首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Paleoenvironmental reconstructions are important for understanding the influence of long-term climate variability on ecosystems and landscape disturbance dynamics. In this paper we explore the linkages among past climate, vegetation, and fire regimes using a high-resolution pollen and charcoal reconstruction from Morris Pond located on the Markagunt Plateau in southwestern Utah, USA. A regime shift detection algorithm was applied to background charcoal accumulation to define where statistically significant shifts in fire regimes occurred. The early Holocene was characterized by greater amounts of summer precipitation and less winter precipitation than modern. Ample forest fuel and warm summer temperatures allowed for large fires to occur. The middle Holocene was a transitional period between vegetation conditions and fire disturbance. The late Holocene climate is characterized as cool and wet reflecting an increase in snow cover, which reduced opportunities for fire despite increased availability of fuels. Similarities between modern forest fuel availability and those of the early Holocene suggest that warmer summers projected for the 21st century may yield substantial increases in the recurrence and ecological impacts of fire when compared to the fire regime of the last millennium.  相似文献   

2.
We re‐evaluated mid‐ and late Holocene fire records at three bog sites in southern Finland and Estonia through quantitative and qualitative analysis of sedimentary charcoal records. Our analysis suggests synchrony amongst the Kontolanrahka, Männikjärve and Lakkasuo bog records. Over the last 5000 years, three episodes of elevated fire occurrence were evident in these bog records, taking place from 4500 to 4000, 3500 to 2000 and 1000 to 500 cal. a BP. These episodes were probably influenced primarily by climate, but also possibly by expansion/retreat of (pre)historic human populations. Although previous studies have proposed that during the late Holocene only weak fire?climate linkages exist, the presented analysis suggests millennial‐ and centennial‐scale synchronous burning episodes.  相似文献   

3.
A 13,100-year-long high-resolution pollen and charcoal record from Foy Lake in western Montana is compared with a network of vegetation and fire-history records from the Northern Rocky Mountains. New and previously published results were stratified by elevation into upper and lower and tree line to explore the role of Holocene climate variability on vegetation dynamics and fire regimes. During the cooler and drier Lateglacial period, ca 13,000 cal yr BP, sparsely vegetated Picea parkland occupied Foy Lake as well as other low- and high-elevations with a low incidence of fire. During the warmer early Holocene, from ca 11,000–7500 cal yr BP, low-elevation records, including Foy, indicate significant restructuring of regional vegetation as Lateglacial Picea parkland gave way to a mixed forest of Pinus-Pseudotsuga-Larix. In contrast, upper tree line sites (ca >2000 m) supported Pinus albicaulis and/or P. monticola-Abies-Picea forests in the Lateglacial and early Holocene. Regionally, biomass burning gradually increased from the Lateglacial times through the middle Holocene. However, upper tree line fire-history records suggest several climate-driven decreases in biomass burning centered at 11,500, 8500, 4000, 1600 and 500 cal yr BP. In contrast, lower tree line records generally experienced a gradual increase in biomass burning from the Lateglacial to ca 8000 cal yr BP, then reduced fire activity until a late Holocene maximum at 1800 cal yr BP, as structurally complex mesophytic forests at Foy Lake and other sites supported mixed-severity fire regimes. During the last two millennia, fire activity decreased at low elevations as modern forests developed and the climate became cooler and wetter than before. Embedded within these long-term trends are high amplitude variations in both vegetation dynamics and biomass burning. High-elevation paleoecological reconstructions tend to be more responsive to long-term changes in climate forcing related to growing-season temperature. Low-elevation records in the NRM have responded more abruptly to changes in effective precipitation during the late Holocene. Prolonged droughts, including those between 1200 and 800 cal yr BP, and climatic cooling during the last few centuries continues to influence vegetation and fire regimes at low elevation while increasing temperature has increased biomass burning in high elevations.  相似文献   

4.
The history of the low-elevation forest and forest-steppe ecotone on the east side of the Andes is revealed in pollen and charcoal records obtained from mid-latitude lakes. Prior to 15,000 cal yr BP, the vegetation was characterized by steppe vegetation with isolated stands of Nothofagus. The climate was generally dry, and the sparse vegetation apparently lacked sufficient fuels to burn extensively. After 15,000 cal yr BP, a mixture of Nothofagus forest and shrubland/steppe developed. Fire activity increased between 13,250 and 11,400 cal yr BP, contemporaneous with a regionally defined cold dry period (Huelmo/Mascardi Cold Reversal). The early-Holocene period was characterized by an open Nothofagus forest/shrubland mosaic, and fire frequency was high in dry sites and low in wet sites; the data suggest a sharp decrease in moisture eastward from the Andes. A shift to a surface-fire regime occurred at 7500 cal yr BP at the wet site and at 4400 cal yr BP at the dry site, preceding the expansion of Austrocedrus by 1000-1500 yr. The spread of Austrocedrus is explained by a shift towards a cooler and wetter climate in the middle and late Holocene. The change to a surface-fire regime is consistent with increased interannual climate variability and the onset or strengthening of ENSO. The present-day mixed forest dominated by Nothofagus and Austrocedrus was established in the last few millennia.  相似文献   

5.
Mixed‐wood boreal forests are characterized by a heterogeneous landscape dominated by coniferous or deciduous species depending on stand moisture and fire activity. Our study highlights the long‐term drivers of these differences between landscapes across mixed‐wood boreal forests to improve simulated vegetation dynamics under predicted climate changes. We investigate the effects of main climate trends and wildfire activities on the vegetation dynamics of two areas characterized by different stand moisture regimes during the last 9000 years. We performed paleofire and pollen analyses in the mixed‐wood boreal forest of north‐western Ontario, derived from lacustrine sediment deposits, to reconstruct historical vegetation dynamics, which encompassed both the Holocene climatic optimum (ca. 8000–4000 a bp ) and the Neoglacial period (ca. 4000 a bp ). The past warm and dry period (Holocene climatic optimum) promoted higher fire activity that resulted in an increase in coniferous species abundance in the xeric area. The predicted warmer climate and an increase in drought events should lead to a coniferization of the xeric areas affected by high fire activity while the mesic areas may retain a higher broadleaf abundance, as these areas are not prone to an increase in fire activity. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
The objective of this study was to investigate the possible links between regional climate, fire and vegetation at the small spatial scale during the early and mid Holocene in southern Sweden using pollen, plant macrofossil and charcoal records from a small bog. The fire history was compared with climate reconstructions inferred from various proxy records in the study region. High fire activity is related to dry and warm climate around 8550, 7600, 5500–5100 and 4500 cal. a BC. Low fire activity ca. 6500–6000 and 4750 BC may correspond to the widespread ‘8.2 k event’ (ca. 6200 BC) recorded across the North Atlantic region, and a later, brief period of increased precipitation, respectively. The decrease in broadleaved trees culminating ca. 6500–6000 BC correlates with the ‘8.2 k event’. A long mid Holocene period with low fire activity (ca. 4350–1000 BC) agrees with the pattern emerging for Europe from the global charcoal database, and may correspond to generally wetter and cooler conditions. High fire activity ca. 8550 BC probably triggered the local establishment of Corylus. Warmer and drier conditions (and high fire activity) ca. 7600 BC might have favoured the establishment of Alnus, Quercus and Tilia. The fire‐adapted Pinus maintained important populations throughout the early and mid Holocene. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Beetle remains from a small bog in southern Sweden contribute information concerning the forest history of the study area. The study shows that beetles are valuable indicators of woodland structures such as openness, field vegetation, presence of dead wood and disturbance factors such as climate change, fire regimes, grazing and land use. The early Holocene, ca. 8600–6450 cal. BC, was characterised by open, pine‐dominated woodlands maintained by fire and grazing disturbances. The changes in the wetland fauna, between 8600 and 7500 cal. BC, correlate well with low lake levels in southern Sweden. During the mid Holocene, ca. 6450–2400 cal. BC, the woodlands were relatively dense, with few openings in the canopy. Around 4200 cal. BC, there was a shift to a dominance of deciduous trees. Fire and grazing pressures were particularly low. Numbers of aquatic and hygrophilic beetles indicate dry conditions between ca. 5000 and 3000 cal. BC. During the late Holocene, ca. 2400 cal. BC to present, the woodlands opened up mainly through increased land use. The main disturbance factors were fire and grazing. The beetles indicate the formation of heather‐dominated heathland around 800 cal. BC. Copyright © 2008 John Wiley & Sons, Ltd. This article was published online on 23 December 2008. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected (5 August 2009).  相似文献   

8.
《Quaternary Science Reviews》2003,22(5-7):453-473
Lateglacial and early Holocene (ca 14–9000 14C yr BP; 15–10,000 cal yr BP) pollen records are used to make vegetation and climate reconstructions that are the basis for inferring mechanisms of past climate change and for validating palaeoclimate model simulations. Therefore, it is important that reconstructions from pollen data are realistic and reliable. Two examples of the need for independent validation of pollen interpretations are considered here. First, Lateglacial-interstadial Betula pollen records in northern Scotland and western Norway have been interpreted frequently as reflecting the presence of tree-birch that has strongly influenced the resulting climate reconstructions. However, no associated tree-birch macrofossils have been found so far, and the local dwarf-shrub or open vegetation reconstructed from macrofossil evidence indicates climates too cold for tree-birch establishment. The low local pollen production resulted in the misleadingly high percentage representation of long-distance tree-birch pollen. Second, in the Minnesotan Lateglacial Picea zone, low pollen percentages from thermophilous deciduous trees could derive either from local occurrences of the tree taxa in the Picea/Larix forest or from long-distance dispersal from areas further south. The regionally consistent occurrence of low pollen percentages, even in sites with local tundra vegetation, and the lack of any corresponding macrofossil records support the hypothesis that the trees were not locally present. Macrofossils in the Picea zone represent tundra vegetation or Picea/Larix forest associated with typically boreal taxa, suggesting it was too cold for most thermophilous deciduous trees to grow. Any long-distance tree pollen is not masked by the low pollen production of tundra and Picea and Larix and therefore it is registered relatively strongly in the percentage pollen spectra.Many Lateglacial pollen assemblages have no recognisable modern analogues and contain high representations of well-dispersed ‘indicator’ taxa such as Betula or Artemisia. The spectra could have been derived from vegetation types that do not occur today, perhaps responding to the different climate that resulted from the different balance of climate forcing functions then. However, the available contemporaneous plant-macrofossil assemblages can be readily interpreted in terms of modern vegetation communities, suggesting that the pollen assemblages could have been influenced by mixing of locally produced pollen with long-distance pollen from remote vegetation types that are then over-represented in situations with low local pollen production. In such situations, it is important to validate the climate reconstructions made from the pollen data with a macrofossil record.  相似文献   

9.
We analysed charcoal and pollen from sediments obtained from two lakes in the northwestern mixed‐wood Canadian boreal forest in order to reconstruct fire‐return intervals and vegetation dynamics over the last 8000 years. Sites were selected with contrasting soil properties (mesic versus dry‐sandy soils), allowing an estimation of the potential influence of soils on long‐term vegetation and fire dynamics. The sites likely experienced fewer fires during the period extending from 8000 to 4000 cal. a BP than over the last 4000 years. At both sites, eastern white pine (Pinus strobus) populations were most extensive shortly after deglaciation, with vegetation later shifting towards mixed woodlands with less P. strobus and more extensive Picea and Pinus banksiana populations. This gradual vegetation shift was probably induced by the establishment of colder and moister conditions along with a fire‐regime change. In spite of the parallel long‐term vegetation trajectories, vegetation composition differed between the two sites in both the past and present. Whereas Picea was more abundant at the mesic site, the fire‐adapted P. banksiana populations were more extensive at the sandy‐soil site. These differences in vegetation composition indicate that, in addition to climate changes and fire occurrence, soil properties also influenced vegetation dynamics. A likely increase in fire frequency in the Canadian boreal forest during the 21st century might therefore favour the expansion of these two disturbance‐adapted trees with spatial heterogeneity in the populations due to varying soil types. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Climate models suggest that the global warming during the early to mid‐Holocene may have partly resulted from the northward advance of the northern treeline and subsequent reduction of the planetary albedo. We investigated the Holocene vegetation history of low arctic continental Nunavut, Canada, from a radiocarbon‐dated sediment core from TK‐2 Lake, a small‐lake ca. 200 km north of the limit of the forest‐tundra. The pollen and loss‐on‐ignition data indicate the presence of dwarf shrub tundra in the region since the beginning of organic sedimentation at ca. 9000 cal. yr BP with dominance of Betula, especially since 8700 cal. yr BP. At 8100–7900 cal. yr BP the dominance of the shrub tundra was punctuated by a transient decline of Betula and coincident increases of Ericaceae undiff., Vaccinium‐type, and Gramineae. This suggests an abrupt disturbance of the Betula glandulosa population, approximately simultaneously with the sudden 8200 cal. yr BP event in the North Atlantic. However, in the absence of other sites studied in the area, linkage to the 8200 cal. yr BP event remains tentative. The lack of any evidence of forest‐tundra in the region constrains the northern limit of the mid‐Holocene advance of the forest‐tundra boundary in central northern Canada. Consequently, our results show that the climate models imposing a mid‐Holocene advance of the limit of the forest‐tundra to the arctic coast of Canada may have overestimated the positive climatic feedback effects that can result from the replacement of tundra by the boreal forest. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
We reconstructed a 10,500-yr fire and vegetation history of a montane site in the North Cascade Range, Washington State based on lake sediment charcoal, macrofossil and pollen records. High-resolution sampling and abundant macrofossils made it possible to analyze relationships between fire and vegetation. During the early Holocene (> 10,500 to ca. 8000 cal yr BP) forests were subalpine woodlands dominated by Pinus contorta. Around 8000 cal yr BP, P. contorta sharply declined in the macrofossil record. Shade tolerant, mesic species first appeared ca. 4500 cal yr BP. Cupressus nootkatensis appeared most recently at 2000 cal yr BP. Fire frequency varies throughout the record, with significantly shorter mean fire return intervals in the early Holocene than the mid and late Holocene. Charcoal peaks are significantly correlated with an initial increase in macrofossil accumulation rates followed by a decrease, likely corresponding to tree mortality following fire. Climate appears to be a key driver in vegetation and fire regimes over millennial time scales. Fire and other disturbances altered forest vegetation at shorter time scales, and vegetation may have mediated local fire regimes. For example, dominance of P. contorta in the early Holocene forests may have been reinforced by its susceptibility to frequent, stand-replacing fire events.  相似文献   

12.
The relative importance of climate, forest fires and human population size on long‐term boreal forest composition were statistically investigated at regional and local scales in Fennoscandia. We employ pollen data from lakes, reflecting regional vegetation, and small forest hollows, reflecting local vegetation, from Russia, Finland and Sweden to reconstruct the long‐term forest composition. As potential drivers of the Holocene forest dynamics we consider climate, generated from a climate model and oxygen isotope data, past forest fires generated from sedimentary charcoal data and human population size derived from radiocarbon dated archaeological findings. We apply the statistical method of variation partitioning to assess the relative importance of these environmental variables on long‐term boreal forest composition. The results show that climate is the main driver of the changes in Holocene boreal forest composition at the regional scale. However, at the local scale the role of climate is relatively small. In general, the importance of forest fires is low both at regional and local scales. The fact that both climate and forest fires explain relatively small proportions of variation in long‐term boreal vegetation in small forest hollow records demonstrates the complexity of factors affecting stand‐scale forest dynamics. The relative importance of human population size was low in both the prehistorical and the historical time periods. However, this is the first time that this type of data has been used to statistically assess the importance of human population size on boreal vegetation and the spatial representativeness of the data may cause bias to the analysis.  相似文献   

13.
《Quaternary Science Reviews》2007,26(17-18):2167-2184
The northwestern Great Basin lies in the transition zone between the mesic Pacific Northwest and xeric intermountain West. The paleoenvironmental history based on pollen, macroscopic charcoal, and plant macrofossils from three sites in the northwestern Great Basin was examined to understand the relationships among the modern vegetation, fire disturbance and climate. The vegetation history suggests that steppe and open forest communities were present at high elevations from ca 11,000 to 7000 cal yr BP, and were replaced by forests composed of white fir, western white pine, and whitebark pine in the late Holocene. Over the last 11,000 years, fires were more frequent in mid-elevation forests (10–25 fire episodes/1000 years) and rare in high-elevation forests (2–5 fire episodes/1000 years). Applying modern pollen–climate relationships to the fossil pollen spectra provided a means to interpret past climate changes in this region. In the past 9000 years summer temperatures decreased from 1 to 4 °C, and annual precipitation has increased 7–15%. These results indicate that the millennial-scale climate forcing driving vegetation changes can be quantified within the intermountain West in general and northwestern Great Basin in particular. In addition, fire can be considered an important component of these ecosystems, but it does not appear to be a forcing mechanism for vegetation change at the resolution of these records.  相似文献   

14.
A consensus on Holocene climate variability at the modern northern fringe of the East Asian summer monsoon (EASM) region remains elusive. Here, we present a pollen-based reconstruction of vegetation history and associated climate variations of a sediment core from Huangqihai Lake, central Inner Mongolia. During 10.7 to 8.8 cal kaBP, typical steppe with small patches of forest dominated the lake area, suggesting a moderately wet climate, followed by ameliorating climatic conditions until 8.0 cal kaBP as deduced by the expansion of forest. Typical steppe recovered the lake area between 8.0 and 7.2 cal kaBP, reflecting a deterioration of climatic conditions; in combination with other proxy records in the study region, we noticed that severe aridity was prevailed in the lake area between 8.0 and 7.6 cal kaBP. During 7.2 to 3.2 cal kaBP, abundant tree pollen indicated dominance of forest-steppe around the lake, marking regionally wet conditions. A notable absence of broadleaved trees after 5.2 cal kaBP reveals a slight drying trend, and climate deterioration from 4.5 to 4.1 cal kaBP might be linked to the 4.2 ka event. After 3.2 cal kaBP, a transition to steppe was associated with dry conditions in the region. Based on our pollen record and prior paleoclimatic reconstructions in the Huangqihai Lake region, there was a generally-accepted, stepwise shift to a wet climate during the early Holocene, an overall humid climate from 7.2 to 3.2 cal kaBP, and then severe drought for the rest of the Holocene. Moreover, regional comparisons among pollen records derived from lakes situated in the temperate steppe region suggested a roughly synchronous pattern of vegetation and climate changes during the Holocene and demonstrated an intensified EASM during the middle Holocene.  相似文献   

15.
Charcoal analysis for paleoenvironmental interpretation: A chemical assay   总被引:1,自引:0,他引:1  
Pollen and charcoal analysis of radiocarbon-dated sediment cores from Duck Pond in the Cape Cod National Seashore provide a continuous 12,000-yr vegetation and climate history of outer Cape Cod. A Picea-Hudsonia parkland and then a Picea-Pinus banksiana-Alnus crispa boreal forest association grew near the site between 12,000 and 10,000 yr B.P. This vegetation was replaced by a northern conifer forest of Pinus strobus-P. banksiana, and, subsequently, by a more mesophytic forest (Pinus strobus, Tsuga, Quercus, Fagus, Acer, Ulmus, Fraxinus, Ostrya) as the climate became warmer and wetter by 9500 yr B.P. By 9000 yr B.P. a Pinus rigida-Quercus association dominated the landscape. High charcoal frequencies from this and subsequent levels suggest that the pine barrens association developed during a warmer and drier climate that lasted from 9000 to about 5000 yr B.P. Increased percentages of Pinus strobus pollen indicate a return to moister and cooler conditions by about 3500 yr B.P. A doubled sedimentation rate, increased charcoal, and increased herb pollen suggest land disturbance near the pond before European settlement. These results suggest a rapid warming in the northeast in the early Holocene and support a hypothesis of a rapid sea level rise at that time. Comparison of the pollen results from Duck Pond with those from Rogers Lake, Connecticut, illustrates the importance of edaphic factors in determining the disturbance frequency and vegetation history of an area.  相似文献   

16.
The forests of the Siskiyou Mountains are among the most diverse in North America, yet the long-term relationship among climate, diversity, and natural disturbance is not well known. Pollen, plant macrofossils, and high-resolution charcoal data from Bolan Lake, Oregon, were analyzed to reconstruct a 17,000-yr-long environmental history of high-elevation forests in the region. In the late-glacial period, the presence of a subalpine parkland of Artemisia, Poaceae, Pinus, and Tsuga with infrequent fires suggests cool dry conditions. After 14,500 cal yr B.P., a closed forest of Abies, Pseudotsuga, Tsuga, and Alnus rubra with more frequent fires developed which indicates more mesic conditions than before. An open woodland of Pinus, Quercus, and Cupressaceae, with higher fire activity than before, characterized the early Holocene and implies warmer and drier conditions than at present. In the late Holocene, Abies and Picea were more prevalent in the forest, suggesting a return to cool wet conditions, although fire-episode frequency remained relatively high. The modern forest of Abies and Pseudotsuga and the present-day fire regime developed ca. 2100 cal yr B.P. and indicates that conditions had become slightly drier than before. Sub-millennial-scale fluctuations in vegetation and fire activity suggest climatic variations during the Younger Dryas interval and within the early Holocene period. The timing of vegetation changes in the Bolan Lake record is similar to that of other sites in the Pacific Northwest and Klamath region, and indicates that local vegetation communities were responding to regional-scale climate changes. The record implies that climate-driven millennial- to centennial-scale vegetation and fire change should be considered when explaining the high floristic diversity observed at present in the Siskiyou Mountains.  相似文献   

17.
Major Holocene monsoon changes in continental Southeast Asia are reconstructed from analysis of 14C-dated changes in pollen and organic/inorganic carbon in sediment cores taken from permanent, closed-basin, volcanic lakes in Ratanakiri Province, northeastern Cambodia. Analysis focuses on the nature and timing of monsoon changes, inferred from changes in vegetation and lake conditions. These data provide the first well-dated palynological record, covering most of the Holocene and continuous up to the present, from a terrestrial site in mainland Southeast Asia. The record from a 15-m core retrieved from Kara Lake, representing the last 9300 years, shows that the late Glacial conditions ended about 8500 14C yr B.P., more than 1000 years later than sites in southwest China. Summer monsoon intensity increased over the period ca. 8400–5300 14C yr B.P., similar to most other sites in the Asian monsoon region. A subsequent expansion of secondary forests at the expense of dense semievergreen forests suggest a drier climate leading to more frequent fire disturbance. After ca. 3500 14C yr B.P. disturbance frequency may have increased further with increasing seasonality. From ca. 2500 14C yr B.P. to the present, dense forest has recovered in a mosaic with annually burned dry forest, but climate may not be the main control on local vegetation dynamics in the late Holocene.  相似文献   

18.
《Quaternary Science Reviews》2007,26(15-16):1965-1974
Environmental changes, occurring during the Weichselian Lateglacial to Early Holocene transition, are supposed to be caused by rapid climate changes. Vegetation changes that occurred during the Early Holocene show a pattern of increased boreal forest development with dominance of birch (Friesland phase) to a more open vegetation with an increase of predominantly grasses (Rammelbeek phase), subsequently followed by renewed birch and, later on, pine forest development. Based on palynological evidence and botanical macrofossils, the Rammelbeek phase is supposed to have been caused by a change to dry, rather than cold climate. Detailed 14C-dating, using a wiggle-matched AMS-14C chronology, is used to place the vegetation changes in a time-stratigraphic framework. The Rammelbeek phase can be placed to around 11.3 ka cal BP. A direct correlation to the 11.2 ka event, as recorded in the Greenland ice-cores, is tempting. In this paper we propose an alternative approach by using a common proxy registered in both ice-core and terrestrial records. Based on oxygen isotopes, a Preboreal oscillation (PBO) appears to be present in many Early Holocene lacustrine carbonate-rich records. We used the δ18O signal of calcareous lake deposits (Kingbeekdal, Southern Netherlands), in which biostratigraphically a Rammelbeek phase is present. The signal in the stable isotopes seems to correlate to the Greenland ice-core records. This exercise shows that the PBO as recorded in the oxygen isotopes occurs not during the palynologically defined Rammelbeek phase but early in the Friesland phase. Moreover, the palynological record of the Kingbeekdal sequence shows, at the level of the δ18O reversal, a distinct opening of the birch forest and a temporary disappearance of thermophilous taxa, while the light requiring juniper increases. This implies a more complex pattern of climate response registered by the different proxies as previously thought.  相似文献   

19.
A Holocene record of pollen, macrofossils, testate amoebae and peat humification is presented from a small montane bog. Sediment accumulation began before 9000 yr BP, but peat growth not until ca. 7000 BP. From 12 000 to 7000 yr BP, a shrub–grassland dominated under a dry climate, with increasing conifer forest and tall scrub from ca. 9600 yr BP. At 7000 yr BP a dense montane–subalpine low conifer forest established under a moist, cool climatic regime. Between 7000 and 700 yr BP the bog surface was shrubby, tending to be dry but with highly variable surface wetness. The catchment was affected by major fire at least four times between 4000 and 1000 yr BP. Both fire and bog surface wetness may have been linked to ENSO-caused variations in rainfall. Cooler, cloudier winters and disturbance by fire promoted the expansion of the broadleaf tree Nothofagus menziesii between 4000 yr BP and 1300 yr BP at the expense of the previous conifer forest–scrub vegetation. Polynesian fires (ca. 700 yr BP) reduced the vegetation to tussock grassland and bracken. Deforestation did not markedly affect the hydrology of the site. European pastoralism since ad 1860 has increased run-off and rising water tables in the bog have led to a Sphagnum-dominated cover. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Current high‐resolution palaeoenvironmental records reveal short‐term Holocene coolings. One of these major Holocene rapid climate changes occurred between 3.2 and 2.7 cal. ka BP. The sensitivity of river systems vis‐à‐vis slight and short‐term Holocene climatic variations is a subject of controversy in the scientific community. In this paper, we present a 4.0 to 1.4 cal ka BP palaeoflood record from the Lower Moulouya River (northeastern Morocco) to demonstrate the high sensitivity of semiarid rivers in the southwestern Mediterranean towards Holocene environmental changes. The Lower Moulouya flood deposits are characterised by thick, well‐stratified, predominantly clayey to silty overbank fine sediments. These cohesive sediments show evidence of excellent preservation conditions against fluvial erosion and contain a continuous record of mid to late Holocene flood sequences. The Moulouya palaeoflood record can be interpreted in the context of regional and global high‐resolution proxy data, revealing a strong coupling with Holocene rapid climate changes. The centennial‐scale Moulouya palaeohydrological history will be discussed with palaeoenvironmental data from the same record (palaeomagnetics, sedimentary charcoal record, anthracological analyses, snail analyses) to generate new ideas about the mid to late Holocene hydrological cycle in the southwestern Mediterranean. The deduced features of pronounced Lower Moulouya flooding and the decreased fire recurrence during Holocene cooling remain somewhat inconsistent with the interpretation of other palaeohydrological and paleaoecological records from the southwestern Mediterranean. However, enhanced Lower Moulouya flood frequencies between 3.2 and 2.7 cal. ka BP agree with increased floodplain aggradation in other major river systems of Mediterranean North Africa. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号