首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a methodology based on the ensemble Kalman filter (EnKF) and the level set method for the continuous model updating of geological facies with respect to production data. Geological facies are modeled using an implicit surface representation and conditioned to production data using the ensemble Kalman filter. The methodology is based on Gaussian random fields used to deform the facies boundaries. The Gaussian random fields are used as the model parameter vector to be updated sequentially within the EnKF when new measurements are available. We show the successful application of the methodology to two synthetic reservoir models.  相似文献   

2.
Over the last years, the ensemble Kalman filter (EnKF) has become a very popular tool for history matching petroleum reservoirs. EnKF is an alternative to more traditional history matching techniques as it is computationally fast and easy to implement. Instead of seeking one best model estimate, EnKF is a Monte Carlo method that represents the solution with an ensemble of state vectors. Lately, several ensemble-based methods have been proposed to improve upon the solution produced by EnKF. In this paper, we compare EnKF with one of the most recently proposed methods, the adaptive Gaussian mixture filter (AGM), on a 2D synthetic reservoir and the Punq-S3 test case. AGM was introduced to loosen up the requirement of a Gaussian prior distribution as implicitly formulated in EnKF. By combining ideas from particle filters with EnKF, AGM extends the low-rank kernel particle Kalman filter. The simulation study shows that while both methods match the historical data well, AGM is better at preserving the geostatistics of the prior distribution. Further, AGM also produces estimated fields that have a higher empirical correlation with the reference field than the corresponding fields obtained with EnKF.  相似文献   

3.
4.
In this paper we present an extension of the ensemble Kalman filter (EnKF) specifically designed for multimodal systems. EnKF data assimilation scheme is less accurate when it is used to approximate systems with multimodal distribution such as reservoir facies models. The algorithm is based on the assumption that both prior and posterior distribution can be approximated by Gaussian mixture and it is validated by the introduction of the concept of finite ensemble representation. The effectiveness of the approach is shown with two applications. The first example is based on Lorenz model. In the second example, the proposed methodology combined with a localization technique is used to update a 2D reservoir facies models. Both applications give evidence of an improved performance of the proposed method respect to the EnKF.  相似文献   

5.
Reservoir simulation models are used both in the development of new fields and in developed fields where production forecasts are needed for investment decisions. When simulating a reservoir, one must account for the physical and chemical processes taking place in the subsurface. Rock and fluid properties are crucial when describing the flow in porous media. In this paper, the authors are concerned with estimating the permeability field of a reservoir. The problem of estimating model parameters such as permeability is often referred to as a history-matching problem in reservoir engineering. Currently, one of the most widely used methodologies which address the history-matching problem is the ensemble Kalman filter (EnKF). EnKF is a Monte Carlo implementation of the Bayesian update problem. Nevertheless, the EnKF methodology has certain limitations that encourage the search for an alternative method.For this reason, a new approach based on graphical models is proposed and studied. In particular, the graphical model chosen for this purpose is a dynamic non-parametric Bayesian network (NPBN). This is the first attempt to approach a history-matching problem in reservoir simulation using a NPBN-based method. A two-phase, two-dimensional flow model was implemented for a synthetic reservoir simulation exercise, and initial results are shown. The methods’ performances are evaluated and compared. This paper features a completely novel approach to history matching and constitutes only the first part (part I) of a more detailed investigation. For these reasons (novelty and incompleteness), many questions are left open and a number of recommendations are formulated, to be investigated in part II of the same paper.  相似文献   

6.
The performance of the ensemble Kalman filter (EnKF) for continuous updating of facies location and boundaries in a reservoir model based on production and facies data for a 3D synthetic problem is presented. The occurrence of the different facies types is treated as a random process and the initial distribution was obtained by truncating a bi-Gaussian random field. Because facies data are highly non-Gaussian, re-parameterization was necessary in order to use the EnKF algorithm for data assimilation; two Gaussian random fields are updated in lieu of the static facies parameters. The problem of history matching applied to facies is difficult due to (1) constraints to facies observations at wells are occasionally violated when productions data are assimilated; (2) excessive reduction of variance seems to be a bigger problem with facies than with Gaussian random permeability and porosity fields; and (3) the relationship between facies variables and data is so highly non-linear that the final facies field does not always honor early production data well. Consequently three issues are investigated in this work. Is it possible to iteratively enforce facies constraints when updates due to production data have caused them to be violated? Can localization of adjustments be used for facies to prevent collapse of the variance during the data-assimilation period? Is a forecast from the final state better than a forecast from time zero using the final parameter fields?To investigate these issues, a 3D reservoir simulation model is coupled with the EnKF technique for data assimilation. One approach to enforcing the facies constraint is continuous iteration on all available data, which may lead to inconsistent model states, incorrect weighting of the production data and incorrect adjustment of the state vector. A sequential EnKF where the dynamic and static data are assimilated sequentially is presented and this approach seems to have solved the highlighted problems above. When the ensemble size is small compared to the number of independent data, the localized adjustment of the state vector is a very important technique that may be used to mitigate loss of rank in the ensemble. Implementing a distance-based localization of the facies adjustment appears to mitigate the problem of variance deficiency in the ensembles by ensuring that sufficient variability in the ensemble is maintained throughout the data assimilation period. Finally, when data are assimilated without localization, the prediction results appear to be independent of the starting point. When localization is applied, it is better to predict from the start using the final parameter field rather than continue from the final state.  相似文献   

7.
Ensemble Kalman filtering with shrinkage regression techniques   总被引:1,自引:0,他引:1  
The classical ensemble Kalman filter (EnKF) is known to underestimate the prediction uncertainty. This can potentially lead to low forecast precision and an ensemble collapsing into a single realisation. In this paper, we present alternative EnKF updating schemes based on shrinkage methods known from multivariate linear regression. These methods reduce the effects caused by collinear ensemble members and have the same computational properties as the fastest EnKF algorithms previously suggested. In addition, the importance of model selection and validation for prediction purposes is investigated, and a model selection scheme based on cross-validation is introduced. The classical EnKF scheme is compared with the suggested procedures on two-toy examples and one synthetic reservoir case study. Significant improvements are seen, both in terms of forecast precision and prediction uncertainty estimates.  相似文献   

8.
Sampling errors can severely degrade the reliability of estimates of conditional means and uncertainty quantification obtained by the application of the ensemble Kalman filter (EnKF) for data assimilation. A standard recommendation for reducing the spurious correlations and loss of variance due to sampling errors is to use covariance localization. In distance-based localization, the prior (forecast) covariance matrix at each data assimilation step is replaced with the Schur product of a correlation matrix with compact support and the forecast covariance matrix. The most important decision to be made in this localization procedure is the choice of the critical length(s) used to generate this correlation matrix. Here, we give a simple argument that the appropriate choice of critical length(s) should be based both on the underlying principal correlation length(s) of the geological model and the range of the sensitivity matrices. Based on this result, we implement a procedure for covariance localization and demonstrate with a set of distinctive reservoir history-matching examples that this procedure yields improved results over the standard EnKF implementation and over covariance localization with other choices of critical length.  相似文献   

9.
We present a methodology that allows conditioning the spatial distribution of geological and petrophysical properties of reservoir model realizations on available production data. The approach is fully consistent with modern concepts depicting natural reservoirs as composite media where the distribution of both lithological units (or facies) and associated attributes are modeled as stochastic processes of space. We represent the uncertain spatial distribution of the facies through a Markov mesh (MM) model, which allows describing complex and detailed facies geometries in a rigorous Bayesian framework. The latter is then embedded within a history matching workflow based on an iterative form of the ensemble Kalman filter (EnKF). We test the proposed methodology by way of a synthetic study characterized by the presence of two distinct facies. We analyze the accuracy and computational efficiency of our algorithm and its ability with respect to the standard EnKF to properly estimate model parameters and assess future reservoir production. We show the feasibility of integrating MM in a data assimilation scheme. Our methodology is conducive to a set of updated model realizations characterized by a realistic spatial distribution of facies and their log permeabilities. Model realizations updated through our proposed algorithm correctly capture the production dynamics.  相似文献   

10.
Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique history matching inverse problem. It has been shown that the ensemble Kalman filter (EnKF) is an adequate method for predicting the dynamics of the reservoir. The EnKF is a sequential Monte-Carlo approach that uses an ensemble of reservoir models. For realistic, large-scale applications, the ensemble size needs to be kept small due to computational inefficiency. Consequently, the error space is not well covered (poor cross-correlation matrix approximations) and the updated parameter field becomes scattered and loses important geological features (for example, the contact between high- and low-permeability values). The prior geological knowledge present in the initial time is not found anymore in the final updated parameter. We propose a new approach to overcome some of the EnKF limitations. This paper shows the specifications and results of the ensemble multiscale filter (EnMSF) for automatic history matching. EnMSF replaces, at each update time, the prior sample covariance with a multiscale tree. The global dependence is preserved via the parent–child relation in the tree (nodes at the adjacent scales). After constructing the tree, the Kalman update is performed. The properties of the EnMSF are presented here with a 2D, two-phase (oil and water) small twin experiment, and the results are compared to the EnKF. The advantages of using EnMSF are localization in space and scale, adaptability to prior information, and efficiency in case many measurements are available. These advantages make the EnMSF a practical tool for many data assimilation problems.  相似文献   

11.
Traditional ensemble-based history matching method, such as the ensemble Kalman filter and iterative ensemble filters, usually update reservoir parameter fields using numerical grid-based parameterization. Although a parameter constraint term in the objective function for deriving these methods exists, it is difficult to preserve the geological continuity of the parameter field in the updating process of these methods; this is especially the case in the estimation of statistically anisotropic fields (such as a statistically anisotropic Gaussian field and facies field with elongated facies) with uncertainties about the anisotropy direction. In this work, we propose a Karhunen-Loeve expansion-based global parameterization technique that is combined with the ensemble-based history matching method for inverse modeling of statistically anisotropic fields. By using the Karhunen-Loeve expansion, a Gaussian random field can be parameterized by a group of independent Gaussian random variables. For a facies field, we combine the Karhunen-Loeve expansion and the level set technique to perform the parameterization; that is, for each facies, we use a Gaussian random field and a level set algorithm to parameterize it, and the Gaussian random field is further parameterized by the Karhunen-Loeve expansion. We treat the independent Gaussian random variables in the Karhunen-Loeve expansion as the model parameters. When the anisotropy direction of the statistically anisotropic field is uncertain, we also treat it as a model parameter for updating. After model parameterization, we use the ensemble randomized maximum likelihood filter to perform history matching. Because of the nature of the Karhunen-Loeve expansion, the geostatistical characteristics of the parameter field can be preserved in the updating process. Synthetic cases are set up to test the performance of the proposed method. Numerical results show that the proposed method is suitable for estimating statistically anisotropic fields.  相似文献   

12.
13.
Assimilation of production data into reservoir models for which the distribution of porosity and permeability is largely controlled by facies has become increasingly common. When the locations of the facies bodies must be conditioned to observations, the truncated plurigaussian model has been often shown to be a useful method for modeling as it allows gaussian variables to be updated instead of facies types. Previous experience has also shown that ensemble Kalman filter-like methods are particularly effective for assimilation of data into truncated plurigaussian models. In this paper, some limitations are shown of the ensemble-based or gradient-based methods when applied to truncated plurigaussian models of a certain type that is likely to occur for modeling channel facies. It is also shown that it is possible to improve the data match and increase the ensemble spread by modifying the updating step using an approximate derivative of the truncation map.  相似文献   

14.
15.
The ensemble Kalman filter (EnKF) has been shown repeatedly to be an effective method for data assimilation in large-scale problems, including those in petroleum engineering. Data assimilation for multiphase flow in porous media is particularly difficult, however, because the relationships between model variables (e.g., permeability and porosity) and observations (e.g., water cut and gas–oil ratio) are highly nonlinear. Because of the linear approximation in the update step and the use of a limited number of realizations in an ensemble, the EnKF has a tendency to systematically underestimate the variance of the model variables. Various approaches have been suggested to reduce the magnitude of this problem, including the application of ensemble filter methods that do not require perturbations to the observed data. On the other hand, iterative least-squares data assimilation methods with perturbations of the observations have been shown to be fairly robust to nonlinearity in the data relationship. In this paper, we present EnKF with perturbed observations as a square root filter in an enlarged state space. By imposing second-order-exact sampling of the observation errors and independence constraints to eliminate the cross-covariance with predicted observation perturbations, we show that it is possible in linear problems to obtain results from EnKF with observation perturbations that are equivalent to ensemble square-root filter results. Results from a standard EnKF, EnKF with second-order-exact sampling of measurement errors that satisfy independence constraints (EnKF (SIC)), and an ensemble square-root filter (ETKF) are compared on various test problems with varying degrees of nonlinearity and dimensions. The first test problem is a simple one-variable quadratic model in which the nonlinearity of the observation operator is varied over a wide range by adjusting the magnitude of the coefficient of the quadratic term. The second problem has increased observation and model dimensions to test the EnKF (SIC) algorithm. The third test problem is a two-dimensional, two-phase reservoir flow problem in which permeability and porosity of every grid cell (5,000 model parameters) are unknown. The EnKF (SIC) and the mean-preserving ETKF (SRF) give similar results when applied to linear problems, and both are better than the standard EnKF. Although the ensemble methods are expected to handle the forecast step well in nonlinear problems, the estimates of the mean and the variance from the analysis step for all variants of ensemble filters are also surprisingly good, with little difference between ensemble methods when applied to nonlinear problems.  相似文献   

16.
We present a parallel framework for history matching and uncertainty characterization based on the Kalman filter update equation for the application of reservoir simulation. The main advantages of ensemble-based data assimilation methods are that they can handle large-scale numerical models with a high degree of nonlinearity and large amount of data, making them perfectly suited for coupling with a reservoir simulator. However, the sequential implementation is computationally expensive as the methods require relatively high number of reservoir simulation runs. Therefore, the main focus of this work is to develop a parallel data assimilation framework with minimum changes into the reservoir simulator source code. In this framework, multiple concurrent realizations are computed on several partitions of a parallel machine. These realizations are further subdivided among different processors, and communication is performed at data assimilation times. Although this parallel framework is general and can be used for different ensemble techniques, we discuss the methodology and compare results of two algorithms, the ensemble Kalman filter (EnKF) and the ensemble smoother (ES). Computational results show that the absolute runtime is greatly reduced using a parallel implementation versus a serial one. In particular, a parallel efficiency of about 35 % is obtained for the EnKF, and an efficiency of more than 50 % is obtained for the ES.  相似文献   

17.
Improving the Ensemble Estimate of the Kalman Gain by Bootstrap Sampling   总被引:1,自引:1,他引:0  
Using a small ensemble size in the ensemble Kalman filter methodology is efficient for updating numerical reservoir models but can result in poor updates following spurious correlations between observations and model variables. The most common approach for reducing the effect of spurious correlations on model updates is multiplication of the estimated covariance by a tapering function that eliminates all correlations beyond a prespecified distance. Distance-dependent tapering is not always appropriate, however. In this paper, we describe efficient methods for discriminating between the real and the spurious correlations in the Kalman gain matrix by using the bootstrap method to assess the confidence level of each element from the Kalman gain matrix. The new method is tested on a small linear problem, and on a water flooding reservoir history matching problem. For the water flooding example, a small ensemble size of 30 was used to compute the Kalman gain in both the screened EnKF and standard EnKF methods. The new method resulted in significantly smaller root mean squared errors of the estimated model parameters and greater variability in the final updated ensemble.  相似文献   

18.
The performance of the Ensemble Kalman Filter method (EnKF) depends on the sample size compared to the dimension of the parameters space. In real applications insufficient sampling may result in spurious correlations which reduce the accuracy of the filter with a strong underestimation of the uncertainty. Covariance localization and inflation are common solutions to these problems. The Ensemble Square Root Filters (ESRF) is also better to estimate uncertainty with respect to the EnKF. In this work we propose a method that limits the consequences of sampling errors by means of a convenient generation of the initial ensemble. This regeneration is based on a Stationary Orthogonal-Base Representation (SOBR) obtained via a singular value decomposition of a stationary covariance matrix estimated from the ensemble. The technique is tested on a 2D single phase reservoir and compared with the other common techniques. The evaluation is based on a reference solution obtained with a very large ensemble (one million members) which remove the spurious correlations. The example gives evidence that the SOBR technique is a valid alternative to reduce the effect of sampling error. In addition, when the SOBR method is applied in combination with the ESRF and inflation, it gives the best performance in terms of uncertainty estimation and oil production forecast.  相似文献   

19.
An iterative ensemble Kalman filter for reservoir engineering applications   总被引:1,自引:0,他引:1  
The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the distribution’s normality. Besides, it is based on the linear update of the analysis equations. These facts may cause problems when filter is used in reservoir applications and result in sampling error. The situation becomes more problematic if the a priori information on the reservoir structure is poor and initial guess about the, e.g., permeability field is far from the actual one. The above circumstance explains a reason to perform some further research concerned with analyzing specific modification of the EnKF-based approach, namely, the iterative EnKF (IEnKF) scheme, which allows restarting the procedure with a new initial guess that is closer to the actual solution and, hence, requires less improvement by the algorithm while providing better estimation of the parameters. The paper presents some examples for which the IEnKF algorithm works better than traditional EnKF. The algorithms are compared while estimating the permeability field in relation to the two-phase, two-dimensional fluid flow model.  相似文献   

20.
In a previous paper, we developed a theoretical basis for parameterization of reservoir model parameters based on truncated singular value decomposition (SVD) of the dimensionless sensitivity matrix. Two gradient-based algorithms based on truncated SVD were developed for history matching. In general, the best of these “SVD” algorithms requires on the order of 1/2 the number of equivalent reservoir simulation runs that are required by the limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm. In this work, we show that when combining SVD parameterization with the randomized maximum likelihood method, we can achieve significant additional computational savings by history matching all models simultaneously using a SVD parameterization based on a particular sensitivity matrix at each iteration. We present two new algorithms based on this idea, one which relies only on updating the SVD parameterization at each iteration and one which combines an inner iteration based on an adjoint gradient where during the inner iteration the truncated SVD parameterization does not vary. Results generated with our algorithms are compared with results obtained from the ensemble Kalman filter (EnKF). Finally, we show that by combining EnKF with the SVD-algorithm, we can improve the reliability of EnKF estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号