首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Middle Pleistocene palaeoclimate and palaeoenvironment evolution of the Las Tablas de Daimiel wetlands is described using a combination of sedimentology, pollen and δ13C and δ18O isotopic records of Unit B of core LT‐199906. This unit mostly contains fluvial and palustrine sediments. U/Th and amino acid racemization (AAR) dating and a comparison of the δ18O curve of Unit B with oceanic records suggests that Unit B spans the period from the end of Marine Isotope Stage (MIS) 10 (340 ka) to the first stages of MIS 7 (ca. 210 ka). MIS 9 was characterised by a regional vegetation dominated by Cupressaceae, with Pinus as a tree element. The water level was high and temperatures were very probably higher than during the Holocene. MIS 8 and the first substages of MIS 7 (7e, 7d and 7c) were dominated by xerophilous steppe vegetation in lowlands (elevations around 610 m above sea level) near to the wetland. At higher altitudes, far away from the wetland, there were fewer Pinus than in MIS 9, and a greater presence of warm, temperate and cool climate tree elements. The aquatic system in MIS 9 became shallower, with eutrophication and the accumulation of organic matter occurring; temperatures were similar to or lower than those of the Holocene. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The Vil-car-1 flowstone core from Villars cave (SW France) provides one of the first European speleothem records extending back to 180 ka, based on U–Th TIMS and MC-ICP-MS measurements. The core offers a continuous record of Termination II and the Last Interglacial. The penultimate deglaciation is characterized by a prominent 5‰ depletion in calcite δ18O. Determining which specific environmental factors controlled such a large oxygen isotopic shift offers the opportunity to assess the impact of various factors influencing δ18O variations in speleothem calcite.Oxygen isotope analyses of fluid inclusions indicate that drip water δ18O remained within a very narrow range of ±1‰ from Late MIS6 to the MIS5 δ18O optimum. The possibility of such a stable behaviour is supported by simple calculations of various effects influencing seepage water δ18O.Although this could suggest that the isotopic shift in calcite is mainly driven by temperature increase, attempts to quantify the temperature shift from Late MIS6 to the MIS5 δ18O optimum by assuming an equilibrium relationship between calcite and fluid inclusion δ18O yield unreasonably high estimates of ~20 °C warming and Late MIS6 cave temperatures below 0 °C; this suggests that the flowstone calcite precipitated out of thermodynamic equilibrium at this site.Using a method proposed by Guo et al. (submitted for publication) combining clumped isotope measurements, fluid inclusion and modern calcite δ18O analyses, it is possible to quantitatively correct for isotopic disequilibrium and estimate absolute paleotemperatures. Although the precision of these absolute temperature reconstructions is limited by analytical uncertainties, the temperature rise between Late MIS6 and the MIS5 optimum can be robustly constrained between 13.2 ± 2.6 and 14.6 ± 2.6 °C (1σ), consistent with existing estimates from Western Europe pollen and sea-surface temperature records.  相似文献   

3.
Three samples from the Mud Tank Carbonatite have very similar isotopic ratios, averaging δ13C=‐4.3 and δ18O=+7.5(SMOW). These isotope values are distinct from those of nearby highly metamorphosed Carpentarian marbles, which have marine limestone values of δ13C=‐1.3±0.5, and δ18O=+17.6+0.7 with n=11. Minor variations in the values for the normal marbles show no correlation with stratigraphy or geographic location; however, somewhat lighter oxygen is found in some other marbles known to be affected by low‐temperature fluids within the Woolanga Lineament. Isotopes of C and O, if discretely used in conjunction with other geochemical features, not only may discriminate between deep‐seated carbona‐tites and marbles, but may also help to identify zones of carbonate metasomatism and define the isotopic characters of the fluids.  相似文献   

4.
The Malani Igneous Suite (MIS) in NW India represents one of the largest and well‐preserved Precambrian felsic igneous provinces, with minor mafic volcanics and dykes. The SIMS (Secondary Ion Mass Spectrometric) zircon U‐Pb geochronology yielded 776.8 ± 4.5 to 758.5 ± 6.9 Ma ages for rhyolites from Jodhpur region and Sindreth Basin while dacite sample from Punagarh Basin was dated to 760.5 ± 10 Ma. Zircons from rhyolitic and dacitic lavas have oxygen isotopic compositions that can be grouped into low δ18OV‐SMOW (4.12 to ‐1.11‰) and high (δ18O = 8.23‐5.12‰) categoroes, respectively. The low δ18O zircons have highly radiogenic Hf isotopic compositions (εHf(t)= +13.0 to +3.6) suggesting high temperature bulk cannibalization of upper level juvenile crust as the essential process for magma generation. Older than 800 Ma xenocrystic zircons in dacite have high δ18O values whereas 795 Ma ones have mantle‐like Hf‐O isotopic compositions, reflecting a significant shift in tectono‐thermal regime in NW India during 800‐780 Ma. A synchronous transition in the South China Block and Madagascar suggests a spatially and temporally linked geodynamic system. Geochemical data in combination with the new isotopic results point towards an overall convergent plate margin setting undergoing localized lithospheric extension. The NW India and South China blocks together with Madagascar and the Seychelles lay either along the periphery of Rodinia or off the supercontinent with the age of convergent plate margin magmatism coinciding with breakup of the supercontinent.  相似文献   

5.
Late Pleistocene paleoclimatic variability on the northeastern Qinghai–Tibetan Plateau (NE QTP) was reconstructed using a chronology based on AMS 14C and 230Th dating results and a stable oxygen isotopic record. These are derived from lake carbonates in a 102-m-long Qarhan sediment core (ISL1A) collected from the eastern Qaidam Basin. Previous research indicates that the δ18O values of lacustrine carbonates are mainly controlled by the isotopic composition of lake water, which in turn is a function of regional P/E balance and the proportion of precipitation that is monsoon-derived on the NE QTP. Modern isotopic observations indicate that the δ18O values of lake carbonates in hyper-arid Qaidam Basin are more positive during the warm and wet period. Due to strong evaporation and continental effect in this basin, the positive δ18O values in the arid region indicate drier climatic conditions. Based on this interpretation and the δ18O record of fine-grained lake carbonates and dating results in ISL1A, the results imply that drier climatic conditions in the Qarhan region occurred in three intervals, around 90–80 ka, 52–38 ka and 10–9 ka, which could correspond to late MIS 5, middle MIS 3 and early Holocene, respectively. These three phases were almost coincided with low lake level periods of Gahai, Toson and Qinghai Lakes (to the east of Qarhan Lake) influenced by ASM on the orbital timescales. Meanwhile, there was an episode of relatively high δ18O value during late MIS 3, suggesting that relatively dry climatic condition in this period, rather than “a uniform Qarhan mega-paleolake” spanning the ∼44 to 22 ka period. These results insight into the understanding of “the Greatest Lake Period” on the QTP.  相似文献   

6.
Bulk carbonate samples of hemipelagic limestone–marl alternations from the Middle and Upper Triassic of Italy are analysed for their isotopic compositions. Middle Triassic samples are representative of the Livinallongo Formation of the Dolomites, while Upper Triassic hemipelagites were sampled in the Pignola 2 section, within the Calcari con Selce Formation of the Southern Apennines in Southern Italy. Triassic hemipelagites occur either as nodular limestones with chert nodules or as plane‐bedded limestone–marl alternations which are locally silicified. In the Middle Triassic Livinallongo Formation, diagenetic alteration primarily affected the stable isotopic composition of sediment surrounding carbonate nodules, whereas the latter show almost pristine compositions. Diagenesis lowered the carbon and oxygen isotope values of bulk carbonate and introduced a strong correlation between δ13C and δ18O values. In the Middle Triassic successions of the Dolomites, bulk carbonate of nodular limestone facies is most commonly unaltered, whereas carbonate of the plane‐bedded facies is uniformly affected by diagenetic alteration. In contrast to carbonate nodules, plane‐bedded facies often show compaction features. Although both types of pelagic carbonate rocks show very similar petrographic characteristics, scanning electron microscopy studies reveal that nodular limestone consists of micrite (< 5 μm in diameter), whereas samples of the plane‐bedded facies are composed of calcite crystals ca 10 μm in size showing pitted, polished surfaces. These observations suggest that nodular and plane‐bedded facies underwent different diagenetic pathways determined by the prevailing mineralogy of the precursor sediment, i.e. probably high‐Mg calcite in the nodular facies and aragonite in the case of the plane‐bedded facies. Similar to Middle Triassic nodular facies, Upper Triassic nodular limestones of the Lagonegro Basin are also characterized by uncorrelated δ13C and δ18O values and exhibit small, less than 5 μm size, crystals. The alternation of calcitic and aragonitic precursors in the Middle Triassic of the Dolomites is thought to mirror rapid changes in the type of carbonate production of adjacent platforms. Bioturbation and dissolution of metastable carbonate grains played a key role during early lithification of nodular limestone beds, whereby early stabilization recorded the carbon isotopic composition of sea water. The bulk carbonate δ13C values of Middle and Upper Triassic hemipelagites from Italy agree with those of Tethyan low‐Mg calcite shells of articulate brachiopods, confirming that Triassic hemipelagites retained the primary carbon isotopic composition of the bottom sea water. A trend of increasing δ13C from the Late Anisian to the Early Carnian, partly seen in the data set presented here, is also recognized in successions from tropical palaeolatitudes elsewhere. The carbon isotopic composition of Middle and Upper Triassic nodular hemipelagic limestones can thus be used for chemostratigraphic correlation and palaeoenvironmental studies.  相似文献   

7.
Shoreline carbonate deposits of Pleistocene Lake Bonneville record the conditions and processes within the lake, including the evaporative balance as well as vertical and lateral chemical and isotopic gradients. Tufas (swash‐zone) and tufaglomerates (cemented, subaqueous colluvium or beachrock) on multiple, well‐developed shorelines near the Silver Island Range, Utah, also present an opportunity to examine physicochemical lake processes through time. Three shorelines are represented by carbonate deposits, including the 23–20 ka Stansbury stage, 15–14.5 ka Bonneville stage, and 14.5–14 ka Provo stage. Mean δ18OVSMOW values of all three shorelines are statistically indistinguishable ( ~ 27 ± 1‰), when a few Bonneville samples of unusual composition are neglected. However, differences in primary carbonate mineralogy indicate that the correspondence is an artefact of the different fractionation factors between calcite or aragonite and water. Second, in order to sustain a much smaller, shallower lake during the colder Stansbury stage, the climate must have also been relatively dry. Third, δ18O values in tufa are higher than tufaglomerate by ~ 0.5‰, consistent with greater evaporative enrichment of lake water in the swash zone. Fourth, mean δ13C values for the Provo, Stansbury and Bonneville shorelines (4.4, 5.0 and 5.2‰, respectively) show that carbon species were dominated by atmospheric exchange, with the variations produced by differences in the oxidation of organic matter. Comparisons of shoreline carbonates with deep‐lake marls of the same approximate age indicate that shoreline carbonate was much higher in δ13C and δ18O values (both ~ 2.5‰) during Bonneville time, whereas isotopic differences were minor (both ~ 1‰) in Stansbury time. In particular, the Bonneville stage may have sustained large vertical or lateral isotopic gradients due to evaporative enrichment effects on δ18O values. In contrast, the lake during the much shallower Stansbury stage may have been well mixed. Differences in the primary mineralogy (Stansbury and Bonneville, aragonite > calcite; Provo, calcite > aragonite) reflect profound differences in lake chemistry in terms of open versus closed‐basin lakes. The establishment of a continuous outlet during Provo time probably reduced the Mg2+/Ca2+ ratio of lake water. Curiously, regardless of primary mineralogy, tufaglomerate cements are enriched in Na+ and Cl? and depleted in Mg2+ relative to capping tufa of the same age. This probably reflects vital or kinetic effects in the swash zone (tufa). We suspect that ‘abiotic’ effects may have been important in the dark pore space of developing tufaglomerate, where the absence of light suppressed photosynthesis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
We present a new palaeoenvironmental record of hydrological variability in Lake Baikal, based on re‐modelled δ18Odiatom values of diatom silica (δ18Omodelled), where the residual contaminants are identified and compensated for using electron optical imaging and whole‐sample geochemistry. δ18Omodelled interpretations are based on the balance between rivers with high δ18O values and rivers with low δ18O values. Isotopic variability is related to latitudinal differences in precipitation which feed these rivers. The δ18Omodelled record suggests that rather moist conditions prevailed in the Lake Baikal region during the latter stages of the Younger Dryas. Throughout the Holocene, episodes of low δ18Omodelled values are, in general, in good agreement with increases in percentage haematite‐stained grains in North Atlantic sediments (indicative of ice‐rafted debris events). Rivers with southerly catchments dominate fluvial input especially between c. 3.3 and 2 cal ka BP, concurrent with high precipitation in the Lake Baikal region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Marine Isotope Stage 11 (MIS 11) is considered one of the best analogues for the Holocene. In the UK the long lacustrine sequence at Marks Tey, Essex, spans the entirety of the Hoxnian interglacial, the British correlative of MIS 11c. We present multiproxy evidence from a new 18.5‐m core from this sequence. Lithostratigraphy, pollen stratigraphy and biomarker evidence indicate that these sediments span the pre‐, early and late temperate intervals of this interglacial as well as cold climate sediments that post‐date the Hoxnian. The δ18O signal of endogenic carbonate from this sequence produces several clear patterns that are interpreted as reflecting the climatic structure of the interglacial. As well as providing evidence for long‐term climate stability during the interglacial and a major post‐Hoxnian stadial/interstadial oscillation the δ18O signal provides strong evidence for abrupt cooling events during the interglacial itself. One of these isotopic events occurs in association with a short‐lived increase in non‐arboreal pollen (the NAP phase). The results presented here are discussed in the context of other MIS 11 records from Europe and the North Atlantic, particularly with respect to our understanding of the occurrence of abrupt climatic events in pre‐Holocene interglacials. Copyright © 2016 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.  相似文献   

10.
The Chinese loess–paleosol succession, deep-sea sedimentary sequences and ice cores are the three types of paleoclimatic records. Measurements were made of the ancient climatic proxies of magnetic susceptibility, median diameter of grain size and content >40 μm, and the CaCO3 content of samples collected at 1 cm depth intervals in the fourth paleosol layer of the Luochuan loess-paleosol section on the Chinese Loess Plateau. Wavelet analysis of the data identified cycles of climate change, which were compared to the marine δ18O record of SPECMAP. The results showed that: (1) when the fourth paleosol layer was forming, the paleoclimate was relatively stable but five extreme climatic events were identifiable as occurring around 408, 381, 376, 368 and 361 kaBP; (2) two of these regional events differed from the global trend; (3) during marine isotope stage (MIS)11, the fourth paleosol layer of the Luochuan loess section recorded a regional quasi-19 ka climatic sub-cycle and (4) this sub-cycle was also reflected globally in the SPECMAP data indicating that, during MIS11, this sub-cycle was regionally and globally synchronized.  相似文献   

11.
This paper investigates the stable isotopic composition from late Pleistocene–Holocene (~ 13 to ~ 10.5 cal ka BP) shells of the land snail Helix figulina, from Franchthi Cave (Greece). It explores the palaeoclimatic and palaeoenvironmental implications of the isotope palaeoecology of archaeological shells at the time of human occupation of the cave. Modern shells from around the cave were also analysed and their isotopic signatures compared with those of the archaeological shells. The carbon isotope composition of modern shells depicts the consumption of C3 vegetation. Shell oxygen isotopic values are consistent with other Mediterranean snail shells from coastal areas. Combining empirical linear regression and an evaporative model, the δ18Os suggest that modern snails in the study area are active during periods of higher relative humidity and lower rainfall δ18O, probably at night. Late glacial and early Holocene δ18Os show lower values compared to modern ones. Early Holocene δ18Os values likely track enhanced moisture and isotopic changes in the precipitation source. By contrast, lower late glacial δ18O could reflect lower temperatures and δ18Op, compared to the present day. Shell carbon isotope values indicate the presence of C3 vegetation as main source of carbon to late glacial and early Holocene snails.  相似文献   

12.
The oxygen isotopic composition of land-snail shells may provide insight into the source region and trajectory of precipitation. Last glacial maximum (LGM) gastropod shells were sampled from loess from Belgium to Serbia and modern land-snail shells both record δ18O values between 0‰ and − 5‰. There are significant differences in mean fossil shell δ18O between sites but not among genera at a single location. Therefore, we group δ18O values from different genera together to map the spatial distribution of δ18O in shell carbonate. Shell δ18O values reflect the spatial variation in the isotopic composition of precipitation and incorporate the snails' preferential sampling of precipitation during the warm season. Modern shell δ18O decreases in Europe along a N-S gradient from the North Sea inland toward the Alps. Modern observed data of isotopes in precipitation (GNIP) demonstrate a similar trend for low-altitude sites. LGM shell δ18O data show a different gradient with δ18O declining toward the ENE, implying a mid-Atlantic source due to increased sea ice and a possible southern displacement of the westerly jet stream. Balkan LGM samples show the influence of a Mediterranean source, with δ18O values decreasing northward.  相似文献   

13.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   

14.
《Applied Geochemistry》2005,20(3):519-527
Pleistocene vegetation history on the Chinese Loess Plateau has been traditionally investigated using palynological methods, and questions remain regarding whether an extensive broadleaf deciduous forest ever developed on the loess table under favorable climatic conditions. The authors have employed a C isotope approach to address this question by comparing δ13C values in soil organic matter from different loess ecological domains with known source vegetation to the C isotope values obtained from a paleosol section that can be dated back to 130 ka. The C isotopic compositions of modern soils from the loess table and the loess–desert transition gave δ13C values of −24.5‰ to −18.2‰ and −25.7‰ to −20.7‰, respectively. These C isotopic ratios are consistent with the standing modern vegetation that is dominated by a mixture of C3 and C4 plants and can be distinguished from that in the patchy forest areas where exclusive C3 trees yield a narrow δ13C value range from −26.9‰ to −25‰ (average −26.1‰). Obtained δ13C compositions from paleosols and loess sediments in the Lantian and the Luochuan profiles vary from −24‰ to −16.9‰, indicating a grass-dominated steppe with shifting C3 and C4 contributions controlled mainly by paleoclimatic changes during the late Pleistocene. The present results suggest no extensive forest coverage on the loess table during the past 130 ka even under the most suitable conditions for forest development. This conclusion supports the explanation of natural causes for the development of only patchy forests on the modern loess table and provides critical historical information toward the vegetation restoration project that is currently underway on the Chinese Loess Plateau.  相似文献   

15.
Orbital-scale East Asian Summer Monsoon (EASM) variations inferred from loess deposits in northern China and speleothems from southern China display different dominant periods, complicating our understanding of monsoon response to insolation and ice-volume forcings. Here we integrate a new microcodium δ18O record from a high-resolution last interglacial loess profile with previously published data and provide a composite microcodium δ18O record on the Chinese Loess Plateau (CLP) since the last interglacial. The composite microcodium δ18O record displays distinct precessional cycles, consistent with speleothem δ18O records, but with different amplitude contrast (particularly during the peak interglacials). We propose that both loess and speleothem δ18O records exhibit covariations at precessional timescale oscillations. The discrepancy between loess and speleothem from southern China can be attributed to the influences of other processes besides summer precipitation on the proxies. A slight difference in amplitude between microcodium and speleothem δ18O records implies that the EASM is also influenced by inland surface boundary conditions, which has important impacts on the occurrence of EASM precipitation. Therefore, microcodium δ18O from the Chinese loess–paleosol sequences can be regarded as a representative proxy of EASM precipitation in northern China and then a reliable proxy reflecting the variation of EASM intensity.  相似文献   

16.
The PU‐2 stalagmite from Ursilor Cave provides the first dated Romanian isotope record for the Holocene. The overall growth rate of the speleothem was 3.5 cm kyr?1, corresponding to a temporal resolution of 142 y between each isotope analysis. The ‘Hendy’ tests indicate that isotopic equilibrium conditions occurred during the formation of PU‐2, and hence that it is suitable for palaeoclimatic studies. The relationship between δ18O and temperature was found to be positive. This can be interpreted either as rain‐out with distance from the west‐northwest ocean source of evaporation or shifts in air mass source with changing North Atlantic Oscillation indices. Applying five U–Th thermal ionisation mass spectrometric (TIMS) dates to a 17.5 cm isotope profile (δ18O and δ13C) along the stalagmite growth axis enabled a tentative interpretation of the palaeoclimate signal over the past 7.1 kyr. Spikes of depleted isotopic δ18O values are centred near ca. 7, ca. 5.2 and ca. 4 ka, reflecting cool conditions. The record shows two warm intervals between ca. 3.8 and ca. 3.2 ka (the maximum warmth) and from ca. 2 to ca. 1.4 ka, when the δ18O values were less negative than present. The ‘Holocene Climate Optimum’ spanning the time interval from ca. 6.8 to ca. 4.4 ka is not well expressed in the PU‐2 stalagmite. Individual spikes of lighter δ13C are interpreted as indicative of periods of heavy rainfall, at ca. 7, ca. 5.5, and ca. 3.5 ka. The overall trend to lighter δ13C in the PU‐2 stalagmite may reflect a gradual decrease in water–rock interaction. The results demonstrate that the effect of North Atlantic oceanic changes extended to the investigated area. Nevertheless, some differences in temporal correlation and intensity of stable isotopic response to these climatic events have been found, but the exact nature of these differences and the underlying mechanism is yet to be determined. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Ice core from Greenland was melted, filtered, homogenised, loaded into glass ampoules, sealed, autoclaved to eliminate biological activity, and calibrated by dual‐inlet isotope‐ratio mass spectrometry. This isotopic reference material (RM), USGS46, is intended as one of two secondary isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The measured δ2H and δ18O values of this reference water were ?235.8 ± 0.7‰ and ?29.80 ± 0.03‰, respectively, relative to VSMOW on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, ?428 and ?55.5‰. Each uncertainty is an estimated expanded uncertainty (= 2uc) about the reference value that provides an interval that has about a 95‐percent probability of encompassing the true value. This reference water is available in cases containing 144 glass ampoules that are filled with either 4 ml or 5 ml of water per ampoule.  相似文献   

18.
In the present investigation, an age model of carbonate‐rich cores from a seamount top in the Central Indian Basin (CIB) was constructed using both isotopic (230Thexcess, AMS 14C, oxygen isotopes) and biostratigraphic methods. The chronologies using the two methods are in good agreement, yielding a record of the late Middle Pleistocene to the Pleistocene–Holocene transition (550 to 11.5 ka). The first appearance datum (FAD) of the radiolarian Buccinosphaera invaginata (180 ka) and coccolith Emiliania huxleyi (268 ka) and the last appearance datum (LAD) of the radiolarian Stylatractus universus (425 ka) were used. A monsoon‐induced productivity increase was inferred from carbonate, organic carbon and δ13C records in response to the Mid‐Brunhes Climatic Shift (MBCS), consistent with an increased global productivity. While the coccolith diversity increased, a decrease in coccolith productivity was found during the MBCS. At nearly the same time period, earlier records from the equatorial Indian Ocean, western Indian Ocean and eastern Africa have shown an increased productivity in response to the influence of westerlies and increased monsoon. The influence of easterlies from Australia and the intensification of aridity are evidenced by increased kaolinite content and clay‐sized sediments in response to the MBCS. An increased abundance of Globorotalia menardii and other resistant species beginning from marine isotope stage (MIS) 11 and the proliferation of coccolith Gephyrocapsa spp. indicate increased dissolution, which is consistent with the widespread global carbonate dissolution during this period. The relatively high carbonate dissolution during the transition period of MIS 3/2 and glacial to interglacial periods (MIS 6, 7 and 8) may be due to the enhanced flow of corrosive Antarctic Bottom Water (AABW) into the CIB.  相似文献   

19.
High‐resolution records of carbon isotope composition and grey level were analysed from a stalagmite, BW‐1, from Beijing, China, deposited between c. 14 and 10.5 ka BP, the δ18O profile of which has been used to discuss the timing and structure of the Younger Dryas (YD) event in north China. The high grey level and low δ13C match the milk‐white coloured locations on the polished stalagmite surface and coincide with enhanced luminescent bands within which the concentration of both impurities and the total organic carbon (TOC) are high. Additionally, the fluorescence of speleothems was derived from organic acids that have been flushed onto the stalagmite surface along with impurities from the overlying soil by heavy summer rain and co‐precipitated with the speleothem calcite. Thus, predominantly low δ13C and high grey level values indicate increased summer precipitation that supports abundant vegetation and robust biological productivity. Consequently, three distinct time intervals are defined by the palaeoenvironmental conditions expressed in the δ13C and grey level records of stalagmite BW‐1: (i) a warm‐humid stage (Pre‐YD, 13.97 to 12.85 ka BP, including a hiatus from 12.99 to 13.21 ka BP reported before); (ii) a cool‐arid stage (YD, 12.85 to 11.56 ka BP); and (iii) a warm‐humid stage (Post‐YD, 11.56 to 10.39 ka BP). The inferences based on our research are generally consistent with other regional vegetation and climatic records.  相似文献   

20.
As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from ice‐core water from the Amundsen–Scott South Pole Station. This isotopic reference material, designated as USGS49, was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity and measured by dual‐inlet isotope‐ratio mass spectrometry. The δ2H and δ18O values of USGS49 are ?394.7 ± 0.4 and ?50.55 ± 0.04 mUr (where mUr = 0.001 = ‰), respectively, relative to VSMOW, on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, ?428 and ?55.5 mUr. Each uncertainty is an estimated expanded uncertainty (= 2uc) about the reference value that provides an interval that has about a 95% probability of encompassing the true value. This isotopic reference material is intended as one of two isotopic reference waters for daily normalisation of stable hydrogen and oxygen isotopic analysis of water with an isotope‐ratio mass spectrometer or a laser absorption spectrometer. It is available by the case of 144 glass ampoules or as a set of sixteen glass ampoules containing 5 ml of water in each ampoule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号