首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New insight into the crust and upper mantle structure under Alaska   总被引:1,自引:0,他引:1  
To better understand the seismic structure of the subducting Pacific plate under Alaska, we determined the three-dimensional P-wave velocity structure to a depth of approximately 200 km beneath Alaska using 438,146 P-wave arrival times from 10,900 earthquakes. In this study an irregular grid parameterization was adopted to express the velocity structure under Alaska. The number of grid nodes increases from north to south in the study area so that the spacing between grid nodes is approximately the same in the longitude direction. Our results suggest that the subducting Pacific slab under Alaska can be divided into three different parts based on its geometry and velocity structure. The western part has features similar to those in other subduction zones. In the central part a thick low-velocity zone is imaged at the top of the subducting Pacific slab beneath north of the Kenai Peninsula, which is believed to be most likely the oceanic crust plus an overlying serpentinized zone and the coupled Yakutat terrane subducted with the Pacific slab. In the eastern part, significant high-velocity anomalies are visible to 60–90 km depth, suggesting that the Pacific slab has only subducted down to that depth.  相似文献   

2.
Seismic phase conversions provide important constraints on the layered nature of subduction zone structures. Recordings from digital stations in North Island, New Zealand, have been examined for converted ScS ‐to‐ p ( ScSp ) arrivals from deep (>150 km) Tonga–Kermadec earthquakes to image layering in the underlying Hikurangi subduction zone. Consistent P ‐wave energy prior to ScS has been identified from stations in eastern and southern North Island, where the subducted plate interface is at a depth of between 15 and 30 km. Two ScS precursors are observed. Ray tracing indicates that the initial precursor ( ScSp 1) corresponds to conversion from the base of an 11–14 km thick subducting Pacific crust. The second precursor is interpreted as a conversion from the top of the subducting plate. The amplitude ratio, ScSp 1: ScS , increases from 0.10 to 0.19 from northern to southern North Island. This is within the range expected from a simple first‐order velocity discontinuity at an oceanic Moho. A 1–2 km thick layer of low‐velocity sediment at the top of the subducting plate is required to explain the remaining ScSp waveform. Our results imply that the abnormally thick Hikurangi–Chatham Plateau has been subducting beneath New Zealand for at least 2.9 Myr, thus explaining the high uplift rates observed across eastern North Island.  相似文献   

3.
We use data from the Chile Argentina Geophysical Experiment (CHARGE) broad-band seismic deployment to refine past observations of the geometry and deformation within the subducting slab in the South American subduction zone between 30°S and 36°S. This region contains a zone of flat slab subduction where the subducting Nazca Plate flattens at a depth of ∼100 km and extends ∼300 km eastward before continuing its descent into the mantle. We use a grid-search multiple-event earthquake relocation technique to relocate 1098 events within the subducting slab and generate contours of the Wadati-Benioff zone. These contours reflect slab geometries from previous studies of intermediate-depth seismicity in this region with some small but important deviations. Our hypocentres indicate that the shallowest portion of the flat slab is associated with the inferred location of the subducting Juan Fernández Ridge at 31°S and that the slab deepens both to the south and the north of this region. We have also determined first motion focal mechanisms for ∼180 of the slab earthquakes. The subhorizontal T -axis solutions for these events are almost entirely consistent with a slab pull interpretation, especially when compared to our newly inferred slab geometry. Deviations of T -axes from the direction of slab dip may be explained with a gap within the subducting slab below 150 km in the vicinity of the transition from flat to normal subducting geometry around 33°S.  相似文献   

4.
《Basin Research》2018,30(4):650-670
The Palaeogene Isparta Basin of southwestern Anatolia formed between two convergent arms of the Isparta Bend orocline of the Tauride orogen. The origin of this tightening orocline is hypothetically explained in plate‐tectonic terms. Basin sedimentation commenced on a down‐warped Mesozoic carbonate platform of a crustal block accreted at the end of Cretaceous to the southern margin of the Anatolian plate. The basin earliest deposits are Palaeocene reddish mudstones with a fossil‐barren condensed basal part and increasingly interspersed with thin calcarenitic turbidites towards the top. The supply of turbiditic sediment to the basin plain subsequently increased, as the upper‐bathyal basin plain became surrounded from both sides by a narrow littoral shelf with an advancing turbiditic slope ramp. A major forced regression occurred at the end of Bartonian, causing incision of subaerial to submarine valleys up 600 m deep, filled in with gravelly to sandy turbidites and debrisflow deposits during the subsequent rise of relative sea level. The half‐filled valleys were re‐incised due to a Rupelian forced regression and were fully filled with fluvio‐deltaic bayhead deposits during a final marine transgression that re‐established the basin‐margin biocalcarenitic shelf. The littoral environment then expanded across the shallowing basin, as the basin axial zone was up‐domed and eroded to bedrock level at the end of Oligocene and the basin was tectonically inverted in Miocene. The pattern of intra‐orocline foreland sedimentation documented by this case study provides tentative criteria for the recognition of synorogenic oroclines and for their distinction from post‐orogenic oroclines.  相似文献   

5.
We describe results of an active-source seismology experiment across the Chilean subduction zone at 38.2°S. The seismic sections clearly show the subducted Nazca plate with varying reflectivity. Below the coast the plate interface occurs at 25 km depth as the sharp lower boundary of a 2–5 km thick, highly reflective region, which we interpret as the subduction channel, that is, a zone of subducted material with a velocity gradient with respect to the upper and lower plate. Further downdip along the seismogenic coupling zone the reflectivity decreases in the area of the presumed 1960 Valdivia hypocentre. The plate interface itself can be traced further down to depths of 50–60 km below the Central Valley. We observe strong reflectivity at the plate interface as well as in the continental mantle wedge. The sections also show a segmented forearc crust in the overriding South American plate. Major features in the accretionary wedge, such as the Lanalhue fault zone, can be identified. At the eastern end of the profile a bright west-dipping reflector lies perpendicular to the plate interface and may be linked to the volcanic arc.  相似文献   

6.
Nontypical BIRPS on the margin of the northern North Sea: The SHET Survey   总被引:1,自引:0,他引:1  
Summary. Striking similarities in the reflectivity of the crust and upper mantle on BIRPS profiles has led to the development of the "typical BIRP", a model seismic section for the British continental lithosphere. The SHET survey, collected in the region of the Shetland Islands and the northern North Sea, fits the general pattern to a certain extent. Caledonian structures and Devonian or younger basins are imaged in the otherwise acoustically transparent upper crust. An unexpected and exciting feature imaged on SHET is a short wavelength structure on the Moho or abrupt Mono offset beneath the strike-slip Walls Boundary Fault. SHET differs markedly from the SWAT typical BIRP, however, by showing a poorly reflective lower crust. Only a narrow zone (∼1 s) at the base of the crust contains high-amplitude reflections. The SHET survey therefore highlights the wide variation in lower crustal reflectivity within the total BIRPS data set rather than the similarities.  相似文献   

7.
Summary. Multichannel seismic reflection sections recorded across Vancouver Island have revealed two extensive zones of deep seismic reflections that dip gently to the northeast, and a number of moderate northeasterly dipping reflections that can be traced to the surface where major faults are exposed. Based on an integrated interpretation of these data with information from gravity, heat flow, seismicity, seismic refraction, magnetotelluric and geological studies it is concluded that the lower zone of gently dipping reflections is due to underplated oceanic sediments and igneous rocks associated with the current subduction of the Juan de Fuca plate, and that the upper zone represents a similar sequence of accreted rocks associated with an earlier episode of subduction. The high density/high velocity material between the two reflection zones is either an underplated slab of oceanic lithosphere or an imbricated package of mafic rocks. Reprocessing of data from two of the seismic lines has produced a remarkable image of the terrane bounding Leech River fault, with its dip undulating from >60° near the surface to 20° at 3 km depth and ∼38° at 6 km depth.  相似文献   

8.
Summary. The crustal structure beneath the exposed terranes of southern Alaska has been explored using coincident seismic refraction and reflection profiling. A wide-angle reflector at 8–9 km depth, at the base of an inferred low-velocity zone, underlies the Peninsular and Chugach terranes, appears to truncate their boundary, and may represent a horizontal decollement beneath the terranes. The crust beneath the Chugach terrane is characterized by a series of north-dipping paired layers having low and high velocities that may represent subducted slices of oceanic crust and mantle. This layered series may continue northward under the Peninsular terrane. Earthquake locations in the Wrangell Benioff zone indicate that at least the upper two low-high velocity layer pairs are tectonically inactive and that they appear to have been accreted to the base of the continental crust. The refraction data suggest that the Contact fault between two similar terranes, the Chugach and Prince William terranes, is a deeply penetrating feature that separates lower crust (deeper than 10 km) with paired dipping reflectors, from crust without such reflectors.  相似文献   

9.
Signature of remnant slabs in the North Pacific from P-wave tomography   总被引:1,自引:0,他引:1  
A 3-D ray-tracing technique was used in a global tomographic inversion in order to obtain tomographic images of the North Pacific. The data reported by the Geophysical Survey of Russia (1955–1997) were used together with the catalogues of the International Seismological Center (1964–1991) and the US Geological Survey National Earthquake Information Center (1991–1998), and the recompiled catalogue was reprocessed. The final data set, used for following the inversion, contained 523 430 summary ray paths. The whole of the Earth's mantle was parametrized by cells of 2° × 2° and 19 layers. The large and sparse system of observation equations was solved using an iterative LSQR algorithm.
A subhorizontal high-velocity anomaly is revealed just above the 660 km discontinuity beneath the Aleutian subduction zone. This high-velocity feature is observed at latitudes of up to ~70°N and is interpreted as a remnant of the subducted Kula plate, which disappeared through ridge subduction at about 48 Ma. A further positive velocity perturbation feature can be identified beneath the Chukotka peninsula and Okhotsk Sea, extending from ~300 to ~660 km depth and then either extending further down to ~800 km (Chukotka) or deflecting along the 660 km discontinuity (Okhotsk Sea). This high-velocity anomaly is interpreted as a remnant slab of the Okhotsk plate accreted to Siberia at ~55 Ma.  相似文献   

10.
Summary. This paper concerns the calculation and analysis of admittance functions from large and uniform data sets of gravity and topography in four regions of the northern and western Pacific Ocean. The purpose is to separate and describe possible differences in isostatic compensation between several 'type' regions of oceanic crust: a mid-ocean ridge (Juan de Fuca), a mid-plate seamount chain (Hawaiian Ridge), fracture zone topography on old crust (north of Hawaii) and a marginal basin (Philippine Sea). Results suggest that there are significant differences in the degree to which long wavelength topography has been compensated which can be distinguished between regions. These differences are set in the perspective of three simple compensation mechanisms. Two of these consider local Airy models in which raised topography is compensated at depth either by crustal roots or low density mantle. A third considers the effects of an elastic plate of variable thickness supporting crustal variations. Conclusions are that: (a) a thick plate possibly in excess of 30 km supports the Hawaiian Ridge; (b) a much thinner plate of 5 to 15 km existed when the fracture zone topography was formed; (c) the Juan de Fuca Ridge is compensated either regionally by a plate 5 to 10 km thick or locally by sub-crustal low densities at depths of 15 to 20 km; and (d) the Philippine Sea shows no evidence for regional support: ridges are compensated locally by differences in crustal thickness whereas the basins are underlain by density variations at depths comparable to those of the much younger Juan de Fuca Ridge. The major difference between admittance functions for the Philippine Sea and comparably aged regions of the north Pacific Ocean adds further new evidence of possible evolutionary differences between it and normal ocean basins.  相似文献   

11.
Natural Gas Hydrate Stability in the East Coast Offshore-Canada   总被引:1,自引:0,他引:1  
The methane hydrate stability zone beneath the Canadian East Coast oceanic margin has developed to a depth of more than 600 meters beneath the deep water column in the area of the deep shelf and the slope. This zone is continuous spreading from the Labrador continental shelf in the north to the slope of the Nova Scotia shelf in the south. Gas hydrates within the methane hydrate stability zone are detected only in one situation, however, they are numerous in the deeper zone in which type II gas hydrates are present through the whole area at water depths as low as 100-200 m. Well-log indications of gas hydrate situated deeper than the base of the methane hydrate stability zone may be an indication of wetter, compositionally more complicated hydrates that probably are not of bacterial only origin. This could indicate a deep thermogenic source of gas in hydrates. The presence of hydrates in the upper 1000 m of sediments also can be considered as an indicator of deeper hydrocarbon sources.  相似文献   

12.
Summary. Relative motion across a boundary between the main Juan de Fuca plate and its northern extension, the Explorer plate, had earlier been suggested from sea-floor magnetic anomaly analysis and from earthquakes recorded on the western Canada land seismic network. The location of the boundary, called the Nootka fault zone, and the motion across it have been examined through seismic reflection profiles, accurate location of earthquakes with an array of ocean bottom seismometers and through analysis of magnetic, gravity and bathymetric data. The fault zone extends from a ridge-fault—fault triple point at the northern end of the Juan de Fuca ridge to a fault—trench—trench triple junction at the margin off north-central Vancouver Island. The active portion of the fault zone is about 20 km wide, and has produced extensive disturbance in the 0.5 to 1 km of overlying sediments. Magnetic anomaly analysis suggests present left-lateral strike slip motion of about 3 cm/yr, with convergence at the margin being more rapid to the south than to the north of the fault zone. Because of rapidly changing spreading parameters on the Explorer and Juan de Fuca ridges over the past 5 Myr the Nootka fault zone has had a very complex history.  相似文献   

13.
Summary. In 1985, 180 km of regional vibroseis profiles were acquired in the Carolinas and Georgia, southeastern United States, as part of the Appalachian Ultra-Deep Core Hole (ADCOH) Site Study. The data quality is excellent, with large-amplitude reflections from faults and crystalline rocks, lower Palaeozoic shelf strata and from within autochthonous Grenville basement. The profiles image the subsurface more clearly than other available data and allow the possibility of alternative interpretations of important elements of the tectonic framework of the southern Appalachians.
The major points in the interpretation are: 1) The Blue Ridge master decollement is at a depth of 2-3 km beneath the Blue Ridge. This thrust increases in dip just NW of the Brevard fault zone. 2) The Brevard fault zone appears to splay from the master decollement at 6 km (2.2 s) near Westminster, S.C., and defines the base of the crystalline Inner Piedmont allochthon. 3) Below the Blue Ridge thrust sheet are images of duplex and imbricate structures ("duplex tuning wedges") connected by other thrust faults that duplicate shelf strata to a thickness of 4–5 km. 4) Subhorizontal reflections from depths of 6 to 9 km may be from relatively undisturbed lower Palaeozoic strata as suggested by others. 5) Eocambrian-Cambrian(?) rift basins in the Grenville basement are also imaged.
The ADCOH data were originally recorded with 14–56 Hz bandwidth and 8 s length, but an extended Vibroseis correlation was used to produce 17 s data length revealing reflections from within the upper crust. Below 8 s, reflections from within the Grenville basement become weak, but are observable as late as 13 s; however, these Moho (?) reflections are generally short segments.  相似文献   

14.
The dynamical origin of subduction zone topography   总被引:1,自引:0,他引:1  
Summary. Subduction zones are expressed topographically by long linear oceanic trenches flanked by a low outer rise on the seaward side and an island arc on the landward side. This topographic structure is reflected in free air gravity anomalies, suggesting that much of the topography originates from dynamical forces applied at the base of the crust. We have successfully reproduced the general topographic features of subduction zones by supposing that the stresses generated by the bending of the viscous lower lithosphere as it subducts are transmitted through the thin elastic upper portion of the lithosphere. The trench is due to a zone of extensional flow (associated with low pressure) in the upper part of the viscous lithosphere.
The stresses in the subducting slab are computed using a finite element technique, assuming a Maxwell viscoelastic constitutive relation. Various dips (10 to 90°) were investigated, as well as depth dependent and non-Newtonian (power law, n = 3) viscosities. Observed subduction zone dimensions are well reproduced by these models. The effective viscosity required at mid-depth in the lithosphere is about 6 × 1022 P. This low value is probably due to the stress dependence of the effective viscosity. However, these models also show that the topography of the subduction zone depends primarily upon the geometry of the subducting slab (dip, radius of curvature of the bend) rather than upon its rheology. Shear stresses beneath the trench reach maxima of approximately 50 MPa. An interesting feature of some solutions is a dynamically supported bench or platform between the trench and island arc.  相似文献   

15.
Physical models of subduction investigate the impact of regional mantle flow on the structure of the subducted slab and deformation of the downgoing and overriding plates. The initial mantle flow direction beneath the overriding plate can be horizontal or vertical, depending on its location with respect to the asthenospheric flow field. Imposed mantle flow produces either over or underpressure on the lower surface of the slab depending on the initial mantle flow pattern (horizontal or vertical, respectively). Overpressure promotes shallow dip subduction while underpressure tends to steepen the slab. Horizontal mantle flow with rates of 1–10 cm yr−1 provides sufficient overpressure on a dense subducting lithosphere to obtain a subduction angle of  ∼60°  , while the same lithospheric slab sinks vertically when no flow is imposed. Vertical drag force (due to downward mantle flow) exerted on a slab can result in steep subduction if the slab is neutrally buoyant but fails to produce steep subduction of buoyant oceanic lithosphere. The strain regime in the overriding plate due to the asthenospheric drag force depends largely on slab geometry. When the slab dip is steeper than the interplate zone, the drag force produces negative additional normal stress on the interplate zone and tensile horizontal stress in the overriding plate. When the slab dip is shallower than the interplate zone, an additional positive normal stress is produced on the interplate zone and the overriding plate experiences additional horizontal compressive stress. However, the impact of the mantle drag force on interplate pressure is small compared to the influence of the slab pull force since these stress variations can only be observed when the slab is dense and interplate pressure is low.  相似文献   

16.
Summary. The active Australian-Pacific plate boundary passes through New Zealand. In the north, the Pacific plate subducts beneath the Australian plate with an accretionary wedge forming the eastern continental (Hikurangi) margin of the North Island. The structure of the region behind the Hikurangi margin changes from the extensional back-arc basin under central North Island to a postulated crustal downwarp under the southern North Island. A 100 km long multichannel seismic reflection profile was recorded across the region of crustal downwarp. The data show discontinuous coherent reflectors dipping westwards at the east end of the profile, and east dipping reflectors at the west end, from depths of 9 to 15 s two way time. Simple hand migration of these events indicate that the east dipping reflectors, interpreted as the base of the Australian plate crust, abut against the west dipping reflectors which are interpreted as marking the top of the subducted Pacific plate. Detailed earthquake hypocentre locations in the area show a dipping zone of high seismicity, the top of which coincides closely with the west dipping events, thus supporting this interpretation.  相似文献   

17.
Earthquake arrival time data from a 36-station deployment of portable seismographs on the Raukumara Peninsula have been used to determine the 3-D Vp and Vp/Vs structure of this region of shallow subduction. A series of inversions have been performed, starting with an inversion for 1-D structure, then 2-D, and finally 3-D. This procedure ensures a smooth regional model in places of low resolution. The subducted plate is imaged as a northwest-dipping feature, with Vp consistently greater than 8.5  km  s−1 in the uppermost mantle of the plate. Structure in the overlying plate changes significantly along strike. In the northeast, there is an extensive low-velocity zone in the lower crust underlying the most rapidly rising part of the Raukumara Range. It is bounded on its arcward side by an upwarp of high velocity. A viable explanation for the low-velocity zone is that it represents an accumulation of underplated subducted sediment, while serpentinization of the uppermost mantle may be responsible for the adjacent high-velocity region. The low-velocity zone decreases and the adjacent high-velocity region is less extensive in the southwest. This change is interpreted to be related to a change in the thickness of the crust of the overlying plate. In the northeast the crust is thinner, and subducted sediment ponds against relatively strong uppermost mantle, while in the southwest the crust is thicker, and the relatively weak lower crust allows sediment subduction to greater depths. A narrow zone of high Vp/Vs parallels the shallow part of the plate interface. This suggests elevated fluid pressures, with the distribution of earthquakes about this zone further suggesting that these pressures may be close to lithostatic. The plate interface at 20  km depth beneath the Raukumara Peninsula may thus be a closed system for fluid flow, similar to that seen at much shallower depths in other subduction décollements.  相似文献   

18.
A large nearly vertical, normal faulting earthquake ( M w = 7.1) took place in 1997 in the Cocos plate, just beneath the ruptured fault zone of the great 1985 Michoacan thrust event ( M w = 8.1). Dynamic rupture and resultant stress change during the 1997 earthquake have been investigated on the basis of near-source strong-motion records together with a 3-D dynamic model.
Dynamically consistent waveform inversion reveals a highly heterogeneous distribution of stress drop, including patch-like asperities and negative stress-drop zones. Zones of high stress drop are mainly confined to the deeper, southeastern section of the vertical fault, where the maximum dynamic stress drop reaches 280 bars (28 MPa). The dynamically generated source time function varies with location on the fault, and yields a short slip duration, which is caused by a short scalelength of stress-drop heterogeneities. The synthetic seismograms calculated from the dynamic model are generally consistent with the strong-motion velocity records in the frequency range lower than 0.5 Hz.
The pattern of stress-drop distribution appears, in some sense, to be consistent with that of coseismic changes in shear stress resulting from the 1985 thrust event. This consistency suggests that the stress transfer from the 1985 event to the subducting plate could be one of the possible mechanisms that increased the chance of the occurrence of the 1997 earthquake.  相似文献   

19.
This work is a study of the upper-mantle seismic structure beneath the central part of the Eurasian continent, including the northern Mongolia, Altai and Sayan orogenic areas and the Baikal rift zone. Seismic velocity models are reconstructed using the inverse teleseismic scheme. This scheme uses information from earthquakes located within the study area recorded by the Worldwide Network. The seismic anomaly structure is obtained for different volumes in the study area that partially overlap one another. Special attention has been paid to the reliability of the results: several noise and resolution comparisons are made.
The main results are as follows. (1) A cell structure of anomalies is observed beneath the Altai–Sayan region: positive, cold anomalies correspond to regions of recent orogenesis, negative anomalies are located beneath the depression of the Great Lakes in Mongolia and Hubsugul Lake. (2) A large negative anomaly is observed beneath the Hangai dome in Mongolia. (3) Strong velocity variations are obtained in a zone around Baikal Lake. A large negative anomaly is traced beneath the southern margin of the Siberian craton down to a depth of 700 km. Contrasting positive anomalies (4–5 per cent) are observed at a depth of 100–300 km beneath the Baikal rift. Our geodynamical interpretation of the velocity structure obtained beneath central Asia involves the existence of two processes in the mantle: thermal convection with regular cells, and a narrow plume beneath the southern border of the Siberian plate.  相似文献   

20.
Deep seismic reflection profiles across the western Barents Sea   总被引:1,自引:0,他引:1  
Summary. The continental crust beneath the western Barents Sea has been acoustically imaged down to Moho depths in a large scale deep seismic reflection experiment. A first-order pattern of crustal reflectivity has been established and the thickness of the crust determined. A number of features with important implications for the tectonics of the area have been discovered. The results are presented in the form of two transects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号