首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thirty-six new and previously published radiocarbon dates constrain the relative sea-level history of Arviat on the west coast of Hudson Bay. As a result of glacial isostatic adjustment (GIA) following deglaciation, sea level fell rapidly from a high-stand of nearly 170 m elevation just after 8000 cal yr BP to 60 m elevation by the mid Holocene (~ 5200 cal yr BP). The rate of sea-level fall decreased in the mid and late Holocene, with sea level falling 30 m since 3000 cal yr BP. Several late Holocene sea-level measurements are interpreted to originate from the upper end of the tidal range and place tight constraints on sea level. A preliminary measurement of present-day vertical land motion obtained by repeat Global Positioning System (GPS) occupations indicates ongoing crustal uplift at Arviat of 9.3 ± 1.5 mm/yr, in close agreement with the crustal uplift rate inferred from the inferred sea-level curve. Predictions of numerical GIA models indicate that the new sea-level curve is best fit by a Laurentide Ice Sheet reconstruction with a last glacial maximum peak thickness of ~ 3.4 km. This is a 30–35% thickness reduction of the ICE-5G ice-sheet history west of Hudson Bay.  相似文献   

2.
Recognition of positions of glacial lakes along the margin of continental ice sheets is critical in reconstructing ice configuration during deglaciation. Advances in remote sensing technology (e.g. LiDAR) have enabled the generation of accurate digital‐elevation models (DEMs) that reveal unprecedented geomorphic detail. Combined with geographical information systems, these tools have considerably advanced the mapping and correlation of geomorphic features such as relict shorelines. Shorelines of glacial Lake Peace (GLP) developed between the Laurentide and Cordilleran ice sheets in northeastern British Columbia and northwestern Alberta. Shoreline mapping from high resolution DEMs produced more than 55 500 elevation data points from 3231 shorelines, enabling the identification of four major phases of GLP: Phase I (altitude 960–990 m a.s.l.); Phase II (890–915 m a.s.l.); Phase III (810–865 m a.s.l.); and Phase IV (724–733 m a.s.l.). The timing of Phase II of GLP is estimated by two optical ages of <16.0±2.5 and 14.2±0.5 ka BP. Extensive mapping of the shorelines allows for measuring of glacial isostatic adjustment as ice retreated. Shorelines currently dip to the northeast at around 0.4–0.5 m km?1. This slope reflects the asynchronous retreat of the Cordilleran (CIS) and Laurentide (LIS) ice sheets. The relative uplift in the southwest of the study area within the Rocky Mountains and foothills suggests that the Late Wisconsinan (MIS 2) CIS persisted in the foothill after the LIS lost mass and retreated, or that the Late Wisconsinan CIS was very thick and caused deep crustal loading, which resulted in more uplift in the southwest before reaching equilibrium during, or shortly after deglaciation.  相似文献   

3.
Forty-eight new and previously published radiocarbon ages constrain deglacial and postglacial sea levels on southern Vancouver Island, British Columbia. Sea level fell rapidly from its high stand of about +75 m elevation just before 14 000 cal BP (12 000 radiocarbon yrs BP) to below the present shoreline by 13 200 cal BP (11 400 radiocarbon years BP). The sea fell below its present level 1000 years later in the central Strait of Georgia and 2000 years later in the northern Strait of Georgia, reflecting regional differences in ice sheet retreat and downwasting. Direct observations only constrain the low stand to be below ?11 m and above ?40 m. Analysis of the crustal isostatic depression with equations utilizing exponential decay functions appropriate to the Cascadia subduction zone, however, places the low stand at ?30 ± 5 m at about 11 200 cal BP (9800 BP). The inferred low stand for southern Vancouver Island, when compared to the sea-level curve previously derived for the central Strait of Georgia to the northwest, generates differential isostatic depression that is consistent with the expected crustal response between the two regions. Morphologic and sub-bottom features previously interpreted to indicate a low stand of ?50 to ?65 m are re-evaluated and found to be consistent with a low stand of ?30 ± 5 m. Submarine banks in eastern Juan de Fuca Strait were emergent at the time of the low stand, but marine passages persisted between southern Vancouver Island and the mainland. The crustal uplift presently occurring in response to the Late Pleistocene collapse of the southwestern sector of the Cordilleran Ice Sheet amounts to about 0.1 mm/yr. The small glacial isostatic adjustment rate is a consequence of low-viscosity mantle in this tectonically active region.  相似文献   

4.
A fully integrated ice‐sheet and glacio‐isostatic numerical model was run in order to investigate the crustal response to ice loading during the Late Weichselian glaciation of the Barents Sea. The model was used to examine the hypothesis that relative reductions in water depth, caused by glacio‐isostatic uplift, may have aided ice growth from Scandinavia and High Arctic island archipelagos into the Barents Sea during the last glacial. Two experiments were designed in which the bedrock response to ice loading was examined: (i) complete and rapid glaciation of the Barents Sea when iceberg calving is curtailed except at the continental margin, and (ii) staged growth of ice in which ice sheets are allowed to ground at different water depths. Model results predict that glacially generated isostatic uplift, caused by an isostatic forebulge from loads on Scandinavia, Svalbard and other island archipelagos, affected the central Barents Sea during the early phase of glaciation. Isostatic uplift, combined with global sea‐level fall, is predicted to have reduced sea level in parts of the central Barents Sea by up to 200 m. This reduction would have been sufficient to raise the sea floor of the Central Bank into a subaerial position. Such sea‐floor emergence is conducive to the initiation of grounded ice growth in the central Barents Sea. The model indicates that, prior to its glaciation, the depth of the Central Deep would have been reduced from around 400 m to 200 m. Such uplift aided the migration of grounded ice from the central Barents Sea and Scandinavia into the Central Deep. We conclude that ice loading over Scandinavia and Arctic island archipelagos during the first stages of the Late Weichselian may have caused uplift within the central Barents Sea and aided the growth of ice across the entire Barents Shelf. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Geological structures suggest that the Fennoscandian Shield was subjected to a higher seismicity at the end of the last glaciation than today. This article demonstrates the use of varved clay chronology for dating paleoseismic events. It is argued that the deposited annually layered glacial varves were sensitive to past ground movements. In the Stockholm area, the Erstavik varved clay chronology suggests four paleoseismic events: a first (I) dating from varve year 10,473 to 10,468 BP; a second (II) 10,451 to 10,445 BP; a third (III) 10,429 to 10,425 BP; and a fourth (IV) 10,409 to 10,404 BP. In De Geer's ‘old' (1940) chronology the first (I) dating corresponds with −1117 to −1112, the second (II) with −1095 to −1089, the third (III) with −1073 to −1069, and the fourth (IV) with −1053 to −1048. The most pronounced event was the one at around varve year 10,429 BP (varve −1073 in De Geer's ‘old' chronology). The recurrence time of about 20 years suggests a totally different seismic regime at the time of deglaciation than what exists today. It coincided with the period of maximum isostatic uplift. The complexity of the varved clay response to seismic events is also discussed.  相似文献   

6.
Proglacial lakes, formed during retreat of the Laurentide ice sheet, evolved quickly as outlets became ice-free and the earth deformed through glacial isostatic adjustment. With high-resolution digital elevation models (DEMs) and GIS methods, it is possible to reconstruct the evolution of surface hydrology. When a DEM deforms through time as predicted by our model of viscoelastic earth relaxation, the entire surface hydrologic system with its lakes, outlets, shorelines and rivers also evolves without requiring assumptions of outlet position. The method is applied to proglacial Lake Oshkosh in Wisconsin (13,600 to 12,900 cal yr BP). Comparison of predicted to observed shoreline tilt indicates the ice sheet was about 400 m thick over the Great Lakes region. During ice sheet recession, each of the five outlets are predicted to uplift more than 100 m and then subside approximately 30 m. At its maximum extent, Lake Oshkosh covered 6600 km2 with a volume of 111 km3. Using the Hydrologic Engineering Center-River Analysis System model, flow velocities during glacial outburst floods up to 9 m/s and peak discharge of 140,000 m3/s are predicted, which could drain 33.5 km3 of lake water in 10 days and transport boulders up to 3 m in diameter.  相似文献   

7.
We use the radiocarbon ages of marine shells and terrestrial vegetation to reconstruct relative sea level (RSL) history in northern Southeast Alaska. RSL fell below its present level around 13,900 cal yr BP, suggesting regional deglaciation was complete by then. RSL stayed at least several meters below modern levels until the mid-Holocene, when it began a fluctuating rise that probably tracked isostatic depression and rebound caused by varying ice loads in nearby Glacier Bay. This fluctuating RSL rise likely reflects the episodic but progressive advance of ice in Glacier Bay that started around 6000 cal yr BP. After that time, RSL low stands probably signaled minor episodes of glacier retreat/thinning that triggered isostatic rebound and land uplift. Progressive, down-fjord advance of the Glacier Bay glacier during the late Holocene is consistent with the main driver of this glacial system being the dynamics of its terminus rather than climate change directly. Only after the glacier reached an exposed position protruding into Icy Strait ca. AD 1750, did its terminus succumb - a century before the climate changes that marked the end of the Little Ice Age - to the catastrophic retreat that triggered the rapid isostatic rebound and RSL fall occurring today in Icy Strait.  相似文献   

8.
The creation of the huge fans observed in the western Barents Sea margin can only be explained by assuming extremely high glacial erosion rates in the Barents Sea area. Glacial processes capable of producing such high erosion rates have been proposed, but require the largest part of the preglacial Barents Sea to be subaerial. To investigate the validity of these proposals we have attempted to reconstruct the western preglacial Barents Sea. Our approach was to combine erosion maps based on prepublished data into a single mean valued erosion map covering the whole western Barents Sea and consequently use it together with a simple Airy isostatic model to obtain a first rough estimate of the preglacial topography and bathymetry of the western Barents Sea margin. The mean valued erosion map presented herein is in good volumetric agreement with the sediments deposited in the western Barents Sea margin areas, and as a direct consequence of the averaging procedures employed in its construction we can safely assume that it is the most reliable erosion map based on the available information. By comparing the preglacial sequences with the glacial sequences in the fans we have concluded that 1/2 to 2/3 of the total Cenozoic erosion was glacial in origin and therefore a rough reconstruction of the preglacial relief of the western Barents Sea could be obtained. The results show a subaerial preglacial Barents Sea. Thus, during interglacials and interstadials the area may have been partly glaciated and intensively eroded up to 1 mm/y, while during relatively brief periods of peak glaciation with grounded ice extending to the shelf edge, sediments have been evacuated and deposited at the margins at high rates. The interplay between erosion and uplift represents a typical chicken and egg problem; initial uplift is followed by intensive glacial erosion, compensated by isostatic uplift, which in turn leads to the maintenance of an elevated, and glaciated, terrain. The information we have on the initial tectonic uplift suggests that the most likely mechanism to cause an uplift of the dimensions and magnitude of the one observed in the Barents Sea is a thermal mechanism.  相似文献   

9.
This paper presents the results of an investigation into Holocene relative sea-level (RSL) change, isostatic rebound and ice sheet dynamics in Disko Bugt, West Greenland. Data collected from nine isolation basins on Arveprinsen Ejland, east Disko Bugt, show that mean sea level fell continuously from ca. 70 m at 9.9 ka cal. yr BP (8.9 ka 14C yr BP) to reach a minimum of ca. −5 m at 2.8 ka cal. yr BP (2.5 ka 14C yr BP), before rising to the present day. A west–east gradient in isostatic uplift across Disko Bugt is confirmed, with reduced rebound observed in east Disko Bugt. However, RSL differences (up to 20 m at 7.8 ka to 6.8 ka cal. yr BP (7 ka to 6 ka 14C yr BP)) also exist within east Disko Bugt, suggesting a significant north–south component to the area’s isostatic history. The observed magnitude and timing of late Holocene RSL rise is not compatible with regional forebulge collapse. Instead, RSL rise began first in the eastern part of the bay, as might be expected under a scenario of crustal subsidence caused by neoglacial ice sheet readvance. The results of this study demonstrate the potential of isolation basin data for local and regional RSL studies in Greenland, and the importance of avoiding data compilations from areas where the isobase orientation is uncertain. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Glacial rebound and relative sea levels in Europe from tide-gauge records   总被引:1,自引:0,他引:1  
K.O. Emery  D.G. Aubrey 《Tectonophysics》1985,120(3-4):239-255
Relative sea levels recorded by tide gauges during the past century in northern Europe are dominated by isostatic readjustment of the land following the latest deglaciation of Scandinavia and Scotland. Maximum relative uplift of the land is centered near the northern Gulf of Bothnia (at a rate of 6–7 mm/yr), with a smaller secondary maximum over Scotland (also at a rate of 6–7 mm/yr). Although there probably is a relaxing peripheral bulge surrounding the regions of maximum uplift, such a former bulge is poorly defined by coastal tide gauges; in the North Sea evidence for sinking of a former peripheral bulge of glacial origin is complicated by post-Carboniferous basin deepening with sediment loading and possible rejuvenation associated with glaciation. Other data (gravity, radiocarbon, geomorphology) support the interpretation that glacial isostasy controls the structure of relative sea-level change. Included in this pattern of relative rise of land is a eustatic signal that biases the estimates of glacial rebound. Such a eustatic signal could not be isolated from the isostatic signal using the present data, but glacial isostasy clearly is a major control for relative sea levels of the region.

Absence of significant higher frequency (2–50 yr) cycles in mean annual sea levels of northern Europe reflects the complex hydrologic/oceanographic forces to which sea levels must respond. Whereas other coastal regions show significant higher frequency peaks in the energy spectra of relative sea levels, the many marginal seas in northern Europe preclude a clear relation between hydrologic/oceanographic forcing and relative sea levels, although this relation must exist on a more local scale.  相似文献   


11.
Rundgren, M., Ingólfsson, Ó., Björck, S., Jiang, H. & Haflioason, H. 1997 (September): Dynamic sea-level change during the last deglaciation of northern Iceland. Boreas , Vol. 26, pp. 201–215. Oslo. ISSN 0300–9483.
A detailed reconstruction of deglacial relative sea-level changes at the northern coast of Iceland, based on the litho- and biostratigraphy of lake basins, indicates an overall fall in relative sea level of about 45 m between 11300 and 9100 BP, corresponding to an isostatic rebound of 77 m. The overall regression was interrupted by two minor transgressions during the late Younger Dryas and in early Preboreal, and these were probably caused by a combination of expansions of local ice caps and readvances of the Icelandic inland ice-sheet margin. Maximum absolute uplift rates are recorded during the regressional phase between the two transgressions (10000–9850 BP), with a mean value of c . 15 cm 14C yr-1 or 11–12 cm cal. yr-1. Mean absolute uplift during the regressional phase following the second transgression (9700–9100 BP) was around 6 cm 14C yr-1, corresponding to c . 3 cm cal. yr-1, and relative sea level dropped below present-day sea level at 9000 BP.  相似文献   

12.
Bracketing ages on marine—freshwater transitions in isolation basins extending from sea level to 100 m elevation on Lasqueti Island, and data from shallow marine cores and outcrops on eastern Vancouver Island, constrain late Pleistocene and Holocene sea-level change in the central Strait of Georgia. Relative sea level fell from 150 m elevation to about —15 m from 14000 cal. yr BP to 11 500 cal. yr BP. Basins at higher elevations exhibit abrupt changes in diatom assemblages at the marine-freshwater transition. At lower elevations an intervening brackish phase suggests slower rates of uplift. Relative sea level rose to about +1 m about 9000 cal. yr BP to 8500 cal. yr BP, and then slowly fell to the modern datum. The mean rate of glacio-isostatic rebound in the first millennium after deglaciation was about 0.11 in a -1, similar to the peak rate at the centres of the former Laurentide and Fennoscandian ice complexes. The latter feature smooth, exponential-style declines in sea level up to the present day, whereas in the study area the uplift rate dropped to less than one-tenth of its initial value in only about 2500 years. Slower, more deeply seated isostatic recovery generated residual uplift rates of <0.01 m a-1 in the early Holocene after the late-Pleistocene wasting of the Cordilleran ice sheet.  相似文献   

13.
The Late Quaternary ( c . 130,000–10,000 BP) glacial history of the central west coast of Jameson Land, East Greenland, is reconstructed through glacial stratigraphical studies. Seven major sedimentary units are described and defined. They represent two interglacial events (where one is the Holocene). one interstadial event and two glacial events. The older interglacial event comprises marine and fluvial sediments, and is correlated to the Langelandselv interglacial, corresponding to oxygen isotope sub-stage 5e. It is followed by an Early Weichselian major glaciation during the Aucellaelv stade, and subsequently by an Early Weichselian interstadial marine and deltaic event (the Hugin Sø interstade). Sediments relating to the Middle Weichselian have not been recognized in the area. The Hugin Sø interstade deposits have been overrun by a Late Weichselian ice advance, during the Flakkerhuk stade, when the glacier, which probably was a thin, low gradient fjord glacier in Scoresby Sund, draped older sediments and landforms with a thin till. Subsequent to the final deglaciation, some time before 10,000BP, the sea reached the marine limit around 70 m a.s.l., and early Holocene marine, fluvial and littoral sediments were deposited in the coastal areas.  相似文献   

14.
Deposits from a Middle Weichselian transgression, the Mezen Transgression, are found in coastal sections in the Mezen and Chyorskaya Bays, northwestern Russia. The marine event is bracketed between two ice advances from the Barents and Kara Sea shelves and dated by Optically Stimulated Luminescence (OSL) to around 60 kyr BP. The deposits represent a shallowing upward succession from offshore marine to intertidal coastal environments. Relative sea-level maximum was at least 40 m above the present owing to significant isostatic subsidence. The sedimentary record is dominated by shallow-marine, subtidal deposits bounded below by an erosion surface representing a downward shift in facies and above by subaerial exposure. The succession reflects deposition during forced regression due to isostatic uplift. A rapidly aggrading succession of subtidal deposits at one site suggests a relative sea-level rise or stillstand superimposed on the isostatically controlled sea-level fall. The rhythmic tidal deposits allow identification of semi-monthly to yearly cycles, providing an estimate of the sedimentation rate of 39 cm/year. This implies a high sediment yield and a rapid relative sea-level rise. We correlate this signal with the rapid eustatic sea-level rise at the end of OIS 4 known from deep-sea records.  相似文献   

15.
《Quaternary Science Reviews》2005,24(14-15):1673-1690
Sedimentary sequences deposited by the decaying marine margin of the British–Irish Ice Sheet (BIIS) record isostatic depression and successive ice sheet retreat towards centres of ice dispersion. Radiocarbon dating by accelerator mass spectrometry (AMS) of in situ marine microfaunas that are commonly associated with these sequences constrain the timing of glacial and sea level fluctuations during the last deglaciation, enabling us to evaluate the dynamics of the BIIS and its response to North Atlantic climate change. Here we use our radiocarbon-dated stratigraphy to define six major glacial and sea level events since the Last Glacial Maximum. (1) Initial deglaciation may have occurred ⩾18.3 kyr 14C BP along the northwestern Irish coast, in agreement with a deglacial age of ∼22 36Cl kyr BP for southwestern Ireland. Ice retreated to inland centres and areas of transverse moraine began to form across the north Irish lowlands. (2) Channels cut into glaciomarine deglacial sediments along the western Irish Sea coast are graded to below present sea level, identifying a fall of relative sea level (RSL) in response to isostatic emergence of the coast. (3) Marine mud that rapidly infilled these channels records an abrupt rise in global sea level of 10–15 m ∼16.7 14C kyr BP that flooded the Irish Sea coast and may have triggered deglaciation of a marine-based margin in Donegal Bay. (4) Intertidal boulder pavements in Dundalk Bay indicate that RSL ∼15.0 14C kyr BP was similar to present. (5) A major readvance of all sectors of the BIIS occurred between 14 and 15 kyr 14C BP which overprinted subglacial transverse moraines and delivered a substantial sediment flux to tidewater ice sheet margins. This event, the Killard Point Stadial, indicates that the BIIS participated in Heinrich event 1. (6) Subsequent deposition of marine muds on drumlins 12.7 14C kyr BP indicates isostatic depression and attendant high RSL resulting from the Killard Point readvance. These events identify a dynamic BIIS during the last deglaciation, as well as significant changes in RSL that reflect a combination of isostatic loading and eustatic changes in global sea level.  相似文献   

16.
Sediment cores from seven basins in two regions, the SÖdertÖrn peninsula and central Närke in southern central Sweden, were subject to diatom analysis and radiocarbon dating of the isolation events. In the former area, the compiled shore-displacement curve covers the time period from the deglaciation to 5700 BP. The latter area is covered from 8200 to 6500 BP. The chronology is based on combined macrofossil and bulk ages with an acknowledged correction. The most elevated sedimentary basin on the SÖdertÖrn peninsula was isolated at the end of the brackish water phase of the Yoldia Sea. During the Ancylus Lake stage of the Baltic, one minor ingression is recorded in the same area. The end of the Ancylus Lake is dated to c. 8200 BP on the SÖdertÖrn peninsula and to c. 8100 BP in central Närke. There was an interval of c. 1000 14C years when brackish water prevailed in central eastern Sweden. Mastogloia is a typical diatom genus for that period. The onset of the brackish-marine Litorina Sea is dated to c. 7000 BP in central Närke. The amplitude for the early Litorina Sea transgression (L 1) did not exceed 2 m. L 1 is recorded 2–3 m higher in central Närke compared to the SÖdertÖrn peninsula, i.e. the former area has experienced a more intense isostatic uplift since 6500 BP.  相似文献   

17.
Direct evidence for Late Weichselian grounded glacier ice over extensive areas of the Barents Sea is based largely on indirect observations, including elevations of old shorelines on Svalbard and arguments of isostatic rebound. Such isostatic models are discussed here for two cases representing maximum and minimum ice-sheet reconstructions. In the former model the ice extends over the Kara Sea, whereas in the latter the ice is limited to the Barents Sea and island archipelagos. Comparisons of predictions with observations from a number of areas, including Spitsbergen, Nordaustlandet, Edgeøya, Kong Karls Land, Franz Josef Land, Novaya Zemlya and Finnmark, support arguments for the existence of a large ice sheet over the region at the time of the last glacial maximum. This ice sheet is likely to have had the following characteristics, conclusions that are independent of assumptions made about the Earth's rheological parameters. (i) The maximum thickness of this ice was about 1500–2000 m with the centre of the load occurring to the south and east of Kong Karls Land. (ii) The ice sheet extended out to the western edge of the continental shelf and its maximum thickness over western Spitsbergen was about 800 m. (iii) To the north of Svalberg and Frans Josef Land the ice sheet extended out to the northern shelf edge. (iv) Retreat of the grounded ice across the southern Barents Sea occurred relatively early such that this region was largely ice free by about 15,000 BP. (v) By 12,000 BP the grounded ice had retreated to the northern archipelagos and was largely gone by 10,000 BP. (vi) The ice sheet may have extended to the Kara Sea but ice thicknesses were only a fraction of those proposed in those reconstructions where the maximum ice thickness is centered on Novaya Zemlya. Models for the palaeobathymetry for the Barents Sea at the time of the last glacial maximum indicate that large parts of the Barents Sea were either very shallow or above sea level, providing the opportunity for ice growth on the emerged plateaux, as well as on the islands, but only towards the end of the period of Fennoscandian ice sheet build-up.  相似文献   

18.
The history of the recording and interpretation of the Fennoscandian uplift illustrates the main history of Earth sciences because the results obtained had (and still have) immediate impact of the interpretation of a large number of fundamental problems in Earth sciences. Thanks to a paper of De Geer in 1888, the glacial isostatic origin was established. Fennoscandia became the classic area of glacial isostasy, and its sea level records were used for geophysical calculations of the properties and dynamics of the mantle and crust. The varve dated sea level curve of Lidén (1938) from the center of uplift provided an exceptionally well dated record. With the radiocarbon method, the records of shorelines and shorelevel displacement curves were drastically improved providing a totally new basis for the understanding of the geodynamics of the Fennoscandian uplift and for the geophysical interpretation of the data obtained. This is especially true in combination with the repeated levelling data obtained during the last decades for Finland and Sweden.The Late Cenozoic long term movements of the Fennoscandian Shield are characterized by a considerable subsidence. The postglacial uplift of Fennoscandia is complex (an exponential and a linear factor) and caused by two different mechanisms. The total absolute movement in relation to the last glaciation is an elliptic uplift cone of 830 m height surrounded by a subsidence through of 170 m height. The mass in the uplift cone and in the subsidence through is as 1:1 with a volume 0.7 × 106km3. The disappearence/appearance of mass give evidence of a mass transfer in a low viscosity asthenosphere. The properties and conditions of the asthenosphere are found to be: 1–10 × 1020 Poises in viscosity, 3 × 10–14 – 3 × 10–16 sec–1 in strain rates, 0.7% of the melting temperature, 3 mm in grain size, and 5–0.4 bar in stress. The main isostatic uplift (the exponential factor) originates from an asthenospheric dislocation glide process which in early-mid Holocene time changed over into a diffusion creep process. The present linear uplift factor (identified through the last 8000 yrs) seems to originate from mesospheric motions under the following approximate conditions: 0.6% of the melting temperature, 2 × 1022 Poises in viscosity, 3 × 10–16 sec–1 in strain rates and 8 bars in stress. Uplift irregularities and neotectonism are frequently established and often reveal an old geodynamic inheritance (e.g. the Pre-Baikalian/Gothian bedrock seam of high geodynamic activity). The peak rates of glacial isostasy are associated with intensive fracturing, faulting and seismic activity.  相似文献   

19.
Facies analyses of Pleistocene deposits from southern coastal Tanzania (Lindi District) document that sediments formed in a wetland evolving on a coastal terrace in the Lindi Fracture Zone foreland. The exposed succession shows a marked sedimentary change from tidal to terrestrial facies. 14C analyses on gastropod shells indicate the emergence of the Lindi coast at ∼ 44 14C ka BP. Emergence and subsequent elevation of terraces to 21 m above present-day sea level was linked to the falling eustatic sea level prior to the last glacial maximum, and to a periodic elevation due to extensional tectonic episodes in the eastern branch of the East African Rift System (EARS). Since ∼ 44 14C ka BP tectonic uplift at the coast was 80-110 m, comparable to that in the extreme uplift areas of the EARS.  相似文献   

20.
Randomisation tests on boulder weathering data distinguish moraines of four different ages in the Rongbuk Valley, all deposited by valley glaciers flowing northward into Tibet from the Himalaya. Lichenometry utilising subgenus Rhizocarpon distinguishes two groups of moraines, those <100 yr old and those older than several thousand years. The degree of soil development has a similar, limited utility in relative-age dating these moraines. The radiocarbon ages of calcium carbonate coatings in the lower horizons of moraine soils provide minimum-limiting ages of 1900 yr BP for the penultimate advance of the Rongbuk glacier (Samdopo moraine) and 9500 yr BP for the Rongbuk moraine, the moraine suggested by previous workers to represent the last glacial maximum. Equilibrium-line depression associated with the Rongbuk moraine probably was slight, <200 m. The small magnitude of this depression relative to glaciers in other mountain ranges could relate to a weakening of the monsoon in full glacial times, recent tectonic uplift, and/or to the insensitivity of these high-altitude glaciers to lowering temperatures in the rain shadow of Mount Everest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号