensional crenulation cleavages linked to extensional tectonics.The uppermost portion of the HHC and the lower part of the Tibetan Sedimentary Sequence is affected by two major extensional fault zones with a top-to NE direction of movement. The lower ductile extensional shear zone brings into contact the North Col Formation with the high grade gneisses and micaschists of the HHC. It is regarded as the main feature of the South Tibetan Detachment System. The upper low-angle fault zone is characterized by ductile/brittle deformation and thin levels of cataclasites and brings the slightly metamorphosed Ordovician limestones into contact with the North Col Formation. Extensional tectonics continued with the formation of E–W trending high angle normal faults.Three metamorphic stages of Himalayan age are recognized in the HHC of the Sagarmatha-Makalu region. The first stage (M1) is eclogitic as documented by granulitized eclogites collected at the top of the Main Central Thrust Zone in the Kharta region of Southern Tibet. The second event recorded in the Kharta eclogites (M2) was granulitic, with medium P (0.55–0.65 GPa) and high T (750–770°C), and was followed by recrystallization in the amphibolite facies of low pressure and high T (M3). The first event has also been recorded in the overlying Barun Gneiss, where M1 was followed by decompression under increasing T, the M2 event, producing the dominant mineral assemblage (garnet-sillimanite-biotite), and then by strong decompression under high T, with growth of andalusite, cordierite and green spinel. Also, changes in phase compatibilities suggest an increase in metamorphic temperature (T) coupled with a decrease in metamorphic pressure (P) in some of the thrust sheets of the MCT Zone.A telescoped metamorphic zonation ranging from the sillimanite to the staurolite and biotite zones is characteristic of the ductile extensional shear zone which is the lower part of the STDS in the Sagarmatha region. Evidence for decompression under increasing temperature, anatexis and leucogranite emplacement accompanying extension in the HHC was found throughout the whole ductile shear zone, particularly in metapelites both below and above the Makalu leucogranite and in micaschists of the staurolite zone.  相似文献   

2.
The Higher Himalayan Shear Zone (HHSZ) contains a ductile top-to-N/NE shear zone—the South Tibetan detachment system-lower (STDSL) and an out-of-sequence thrust (OOST) as well as a top-to-N/NE normal shear at its northern boundary and ubiquitously distributed compressional top-to-S/SW shear throughout the shear zone. The OOST that was active between 22 Ma and the Holocene, varies in thickness from 50 m to 6 km and in throw from 1.4 to 20 km. Channel flow analogue models of this structural geology were performed in this work. A Newtonian viscous polymer (PDMS) was pushed through a horizontal channel leading to an inclined channel with parallel and upward-diverging boundaries analogous to the HHSZ and allowed to extrude to the free surface. A top-to-N/NE shear zone equivalent to the STDSU developed spontaneously. This also indirectly connotes an independent flow confined to the southern part of the HHSZ gave rise to the STDSL. The PDMS originally inside the horizontal channel extruded at a faster rate through the upper part of the inclined channel. The lower boundary of this faster PDMS defined the OOST. The model OOST originated at the corner and reached the vent at positions similar to the natural prototype some time after the channel flow began. The genesis of the OOST seems to be unrelated to any rheologic contrast or climatic effects. Profound variations in the flow parameters along the HHSZ and the extrusive force probably resulted in variations in the timing, location, thickness and slip parameters of the OOST. Variation in pressure gradient within the model horizontal channel, however, could not be matched with the natural prototype. Channel flow alone presumably did not result in southward propagation of deformation in the Himalaya.  相似文献   

3.
The Higher Himalayan Crystallines(HHC), in western Garhwal, Uttarakhand are located in a regionalscale intracontinental ductile shear zone(15-20 km wide) bounded by the Main Central Thrust at the base, and the South Tibetan Detachment System at the top. The migmatite zone in the centre has the highest grade of metamorphism in the NW Himalayas and show evidence of flowage. Zircons extracted from samples of metasediment, migmatite, biotite granite and in situ partial melt(tourmaline-bearing leucogranite) along the Bhagirathi Valley, preserve U-Pb isotopic evidence of magmatic history, magma source and effects of the Himalayan orogeny in the region. Three distinct periods of zircon growth in the leucogranite record the episodic influx of magma between 46 Ma and 20 Ma indicating a time span of more than 25 Ma between the onset of fluid-fluxed partial melting in the mid-crustal intracontinental shear zone and the emplacement of the magma into the upper crust in a post-collisional extensional setting. Metamorphic zircon growth was initiated about 46 Ma, when the partial melts were generated as the migmatite zone was exhumed.  相似文献   

4.
H. S. Chawla    D. Marquer    J. D. Kramers    I. M. Villa    F. Bussy   《地学前缘》2000,(Z1)
PETROLOGY AND AGE OF THE KINNAR KAILAS GRANITE:EVIDENCES FOR AN ORDOVICIAN POST-OROGENIC EXTENSION IN THE HIGHER HIMALAYAN CRYSTALLINE, SUTLEJ, INDIA  相似文献   

5.
Normal faults on mesoscopic scale are observed in the Panjal Thrust Zone in the Dalhousie area of western Htmachal. The boundary between the southern margin of the Higher Himalaya Crystalline (HHC) of Zanskar and the Chamba syncline sequence is also described as a normal fault, referred to as Bhadarwah Normal Fault in the Bhadarwah area of Doda district on the basis of field mapping and shear sense criteria using S-C fabric and porphyroblast rotation. The occurrence of these normal faults suggests that the extensional tectonic regime was not restricted only to the Zanskar shear zone area but that it also occurs south of the Higher Himalayan range. This suggests NE-directed subhorizontal extension and exhumation of deeper level rocks of Higher Himalaya Crystallines.  相似文献   

6.
The northern Menderes metamorphic core complex has complex exhumation history and is one of the key localities to investigate the spatial and temporal relationships of extensional and compressional structures. Detachment faults and syn-extensional plutons are linked to a series of antiforms and synforms and the denudation of the northern Menderes Massif occurred in three stages. The first stage is related to the development of detachment faults under the consistent NE–SW-directed extension. The second stage is represented by a series of elongated magmatic domes that were oriented parallel, oblique and perpendicular to the regional extension direction. Emplacement of these asymmetrical magmatic domes appears to have been controlled by heterogeneous extension and post-dates the extensional Simav detachment fault. On the third stage, progressive heterogeneous extension that led to updoming of plutons has been finally accommodated by a localised and short-lived transfer zone, which was described as the Gerni shear zone for the first time in this study. The transfer zone is formed by a NE-striking, dextral ductile/brittle shear zone that accommodated the propagation of folds, conjugated strike-slip faults and normal- and oblique-slip faults. Mylonites associated with the transfer zone are related to the localisation of strain along the thermally weakened strike-slip fault systems by short-lived intrusions rather than to the development of regional-scale detachment faults. These structures are consistent with a transtensional simple shear model, which properly explains the evolution of extensional and compressional structures exposed in the northern Menderes core complex. Structural setting of the E?rigöz region is somewhat similar to that of the NE-trending gneiss domes in the northern Menderes Massif and updoming of magma during late stages of detachment faulting appears to have played an important role in the exhumation of lower and upper plate rocks.  相似文献   

7.
DIFFERENT VARIETIES OF MIOCENE LEUCOGRANITE IN THE ARUN VALLEY—EVEREST—MAKALU AREA:FIELD RELATIONS, PETROLOGY AND ISOTOPE GEOCHEMISTRY1 AritaK .OriginoftheinvertedmetamorphismoftheLowerHimalayas,CentralNepal[J] .Tectonophysics,1983,93:4 3~6 0 .  BarbarinB .Areviewoftherelationshipsbetweengranitoidtypes,theiroriginsandtheirgeodynamicenvironments[J] .Lithos,1999,4 6 :6 0 5~ 6 2 6 . 3 BurchfielBC ,ChenZ,HodgesKV ,etal.TheSou…  相似文献   

8.
The Higher Himalayan Leucogranites (HHLG) intruded into the high grade rocks of the Higher Himalayan Crystallines (HHC) in Arunachal Himalaya of the Eastern Himalaya, yield distinctive field data, petrography, microstructures, geochemical and mineral chemistry data. The Arunachal HHLG are characterized by the presence of two micas; normative corundum; high contents of SiO2 (67–78 wt.%), Al2O3 (13–18 wt.%), A/CNK (0.98–1.44) and Rb (154–412 ppm); low contents of CaO (0.33–1.91 wt.%) and Sr (19–171 ppm), and a high ratio of FeO(tot)/MgO in biotite (2.54–4.82). These distinctive features, along with their strong depletion in high field strength elements (HFSE), suggest their affinity to peraluminous S‐type granite generated by the partial melting of crustal material. Geothermobarometric estimations and mineral assemblages of the HHC metapelites confirm that the HHLG were probably generated in the middle crust (~20 km) and the produced melts intruded the HHC in the form of sills/dykes. Microstructurally, the HHLG shows high temperature deformation features including chessboard extinction in quartz and cuspate/lobate grain boundaries between quartz and feldspars (plagioclase and K‐feldspar). The deformation microstructures suggest that the HHLG was deformed under early high temperature ductile deformation conditions. These fabrics were subsequently superimposed by later brittle deformation features associated with decreasing temperatures during the exhumation of the HHLG towards shallow structural levels at the time of Himalayan orogeny. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Thin-section studies of the Zanskar Shear Zone (ZSZ) rocks reveal a top-to-SW and subsequent primary and secondary top-to-NE ductile shearing; brittle–ductile and brittle extensions; top-to-SW brittle shear, steep normal faulting and fracturing. In the proposed two-phase model of ductile extrusion of the Higher Himalayan Shear Zone (HHSZ), a top-to-SW simple shearing during 22–18 Ma was followed by a combination of top-to-SW simple shear and channel flow at 18–16 Ma. The second phase simulates a thin ZSZ characterized by a top-to-NE shearing. The channel flow component ceased around 16 Ma, the extruding HHSZ entered the brittle regime but the top-to-SW shearing continued until perturbed by faults and fractures. Variation in the extrusion parameters led to variable thickness of the ZSZ. Shear strain after the extrusion is presumably maximum at the boundaries of the HHSZ and falls towards the base of the ZSZ, which crudely matches with the existing data. The other predictions: (1) spatially uniform shear strain after the first stage, (2) fastest extrusion rate at the base of the ZSZ, and (3) a lack of continuation of the ZSZ along the Himalayan trend are not possible to validate due to paucity of suitable data. Non-parabolic shear fabrics of the ZSZ indicate their heterogeneous deformation.  相似文献   

10.
The crystallines in the Kumaon Himalaya, India are studied along Goriganga, Darma and Kaliganga valleys and found to be composed of two high-grade metamorphic gneiss sheets i.e. the Higher Himalayan Crystalline (HHC) and Lesser Himalayan Crystalline (LHC) zones. These were tectonically extruded as a consequence of the southward directed propagation of crustal deformation in the Indian plate margin. The HHC and its cover rocks i.e. the Tethyan Sedimentary Zone (TSZ) are exposed through tectonic zones within the hinterland of Kumaon Himalaya. The HHC records history of at least one episode of pre-Himalayan deformation (D1), three episodes of Himalayan deformation (D2, D3, D4). The rocks of the HHC in Kumaon Himalaya are thoroughly transposed by D2 deformation into NW-SE trending Sm (S1+S2). The extent of transposition and a well-developed NE-plunging L2 lineation indicate intense strain during D2 throughout the studied portion of the HHC. Ductile flow continued, resulting in rotation of F1 and F2 folds due NE-direction and NW-SE plunging F3 folds within the HHC. The over thickened crystalline was finally, superimposed by late-to-post collisional brittle-ductile deformation (D4) and exposed the rocks to rapid erosion.  相似文献   

11.
Two major traces of active thrust faults were identified in the Kashmir Basin (KB) using satellite images and by mapping active geomorphic features. The ~N130°E strike of the mapped thrust faults is consistent with the regional ~NE–SW convergence along the Indian–Eurasian collision zone. The ~NE dipping thrust faults have uplifted the young alluvial fan surfaces at the SW side of the KB. This created a major tectono-geomorphic boundary along the entire strike length of the KB that is characterised by (1) a low relief with sediment-filled sluggish streams to the SE and (2) an uplifted region, with actively flowing streams to the SW. The overall tectono-geomorphic expression suggests that recent activity along these faults has tilted the entire Kashmir valley towards NE. Further, the Mw 7.6 earthquake, which struck Northern Pakistan and Kashmir on 8 October 2005, also suggests a similar strike and NE dipping fault plane, which could indicate that the KB fault is continuous over a distance of ~210 km and connects on the west with the Balakot Bagh fault. However, the geomorphic and the structural evidences of such a structure are not very apparent on the north-west, which thus suggest that it is not a contiguous structure with the Balakot Bagh fault. Therefore, it is more likely that the KB fault is an independent thrust, a possible ramp on the Main Himalayan Thrust, which has uplifting the SW portion of the KB and drowning everything to the NE (e.g. Madden et al. 2011). Furthermore, it seems very likely that the KB fault could be a right stepping segment of the Balakot Bagh fault, similar to Riasi Thrust, as proposed by Thakur et al. (2010). The earthquake magnitude is measured by estimating the fault rupture parameters (e.g. Wells and Coppersmith in Bull Seismol Soc Am 84:974–1002, 1994). Therefore, the total strike length of the mapped KB fault is ~120 km and by assuming a dip of 29° (Avouac et al. in Earth Planet Sci Lett 249:514–528, 2006) and a down-dip limit of 20 km, a Mw of 7.6 is possible on this fault.  相似文献   

12.
The Aegean Sea area is thought to be an actively extending back-arc region, north of the present day Hellenic volcanic arc and north-dipping subduction zone in the Eastern Mediterranean. The area shows extensive normal faulting, ductile ‘extensional’ shear zones and extensional S-C fabrics throughout the islands that have previously been related to regional Aegean extension associated with slab rollback on the Hellenic Subduction Zone. In this paper, we question this interpretation, and suggest the Cenozoic geodynamic evolution of the Aegean region is associated with a Late Cretaceous–Eocene NE-dipping subduction zone that was responsible for continent-continent collision between Eurasia and Adria-Apulia/Cyclades. Exhumation of eclogite and blueschist facies rocks in the Cyclades and kyanite-sillimanite grade gneisses in the Naxos core complex have pressures that are far greater than could be accounted for purely by lithospheric extension and isostatic uplift. We identify four stages of crustal shortening that affected the region prior to regional lithospheric extension, herein called the Aegean Orogeny. This orogeny followed a classic Wilson cycle from early ophiolite obduction (ca. 74 Ma) onto a previously passive continental margin, to attempted crustal subduction with HP eclogite and blueschist facies metamorphism (ca. 54–45 ?Ma), through crustal thickening and regional kyanite – sillimanite grade Barrovian-type metamorphism (ca. 22–14 ?Ma), to orogenic collapse (<14 ?Ma). At least three periods of ‘extensional’ fabrics relate to: (1) Exhumation of blueschists and eclogite facies rocks showing tight-isoclinal folds and top-NE, base-SW fabrics, recording return flow along a subduction channel in a compressional tectonic setting (ca. 50–35 ?Ma). (2) Extensional fabrics within the core complexes formed by exhumation of kyanite- and sillimanite gneisses showing thrust-related fabrics at the base and ‘extensional’ fabrics along the top (ca. 18.5–14 ?Ma). (3) Regional ductile-brittle ‘extensional’ fabrics and low-angle normal faulting related to the North Cycladic Detachment (NCD) and the South(West) Cycladic Detachment (WCD) during regional extension along the flanks of a major NW–SE anticlinal fold along the middle of the Cyclades. Major low-angle normal faults and ductile shear zones show symmetry about the area, with the NE chain of islands (Andros, Tinos, Mykonos, Ikaria) exposing the NE-dipping NCD with consistent top-NE ductile fabrics along 200 ?km of strike. In contrast, from the Greek mainland (Attica) along the SE chain of islands (Kea, Kythnos, Serifos) a SW-dipping low-angle normal fault and ductile shear zone, the WCD is inferred for at least 100 ?km along strike. Islands in the middle of the Cyclades show deeper structural levels including kyanite- and sillimanite-grade metamorphic core complexes (Naxos, Paros) as well as Variscan basement rocks (Naxos, Ios). The overall structure is an ~100 ?km wavelength NW–SE trending dome with low-angle extensional faults along each flank, dipping away from the anticline axis to the NE and SW. Many individual islands show post-extensional large-scale folding of the low-angle normal faults around the domes (Naxos, Paros, Ios, Sifnos) indicating a post-Miocene late phase of E–W shortening.  相似文献   

13.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   

14.
Combined petrographic, structural and geochronological study of the Malashan dome, one of the North Himalayan gneiss domes, reveals that it is cored by a Miocene granite, the Malashan granite, that intruded into the Jurassic sedimentary rocks of Tethys Himalaya. Two other granites in the area are referred to as the Paiku and Cuobu granites. New zircon SHRIMP U-Pb and muscovite and biotite 40Ar-39Ar dating show that the Paiku granite was emplaced during 22.2–16.2 Ma (average 19.3 ± 3.9 Ma) and cooled rapidly to 350–400 °C at around 15.9 Ma. Whole-rock granite chemistry suggests the original granitic magma may have formed by muscovite dehydration melting of a protolith chemically similar to the High Himalayan Crystalline Sequence. Abundant calcareous metasedimentary rocks and minor garnet-staurolite-biotite-muscovite ± andalusite schists record contact metamorphism by three granites that intruded intermittently into the Jurassic sediments between 18.5 and 15.3 Ma. Two stages of widespread penetrative ductile deformation, D1 and D2, can be defined. Microstructural studies of metapelites combined with geothermobarometry and pseudosection analyses yield P – T conditions of 4.8 ± 0.8 kbar at 550 ± 50 °C during a non-deformational stage between D1 and D2, and 3.1–4.1 kbar at 530–575 °C during syn- to post-D2. The pressure estimates for the syn- to post-D2 growth of andalusite suggest relatively shallow (depth of ∼15.2 km) extensional ductile deformation that took place within a shear zone of the South Tibetan Detachment System. Close temporal association between intrusion of the Malashan granite and onset of D2 suggests extension may have been triggered by the intrusion of the Malashan granite.  相似文献   

15.
Following the early Eocene collision of the Indian and Asian plates, intracontinental subduction occurred along the Main Central Thrust (MCT) zone in the High Himalaya. In the Kishtwar–Zanskar Himalaya, the MCT is a 2 km thick shear zone of high strain, distributed ductile deformation which emplaces the amphibolite facies High Himalayan Crystalline (HHC) unit south‐westwards over the lower greenschist facies Lesser Himalaya. An inverted metamorphic field gradient, mapped from the first appearance of garnet, staurolite and kyanite index minerals, is coincident with the high strain zone. Petrography and garnet zoning profiles indicate that rocks in the lower MCT zone preserve a prograde assemblage, whereas rocks in the HHC unit show retrograde equilibration. Thermobarometric results derived using THERMOCALC indicate a PT increase of c. 180 °C and c. 400 MPa across the base of the MCT zone, which is a consequence of the syn‐ to postmetamorphic juxtaposition of M1 kyanite grade rocks of the HHC unit on a cooling path over biotite grade footwall rocks, which subsequently attain their peak (M2) during thrusting. Inclusion thermobarometry from the lower MCT zone reveals that M2 was accompanied by loading, and peak conditions of 537±38 °C and 860±120 MPa were attained. M1 kyanite assemblages in the HHC unit, which have not been overprinted by M2 fibrolitic sillimanite, were not significantly affected by M2, and conditions of equilibration are estimated as 742±53 °C and 960±180 MPa. There is no evidence for dissipative or downward conductive heating in the MCT zone. Instead, the primary control on the distribution of peak assemblages, represented by the index minerals, is postmetamorphic ductile thrusting in a downward propagating shear zone. Polymetamorphism and diachroneity of equilibration are also important controls on the thermal profile through the MCT zone and HHC unit.  相似文献   

16.
New fission track and Ar/Ar geochronological data provide time constraints on the exhumation history of the Himalayan nappes in the Mandi (Beas valley) – Tso Morari transect of the NW Indian Himalaya. Results from this and previous studies suggest that the SW-directed North Himalayan nappes were emplaced by detachment from the underthrusted upper Indian crust by 55 Ma and metamorphosed by ca. 48–40 Ma. The nappe stack was subsequently exhumed to shallow upper crustal depths (<10 km) by 40–30 Ma in the Tso Morari dome (northern section of the transect) and by 30–20 Ma close to frontal thrusts in the Baralacha La region. From the Oligocene to the present, exhumation continued slowly.Metamorphism started in the High Himalayan nappe prior to the Late Oligocene.High temperatures and anatexis of the subducting upper Indian crust engendered the buoyancy-driven ductile detachment and extrusion of the High Himalayan nappe in the zone of continental collision. Late extrusion of the High Himalayan nappe started about 26 Ma ago, accompanied by ductile extensional shearing in the Zanskar shear zone in its roof between 22 and 19 Ma concomitant with thrusting along the basal Main Central Thrust to the south. The northern part of the nappe was then rapidly exhumed to shallow depth (<10 km) between 20 and 6 Ma, while its southern front reached this depth at 10–5 Ma.  相似文献   

17.
In the uppermost parts of the Higher Himalayan Crystallines (HHC) of the Great Himalaya, widespread in situ partial melting of sillimanite+K-feldspar gneiss resulted in the formation of migmatite and resultant melt accumulation near the South Tibetan Detachment System (STDS) during various deformation events along the Dhauli Ganga valley in Garhwal. The oldest migmatite phase, designated as the Me1, parallels the main foliation Sm as the stromatite layers and concordant leucogranite bands. Younger melt phases Me2, Me3 and Me5 are recorded along small-scale ductile thrusts, extensional fabric and structureless patches, respectively. It is only the Me4 melting phase that is evidenced by large-scale melt migration along cross-cutting irregular veins. These were possible conduits for migration and accumulation of melt into larger leucogranite bodies like the Malari granite (19.0± 0.5 Ma).  相似文献   

18.
形成于燕山期的黑牛洞铜矿分布在江浪变质核杂岩的伸展型韧性剪切带内,变基性火山岩附近矿化和蚀变强烈。伸展型韧性剪切带晚期具有张性或张扭性断裂叠加的构造特征。黑牛洞铜矿似属韧性剪切带型铜矿,其成矿物质具有多来源、成矿作用具有多期次、矿床具有多成因的特点,而最终使其成为富铜矿的重要控矿因素则是燕山期的伸展型韧性剪切作用及其晚期的脆性断裂叠加。建议找矿在伸展型韧性剪切带内,有变基性火山岩发育,矿化、蚀变显示良好,晚期叠加张性或张扭性断裂的有利地段展开。  相似文献   

19.
ABSTRACT In the main Himalayan range in the Ladakh-Zanskar area, domal structures have been observed at structurally deeper levels in the tectonic unit of the Higher Himalayan Crystalline. Their formation occurred during a second, temperature-dominated phase (M2) of high-grade regional metamorphism, characterized by the semipelitic paragenesis of sillimanite-K-feldspar and incipient anatexis. The doming event reveals a local system of synmetamorphic uplift superimposed on a regional system of northeast-southwest trending compression. In the main Himalayan range the development of the dominant S2 foliation is related to deformation during the doming phase, which started early in the M2 event. The deformation propagated continuously north-east and south-west with time. In the north-east, on the northern slopes of the main Himalayan range, this deformation is expressed by extensional shear movements of the upper tectonic levels finally leading to the late- to postmetamorphic normal fault system of the Zanskar shear zone. Towards the south-west, deformation is expressed by compressional movements, e.g. at the Main Central Thrust (MCT) in the Kishtwar window area. The observed compression and extension is inferred to relate to an increased uplift of the domal bulges of the tectonic Kishtwar window and of the whole main Himalayan range.  相似文献   

20.
We present the results of a structural transect in Lower Dolpo, cross-cutting the upper part of the Lesser Himalaya (LH), the Higher Himalayan Crystallines (HHC) and the lower part of the Tibetan Sedimentary Sequence (TSS). The MCT zone affects the upper part of the LH as well as the lower part of the HHC and shows a later brittle reactivation. Mean vorticity in the MCT points to non-coaxial deformation. These data, together with available kinematic data along the belt, on the South Tibetan Detachment System (STDS) and in the core of the HHC, point to increasing simple shear toward the tectonic boundaries. A top-to-the-SW high-temperature shear zone (Toijem Shear Zone) is recognized in the middle part of the HHC at the boundary between Units 1 and 2. It developed during the earlier stages of exhumation of the HHC, enhancing the decompression of the hanging wall and the emplacement of leucogranite dykes and sills. Its development could be explained by a change in the velocity profile during the extrusion of the HHC, triggered by first order changes in rock types of the tectonic unit. The STDS is marked by a wide zone of high strain and by a metamorphic jump from amphibolite facies in the carbonate rocks of the upper part of the HHC to greenschist facies marbles in the lower part of the TSS. The development of a pervasive foliation towards the bottom of the TSS indicates increasing strain, related to top down-to-the-NE tectonic transport. A Low P metamorphic event, marked by the growth of post-D1 biotite porphyroblasts at the base of the TSS, is related to the conductive heating from the underlying HHC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号