首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time-scale for galaxies within merging dark matter haloes to merge with each other is an important ingredient in galaxy formation models. Accurate estimates of merging time-scales are required for predictions of astrophysical quantities such as black hole binary merger rates, the build-up of stellar mass in central galaxies and the statistical properties of satellite galaxies within dark matter haloes. In this paper, we study the merging time-scales of extended dark matter haloes using N -body simulations. We compare these results to standard estimates based on the Chandrasekhar theory of dynamical friction. We find that these standard predictions for merging time-scales, which are often used in semi-analytic galaxy formation models, are systematically shorter than those found in simulations. The discrepancy is approximately a factor of 1.7 for M sat/ M host≈ 0.1 and becomes larger for more disparate satellite-to-host mass ratios, reaching a factor of ∼3.3 for M sat/ M host≈ 0.01. Based on our simulations, we propose a new, easily implementable fitting formula that accurately predicts the time-scale for an extended satellite to sink from the virial radius of a host halo down to the halo's centre for a wide range of M sat/ M host and orbits. Including a central bulge in each galaxy changes the merging time-scale by ≲10 per cent. To highlight one concrete application of our results, we show that merging time-scales often used in the literature overestimate the growth of stellar mass by satellite accretion by ≈40 per cent, with the extra mass gained in low mass ratio mergers.  相似文献   

2.
The NGC 5044 galaxy group is dominated by a luminous elliptical galaxy that is surrounded by ∼160 dwarf satellites. The projected number density profile of this dwarf population deviates within ∼1/3 of the virial radius from a projected Navarro, Frenk and White (NFW) profile, which is assumed to approximate the underlying total matter distribution. By means of a semi-analytic model, we demonstrate that the interplay between gravitation, dynamical friction and tidal mass loss and destruction can explain the observed number density profile. We use only two parameters in our models: the total to stellar mass fraction of the satellite haloes and the disruption efficiency. The disruption efficiency is expressed by a minimum radius. If the tidal radius of a galaxy (halo) falls below this radius, it is assumed to become unobservable. The preferred parameters are an initial total to stellar mass fraction of ∼20 and a disruption radius of  4 kpc  . In that model, about 20 per cent of all the satellites are totally disrupted on their orbits within the group environment. Dynamical friction is less important in shaping the inner slope of the number density profile because the reduction in mass by tidal forces lowers the impact of the friction term. The main destruction mechanism is tide. In the preferred model, the total B -band luminosity of all disrupted galaxies is about twice the observed luminosity of the central elliptical galaxy, indicating that a significant fraction of stars are scattered into the intragroup medium. Dwarf galaxy satellites closer to the centre of the NGC 5044 group may exhibit optical evidence of partial tidal disruption. If dynamical friction forces the satellite to merge with the central elliptical, the angular momentum of the satellite tends to be removed at the apocentre passage. Afterwards, the satellite drops radially towards the centre.  相似文献   

3.
We present a halo model prediction of the image separation distribution of strong lenses. Our model takes into account the subhalo population, which has been ignored in previous studies, as well as the conventional halo population. Haloes and subhaloes are linked to central and satellite galaxies by adopting a universal scaling relation between masses of (sub)haloes and luminosities of galaxies. Our model predicts that 10–20 per cent of lenses should be caused by the subhalo population. The fraction of lensing by satellite galaxies (subhaloes) peaks at ∼1 arcsec and decreases rapidly with increasing image separations. We compute fractions of lenses which lie in groups and clusters and find them to be ∼14 and ∼4 per cent, respectively; nearly half of such lenses are expected to be produced by satellite galaxies, rather than central parts of haloes. We also study mass distributions of lensing haloes and find that, even at image separations of ∼3 arcsec, the deviation of lens mass distributions from isothermal profiles is large; at or beyond ∼3 arcsec, image separations are enhanced significantly by surrounding haloes. Our model prediction agrees reasonably well with observed image separation distributions from galaxy to cluster scales.  相似文献   

4.
We investigate the properties of satellite galaxies formed in N -body/SPH simulations of galaxy formation in the ΛCDM cosmology. The simulations include the main physical effects thought to be important in galaxy formation and, in several cases, produce realistic spiral discs. In total, a sample of nine galaxies of luminosity comparable to the Milky Way was obtained. At magnitudes brighter than the resolution limit,   MV =−12  , the luminosity function of the satellite galaxies in the simulations is in excellent agreement with data for the Local Group. The radial number density profile of the model satellites, as well as their gas fractions also match observations very well. In agreement with previous N -body studies, we find that the satellites tend to be distributed in highly flattened configurations whose major axis is aligned with the major axis of the (generally triaxial) dark halo. In two out of three systems with sufficiently large satellite populations, the satellite system is nearly perpendicular to the plane of the galactic disc, a configuration analogous to that observed in the Milk Way. The discs themselves are perpendicular to the minor axis of their host haloes in the inner parts, and the correlation between the orientation of the galaxy and the shape of the halo persists even out to the virial radius. However, in one case the disc's minor axis ends up, at the virial radius, perpendicular to the minor axis of the halo. The angular momenta of the galaxies and their host halo tend to be well aligned.  相似文献   

5.
In this paper, we study the variations of group galaxy properties according to the assembly history in Sloan Digital Sky Survey Data Release 6 (SDSS-DR6) selected groups. Using mock SDSS group catalogues, we find two suitable indicators of group formation time: (i) the isolation of the group, defined as the distance to the nearest neighbour in terms of its virial radius and (ii) the concentration, measured as the group inner density calculated using the fifth nearest bright galaxy to the group centre. Groups within narrow ranges of mass in the mock catalogue show increasing group age with isolation and concentration. However, in the observational data the stellar age, as indicated by the spectral type, only shows a correlation with concentration.
We study groups of similar mass and different assembly history, finding important differences in their galaxy population. Particularly, in high-mass SDSS groups, the number of members, mass-to-light ratios, red galaxy fractions and the magnitude difference between the brightest and second-brightest group galaxies, show different trends as a function of isolation and concentration, even when it is expected that the latter two quantities correlate with group age. Conversely, low-mass SDSS groups appear to be less sensitive to their assembly history.
The correlations detected in the SDSS are not consistent with the trends measured in the mock catalogues. However, discrepancies can be explained in terms of the disagreement found in the age-isolation trends, suggesting that the model might be overestimating the effects of environment. We discuss how the modelling of the cold gas in satellite galaxies could be responsible for this problem. These results can be used to improve our understanding of the evolution of galaxies in high-density environments.  相似文献   

6.
We investigate the environments and clustering properties of starburst galaxies selected from the 2dF Galaxy Redshift Survey (2dFGRS) in order to determine which, if any, environmental factors play a role in triggering a starburst. We quantify the local environments, clustering properties and luminosity functions of our starburst galaxies and compare to random control samples. The starburst galaxies are also classified morphologically in terms of their broad Hubble type and evidence of tidal merger/interaction signatures. We find the starburst galaxies to be much less clustered on large (5–15 Mpc) scales compared to the overall 2dFGRS galaxy population. In terms of their environments, we find just over half of the starburst galaxies to reside in low to intermediate luminosity groups, and a further ∼30 per cent residing in the outskirts and infall regions of rich clusters. Their luminosity functions also differ significantly from that of the overall 2dFGRS galaxy population, with the sense of the difference being critically dependent on the way their star formation rates are measured. In terms of pin-pointing what might trigger the starburst, it would appear that factors relating to their local environment are most germane. Specifically, we find clear evidence that the presence of a near neighbour of comparable luminosity/mass within 20 kpc is likely to be important in triggering a starburst. We also find that a significant fraction (20–30 per cent) of the galaxies in our starburst samples have morphologies indicative of either an ongoing or a recent tidal interaction and/or merger. These findings notwithstanding, there remain a significant portion of starburst galaxies where such local environmental influences are not in any obvious way playing a triggering role, leading us to conclude that starbursts can also be internally driven.  相似文献   

7.
We explore properties of close galaxy pairs and merging systems selected from the Sloan Digital Sky Survey Data Release 4 in different environments with the aim to assess the relative importance of the role of interactions over global environmental processes. For this purpose, we perform a comparative study of galaxies with and without close companions as a function of local density and host halo mass, carefully removing sources of possible biases. We find that at low- and high-local-density environments, colours and concentration indices of close galaxy pairs are very similar to those of isolated galaxies. At intermediate densities, we detect significant differences, indicating that close pairs could have experienced a more rapid transition on to the red sequence than isolated galaxies. The presence of a correlation between concentration index and colours indicates that the physical mechanism responsible for the colour transformation also operates in the transformation of the luminous matter distribution. At fixed local densities, we find a dependence of the red galaxy fraction on dark matter halo mass for galaxies with or without a close companion. This suggests the action of host halo mass related effects. Regardless of dark matter halo mass, we show that the percentage of red galaxies in close pairs and in the control sample are comparable at low- and high-local-density environments. However, at intermediate local densities, the gap in the red fraction between close pairs and the control galaxies increases from ∼10 per cent in low-mass haloes up to ∼50 per cent in the most massive ones. Interestingly, we also detect that 50 per cent of merging systems populate the intermediate local environments, with a large fraction of them being extremely red and bulge dominated. Our findings suggest that in intermediate-density environments galaxies are efficiently pre-processed by close encounters and mergers before entering higher local density regions.  相似文献   

8.
We study the stellar mass assembly of the Spiderweb galaxy  (MRC 1138−262)  , a massive   z = 2.2  radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties are determined by fitting stellar population models to their rest-frame ultraviolet to optical spectral energy distributions. We find that within 150 kpc of the radio galaxy the stellar mass is centrally concentrated in the radio galaxy, yet most of the dust-uncorrected, instantaneous star formation occurs in the surrounding low-mass satellite galaxies. We predict that most of the galaxies within 150 kpc of the radio galaxy will merge with the central radio galaxy by   z = 0  , increasing its stellar mass by up to a factor of ≃2. However, it will take several hundred Myr for the first mergers to occur, by which time the large star formation rates are likely to have exhausted the gas reservoirs in the satellite galaxies. The tidal radii of the satellite galaxies are small, suggesting that stars and gas are being stripped and deposited at distances of tens of kpc from the central radio galaxy. These stripped stars may become intracluster stars or form an extended stellar halo around the radio galaxy, such as those observed around cD galaxies in cluster cores.  相似文献   

9.
We have used a large sample of low-inclination spiral galaxies with radially resolved optical and near-infrared photometry to investigate trends in star formation history with radius as a function of galaxy structural parameters. A maximum-likelihood method was used to match all the available photometry of our sample to the colours predicted by stellar population synthesis models. The use of simplistic star formation histories, uncertainties in the stellar population models and considering the importance of dust all compromise the absolute ages and metallicities derived in this work; however, our conclusions are robust in a relative sense. We find that most spiral galaxies have stellar population gradients, in the sense that their inner regions are older and more metal rich than their outer regions. Our main conclusion is that the surface density of a galaxy drives its star formation history, perhaps through a local density dependence in the star formation law. The mass of a galaxy is a less important parameter; the age of a galaxy is relatively unaffected by its mass; however, the metallicity of galaxies depends on both surface density and mass. This suggests that galaxy‐mass-dependent feedback is an important process in the chemical evolution of galaxies. In addition, there is significant cosmic scatter suggesting that mass and density may not be the only parameters affecting the star formation history of a galaxy.  相似文献   

10.
We carry out numerical simulations of dissipationless major mergers of elliptical galaxies using initial galaxy models that consist of a dark matter haloes and a stellar bulge with properties consistent with the observed fundamental plane. By varying the density profile of the dark matter haloes [standard Navarro, Frenk & White (NFW) profile versus adiabatically contracted NFW profile], the global stellar to dark matter mass ratio and the orbit of the merging galaxies, we are able to assess the impact of each of these factors on the structure of the merger remnant. Our results indicate that the properties of the remnant bulge depend primarily on the angular momentum and energy of the orbit; for a cosmologically motivated orbit, the effective radius and velocity dispersion of the remnant bulge remain approximately on the fundamental plane. This indicates that the observed properties of elliptical galaxies are consistent with significant growth via late dissipationless mergers. We also find that the dark matter fraction within the effective radius of our remnants increases after the merger, consistent with the hypothesis that the tilt of the fundamental plane from the virial theorem is due to a varying dark matter fraction as a function of galaxy mass.  相似文献   

11.
We analyse a sample of 52 000 Milky Way (MW) type galaxies drawn from the publicly available galaxy catalogue of the Millennium Simulation with the aim of studying statistically the differences and similarities of their properties in comparison to our Galaxy. Model galaxies are chosen to lie in haloes with maximum circular velocities in the range 200–250 km s−1 and to have bulge-to-disc ratios similar to that of the MW. We find that model MW galaxies formed 'quietly' through the accretion of cold gas and small satellite systems. Only ≈12 per cent of our model galaxies experienced a major merger during their lifetime. Most of the stars formed ' in situ ', with only about 15 per cent of the final mass gathered through accretion. Supernovae (SNe) and active galactic nuclei (AGN) feedback play an important role in the evolution of these systems. At high redshifts, when the potential wells of the MW progenitors are shallower, winds driven by SNe explosions blow out a large fraction of the gas and metals. As the systems grow in mass, SNe feedback effects decrease and AGN feedback takes over, playing a more important role in the regulation of the star formation activity at lower redshifts. Although model MW galaxies have been selected to lie in a narrow range of maximum circular velocities, they nevertheless exhibit a significant dispersion in the final stellar masses and metallicities. Our analysis suggests that this dispersion results from the different accretion histories of the parent dark matter haloes. Statistically, we also find evidences to support the MW as a typical Sb/Sc galaxy in the same mass range, providing a suitable benchmark to constrain numerical models of galaxy formation.  相似文献   

12.
We study motions of galaxies in galaxy clusters formed in the concordance Λ cold dark matter cosmology. We use high-resolution cosmological simulations that follow the dynamics of dark matter and gas and include various physical processes critical for galaxy formation: gas cooling, heating and star formation. Analysing the motions of galaxies and the properties of intracluster gas in a sample of eight simulated clusters at z = 0, we study the velocity dispersion profiles of the dark matter, gas and galaxies. We measure the mean velocity of galaxy motions and gas sound speed as a function of radius and calculate the average Mach number of galaxy motions. The simulations show that galaxies, on average, move supersonically with the average Mach number of ≈1.4, approximately independent of the cluster-centric radius. The supersonic motions of galaxies may potentially provide an important source of heating for the intracluster gas by driving weak shocks and via dynamical friction, although these heating processes appear to be inefficient in our simulations. We also find that galaxies move slightly faster than the dark matter particles. The magnitude of the velocity bias,   b v ≈ 1.1  , is, however, smaller than the bias estimated for subhaloes in dissipationless simulations. Interestingly, we find velocity bias in the tangential component of the velocity dispersion, but not in the radial component. Finally, we find significant random bulk motions of gas. The typical gas velocities are of order ≈20–30 per cent of the gas sound speed. These random motions provide about 10 per cent of the total pressure support in our simulated clusters. The non-thermal pressure support, if neglected, will bias measurements of the total mass in the hydrostatic analyses of the X-ray cluster observations.  相似文献   

13.
We have investigated the dynamics of the merging process in the minor merger hypothesis for active galactic nuclei. We find that for a satellite galaxy to be able to merge directly with the nucleus of the host galaxy (for example, to give rise to the compact dust discs which are seen in early-type active galaxies), the initial orbit of the satellite is required to be well aimed. For the case of the host galaxy being a disc galaxy, if the initial orbits of the satellites are randomly oriented with respect to the host galaxy, then the orbits of those which reach the host nuclear regions in a reasonable time are also fairly randomly oriented once they reach the nucleus. We note that this result might be able to provide an explanation of why the jet directions in the nuclei of Seyfert galaxies are apparently unrelated to the plane of the galaxy discs.  相似文献   

14.
We use a  0.040 < z < 0.085  sample of 37 866 star-forming galaxies from the Fourth Data Release of the Sloan Digital Sky Survey to investigate the dependence of gas-phase chemical properties on stellar mass and environment. The local density, determined from the projected distances to the fourth and fifth nearest neighbours, is used as an environment indicator. Considering environments ranging from voids, i.e.  log Σ≲−0.8  , to the periphery of galaxy clusters, i.e.  log Σ≈ 0.8  , we find no dependence of the relationship between galaxy stellar mass and gas-phase oxygen abundance, along with its associated scatter, on local galaxy density. However, the star-forming gas in galaxies shows a marginal increase in the chemical enrichment level at a fixed stellar mass in denser environments. Compared with galaxies of similar stellar mass in low-density environments, they are enhanced by a few per cent for massive galaxies to about 20 per cent for galaxies with stellar masses  ≲109.5 M  . These results imply that the evolution of star-forming galaxies is driven primarily by their intrinsic properties and is largely independent of their environment over a large range of local galaxy density.  相似文献   

15.
We use a large suite of carefully controlled full hydrodynamic simulations to study the ram pressure stripping of the hot gaseous haloes of galaxies as they fall into massive groups and clusters. The sensitivity of the results to the orbit, total galaxy mass, and galaxy structural properties is explored. For typical structural and orbital parameters, we find that ∼30 per cent of the initial hot galactic halo gas can remain in place after 10 Gyr. We propose a physically simple analytic model that describes the stripping seen in the simulations remarkably well. The model is analogous to the original formulation of Gunn & Gott, except that it is appropriate for the case of a spherical (hot) gas distribution (as opposed to a face-on cold disc) and takes into account that stripping is not instantaneous but occurs on a characteristic time-scale. The model reproduces the results of the simulations to within ≈10 per cent at almost all times for all the orbits, mass ratios, and galaxy structural properties we have explored. The one exception involves unlikely systems where the orbit of the galaxy is highly non-radial and its mass exceeds about 10 per cent of the group or cluster into which it is falling (in which case the model underpredicts the stripping following pericentric passage). The proposed model has several interesting applications, including modelling the ram pressure stripping of both observed and cosmologically simulated galaxies and as a way to improve present semi-analytic models of galaxy formation. One immediate consequence is that the colours and morphologies of satellite galaxies in groups and clusters will differ significantly from those predicted with the standard assumption of complete stripping of the hot coronae.  相似文献   

16.
This paper argues that the Milky Way galaxy is probably the largest member of the Local Group. The evidence comes from estimates of the total mass of the Andromeda galaxy (M31) derived from the three-dimensional positions and radial velocities of its satellite galaxies, as well as the projected positions and radial velocities of its distant globular clusters and planetary nebulae. The available data set comprises 10 satellite galaxies, 17 distant globular clusters and nine halo planetary nebulae with radial velocities. We find that the halo of Andromeda has a mass of together with a scalelength of 90 kpc and a predominantly isotropic velocity distribution. For comparison, our earlier estimate for the Milky Way halo is Although the error bars are admittedly large, this suggests that the total mass of M31 is probably less than that of the Milky Way . We verify the robustness of our results to changes in the modelling assumptions and to errors caused by the small size and incompleteness of the data set.
Our surprising claim can be checked in several ways in the near future. The numbers of satellite galaxies, planetary nebulae and globular clusters with radial velocities can be increased by ground-based spectroscopy, while the proper motions of the companion galaxies and the unresolved cores of the globular clusters can be measured using the astrometric satellites Space Interferometry Mission ( SIM ) and Global Astrometric Interferometer for Astrophysics ( GAIA ). Using 100 globular clusters at projected radii 20 R 50 kpc with both radial velocities and proper motions, it will be possible to estimate the mass within 50 kpc to an accuracy of 20 per cent. Measuring the proper motions of the companion galaxies with SIM and GAIA will reduce the uncertainty in the total mass caused by the small size of the data set to 22 per cent.  相似文献   

17.
We examine the accretion and merger histories of central and satellite galaxies in a smoothed particle hydrodynamics (SPH) cosmological simulation that resolves galaxies down to  7 × 109 M  . Most friends-of-friends haloes in the simulation have a distinct central galaxy, typically 2–5 times more massive than the most massive satellite. As expected, satellites have systematically higher assembly redshifts than central galaxies of the same baryonic mass, and satellites in more massive haloes form earlier. However, contrary to the simplest expectations, satellite galaxies continue to accrete gas and convert it to stars; the gas accretion declines steadily over a period of 0.5–1 Gyr after the satellite halo merges with a larger parent halo. Satellites in a cluster mass halo eventually begin to lose baryonic mass. Typically, satellites in our simulation are 0.1–0.2 mag bluer than in models that assume no gas accretion on to satellites after a halo merger. Since   z = 1  , 27 per cent of central galaxies (above  3 × 1010 M  ) and 22 per cent of present-day satellite galaxies have merged with a smaller system above a 1:4 mass ratio; about half of the satellite mergers occurred after the galaxy became a satellite and half before. In effect, satellite galaxies can remain 'central' objects of halo substructures, with continuing accretion and mergers, making the transition in assembly histories and physical properties a gradual one. Implementing such a gradual transformation in semi-analytic models would improve their agreement with observed colour distributions of satellite galaxies in groups and with the observed colour dependence of galaxy clustering.  相似文献   

18.
Using the Sloan Digital Sky Survey Data Release 4 group catalogue of Yang et al., we investigate sizes, concentrations, colour gradients and surface brightness profiles of central and satellite galaxies. We compare central and satellite galaxies at fixed stellar mass, in order to disentangle environmental from stellar mass dependencies. Early- and late-type galaxies are defined according to concentration. We find that at fixed stellar mass, late-type satellite galaxies have smaller radii and larger concentrations than late-type central galaxies. No such differences are found for early-type galaxies. We have also constructed surface brightness and colour profiles for the central and satellite galaxies in our sample. We find that late-type satellite galaxies have a lower surface brightness and redder colours than late-type central galaxies. We show that all observed differences between satellite and central galaxies can be explained by a simple fading model, in which the star formation in the disc decreases over time-scales of 2–3 Gyr after a galaxy becomes a satellite. Processes that induce strong morphological changes (e.g. harassment) and processes that strip the galaxy of its entire interstellar medium need not to be invoked in order to explain the environmental dependencies we find.  相似文献   

19.
We investigate the importance of interactions between dark matter substructures for the mass loss they suffer whilst orbiting within a sample of high-resolution galaxy cluster mass cold dark matter (CDM) haloes formed in cosmological N -body simulations. We have defined a quantitative measure that gauges the degree to which interactions are responsible for mass loss from substructures. This measure indicates that interactions are more prominent in younger systems when compared to older more relaxed systems. We show that this is due to the increased number of encounters a satellite experiences and a higher mass fraction in satellites. This is in spite of the uniformity in the distributions of relative distances and velocities of encounters between substructures within the different host systems in our sample.
Using a simple model to relate the net force felt by a single satellite to the mass loss it suffers, we show that interactions with other satellites account for ∼30 per cent of the total mass loss experienced over its lifetime. The relation between the age of the host and the importance of interactions increases the scatter about this mean value from ∼25 per cent for the oldest to ∼45 per cent for the youngest system we have studied. We conclude that satellite interactions play a vital role in the evolution of substructure in dark matter haloes and that a significant fraction of the tidally stripped material can be attributed to these interactions.  相似文献   

20.
Galaxies are believed to be in one-to-one correspondence with simulated dark matter subhaloes. We use high-resolution N -body simulations of cosmological volumes to calculate the statistical properties of subhalo (galaxy) major mergers at high redshift ( z = 0.6–5). We measure the evolution of the galaxy merger rate, finding that it is much shallower than the merger rate of dark matter host haloes at   z > 2.5  , but roughly parallels that of haloes at   z < 1.6  . We also track the detailed merger histories of individual galaxies and measure the likelihood of multiple mergers per halo or subhalo. We examine satellite merger statistics in detail: 15–35 per cent of all recently merged galaxies are satellites, and satellites are twice as likely as centrals to have had a recent major merger. Finally, we show how the differing evolution of the merger rates of haloes and galaxies leads to the evolution of the average satellite occupation per halo, noting that for a fixed halo mass, the satellite halo occupation peaks at   z ∼ 2.5  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号