首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive nebkha areas develop mainly under the control of aeolian processes, and their sediments record information on regional environmental changes during different periods. Such areas have developed on the dry riverbeds and deserted arable lands of China’s Alaxa Plateau, Taklimakan, and Kumutage deserts. In this paper, we studied nebkhas that had developed in the Heicheng–Juyan region to determine their CaCO3 contents, particle size distributions, and creation dates. Extensive human activities have occurred in this region since at least in the late Tang Dynasty (618–907 ad). Although historical records show that most of the region’s rivers dried up around 1372, surface water persisted in some areas until the early Qing Dynasty (1644–1911 ad). After the 1600s, extensive nebkhas began to develop due to drying of the region’s rivers. The early stages of nebkha development were controlled by both the sediment supply and the regional wind regime, whereas late stages were controlled primarily by variations in wind activity. In the Alaxa Plateau, it took about 100 years for arable lands and riverbeds to evolve into gobi deserts, and during this time, several phases occurred with different levels of wind activity. The land degradation processes in this region are mainly controlled by surface water resources, and the impact of human activities such as reclamation on land degradation appear to have been overestimated in previous studies.  相似文献   

2.
Reported here are the first 187Os/188Os ratios and abundances of Os and Re for Taklimakan Desert sands and glacial moraines from the Kunlun Mountains. Osmium isotopic data are also reported for river sediments around the Taklimakan Desert, river sediments from the Kunlun and Tianshan Mountains, Tibetan soils and loesses from the Loess Plateau, as well as Sr and Nd isotopic data for these samples. The Taklimakan Desert sands from various regions show surprisingly homogeneous Os isotopic ratios (187Os/188Os = 1.29 ± 0.08) and abundances (Os = 11 ppt), with some variations in Re abundances (Re = 130 to 260 ppt) and 187Re/188Os ratios (60 to 140). The 187Os/188Os ratios for the Taklimakan Desert sands are close to the average for Kunlun moraines, river sediments around the Taklimakan Desert sands, and the Tibetan soils, supporting the idea that the Taklimakan Desert sands are derived from moraines and river sediments around the desert or from Tibetan soils and are homogenized by aeolian activity in the desert. Furthermore, the Os isotopic data for the sediments studied here are compared with those (187Os/188Os = 1.04, Os = 32 ppt, Re = 206 ppt, 187Re/188Os = 35) of loesses from the Loess Plateau reported elsewhere, and it is concluded that the Re-Os data for the loess can be used as proxy for the upper continental crust.  相似文献   

3.
Radiocarbon‐dated palaeontological remains and bedding features suggests that climatic changes in the northern Taklimakan Desert since the beginning of the Holocene can be divided into four stages: (i) 12 000–10 000 BP, a cool–to temperate–dry climate resulting in apparent alluvial–fluvial and weak aeolian activities; (ii) 10 000–8000 BP, a dry cold climate, resulting in large‐scale sand dune activity under regional desert expansion; (iii) 8000–3000 BP dry, warm climate, with a decreased area of shifting sand and the fixation of many sand dunes; (iv) 3000 BP to present, rising aeolian activity resulting in sandstorms, under the combined influence of climatic warming and excessive exploitation of land and water resources. Holocene deposits from profiles in the Northern Taklimakan Desert consist mainly of fine‐grained aeolian sand and silty clay. The fine aeolian sand was formed from re‐sorting of aeolian sand during the cold period of the Holocene, while the silty clay was formed by flood deposition in the Holocene warm period. The desert and desert steppe arboreal species and high CaCO3 content of the warm period strata suggest that the Holocene climate in the area, although generally dry, varied between warm/dry and cold/dry, and, especially in recent times, has become increasingly dry. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A review of the distribution of different Ordovician conodont faunas in eight areas of the Tarim Region shows that these conodont faunas can be classified into the North China and South China types. The North China type is characterized by Aurilobodus leptosomatus, A. aurilobodus, A. simplex, Tangshanodus tanshanensis, Loxodus dissectus, Parasseratognathus paltodiformis, Microcoelodus symmetricus, Belodina compressa, B. confluens, Pseudobelodina dispansa, Yaoxianognathus yaoxianensis, and Taoqupognathus blandus. These were adapted to shallow, warm-water environments. The South China type is represented by the genera Amorphognathus, Baltoniodus, Cahabagnathus, Eoplacognathus, Lenodus, Microzarkodina, Oepikodus, Paroistodus, Paracordylodus, Periodon, Polonodus, and Pygodus, which were adapted to outer shelf, deeper, and colder water environments. Using the general pattern of conodont distribution, it is possible to interpret the various depositional environments and to reconstruct broad changes in palaeogeography of the Tarim Region during Ordovician time. In general, during Tremadocian to early Middle Ordovician time, most of the Tarim Region was a shallow semi-restricted platform that became deeper towards the north and east, with an open platform in Kalping and in the northern part of Taklimakan Desert. A slope and deep basin existed in the current Tianshan Mountains region. The Tarim sea was shallow during the Early Ordovician and became deeper during “Caradocian” (Sandbian and Early Katian) time, to become shallow again during “Ashgillian” (Late Katian) time, with the exception of part of central Taklimakan, which was a land area during “Caradocian” (Sandbian and Early Katian) time.  相似文献   

5.
Palaeolimnological reconstruction of the aquatic environment in Lake Komo?any, based on sedimentology, geochemistry, and diatom and macrofossil analyses in the littoral part of the basin, reflects the mid‐Holocene history of the profile from its origin c. 9100 cal. a BP to its final transformation into an alder carr c. 4100 cal. a BP. The existence of the littoral zone can be best explained by increased precipitation during the studied interval. A stable diatom community, diatom‐inferred total phosphorus (50–80 μg L?1) and pH (~7.6), along with stable concentrations of elements associated with changes in its watershed indicate a long‐lasting, balanced aquatic environment with no major shifts attributable to external factors, including climate change. From c. 4700 cal. BP, there started a transition to terrestrial conditions, caused by either natural infilling processes or decreased precipitation. Alternation of remarkable dry/wet phases was not detected, in contrast to numerous analogous central European and supraregional records. Potential human impact was revealed through increases of Corylus and Populus pollen in the Neolithic. These anthropogenic changes in the lake surroundings had no detectable influence on the lacustrine environment. The gathered data suggest undramatic, balanced mid‐Holocene environmental and climatic settings for this central European locality, in direct contrast to numerous analogous studies from the region emphasizing fluctuations and shifts found in the sediment record.  相似文献   

6.
Reconstruction of modern climate and environmental changes in east Asia using inland natural climate archives can provide valuable insights on decadal–multidecadal climate and environmental patterns that are probably related to both natural and anthropogenic forcing. Here we investigated an 89‐cm‐long sediment core (TH1) from Tian Lake, southeastern China, for sedimentological, physical and geochemical parameters in order to understand climate and environmental changes for the latest two centuries. 137Cs‐ and 210Pb‐based age models show that the fine sand–coarse silt‐dominated core contains ~170 years (c. AD 1842–2011) of continuous sedimentation. Sediments with fine sands, low MS values, high water content, high TOC content and a high C:N ratio from c. AD 1842 to 1897 suggest intense hydrological conditions and strong runoff in the catchment, probably because of a humid climate. From AD 1897 to 1990, sediments with very fine sand and coarse silt, high MS values, low water content and unchanged TOC and C:N ratios indicate normal hydrological conditions and in‐lake algae‐derived organic matter. During this interval, the chemical weathering indicators show stronger weathering conditions compared with sediments deposited during AD 1842–1897, supporting the dominance of weathered surface soil input in the earlier interval and physical erosion dominance in the later period, respectively. Since AD 1990, the continuous decrease of geochemical proxies suggests human‐interacted Earth surface processes in the catchment of Tian Lake. A PCA revealed four dominant geochemical controlling factors – detrital input, trophic status, grain size and early diagenesis –, accounting for 26, 20, 18 and 16% of total variance, respectively. This study for the first time provides lacustrine geochemical evidence for the most recent two centuries of climate and environmental changes in coastal southeastern China, a region that is currently undergoing an inversion of critical zone, i.e. an overturning of its soil profile, owing to swift modernization.  相似文献   

7.
Lithium (Li) is a fluid-mobile element and δ7Li in secondary deposits represents an excellent proxy for silicate weathering and authigenic mineral formation. The soil samples from 1205 to 1295 cm in the Weinan profile, one of the best developed loess-paleosol sequences covering the last glacial–interglacial climatic cycle, were collected and chemically separated into detritus and carbonate fractions for subsequent analyses of Li, δ7Li, major and trace elements. Other desert specimens (i.e., Qaidam Desert, Tengger Desert, Badain Juran Desert and Taklimakan Desert) near the Chinese Loess Plateau (CLP) and various standard clays were analyzed for assisting provenance determination. The Li and δ7Li distributions in the detritus are rather homogeneous, 1.4–2.0 μg/g and +2.5‰ to +4.7‰, respectively, compared with the carbonate fraction. The detrital δ7Li varies systematically with magnetic susceptibility and grain size changes, reflecting significant Li isotopic variation associated with sources and mineralogy of detrital material. On the other hand, Li and δ7Li in carbonates show large changes, 781–963 ng/g and −4.1‰ to +10.2‰, respectively. These carbonate δ7Li correlated well with the estimated index of chemical weathering, as a result of Li mobilization and soil formation during chemical weathering.  相似文献   

8.
In this study, a ca. 4000 cal. yr ancient lacustrine (or wetland) sediment record at the southern margin of Tarim Basin is used to reconstruct the history of climate change. Six radiocarbon dates on organic matter were obtained. δ18O and δ13C of carbonate, pollen and sediment particle size were analysed for climate proxies. The proxies indicate that a drier climate prevailed in the area before ca. 1010 BC and during period 1010 BC–AD 500 climate then changed rapidly and continuously from dry to moist, but after about AD 500 climate generally shows dry condition. Several centennial‐scale climatic events were revealed, with the wettest spell during AD 450–550, and a relatively wetter interval between AD 930–1030. Pollen results show that regional climate may influence human agricultural activities. Spectral analysis of mean grain size (MGS) proxy reveals statistically pronounced cyclic signals, such as ca. 200 yr, ca. 120 yr, ca. 90 yr, ca. 45 yr and ca. 33 or 30 yr, which may be associated with solar activities, implying that solar variability plays an important role in the decadal‐ and centennial‐scale climate variations in the study area. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Nebkhas (coppice dunes) have formed throughout the gobi desert regions of China in response to the decreased near-surface wind speed caused by vegetation, combined with deposition of aeolian sediment in and around the vegetation. Although nebkhas have been extensively studied on several land surfaces, they have not yet been fully described where they form in areas of gobi desert. Based on field investigations of nebkha morphology and adjacent land surface sediment content on and inside the surface of these dunes, the following were found: (i) the nebkhas that develop in gobi deserts consist of two types – dunes with or without a depositional tail (a shadow dune); (ii) the nebkhas in the area of gobi desert were smaller than those found in sandy deserts, oases, or other areas with a rich sediment source, with a mean height of 0.28 m, mean width 1.63 m and mean length 1.34 m; and (iii) the dune height, length and width were significantly positively linearly related to the vegetation height, length and width. These patterns were similar at all four of the study sites, but the relationships with dune width differed among the sites. The average particle-size distributions on and inside the vegetation did not differ between the four sites. However, significant spatial differences in the sediments on and inside the dunes indicate that nebkhas can capture both local and distant sediments driven by the wind. These findings suggest a potential role of nebkhas in dust emission, although this role must be confirmed in future research.  相似文献   

10.
Ribeiro, S., Moros, M., Ellegaard, M. & Kuijpers, A. 2012 (January): Climate variability in West Greenland during the past 1500 years: evidence from a high‐resolution marine palynological record from Disko Bay. Boreas, Vol. 41, pp. 68–83. 10.1111/j.1502‐3885.2011.00216.x. ISSN 0300‐9483. Here we document late‐Holocene climate variability in West Greenland as inferred from a marine sediment record from the outer Disko Bay. Organic‐walled dinoflagellate cysts and other palynomorphs were used to reconstruct environmental changes in the area through the last c. 1500 years at 30–40 years resolution. Sea ice cover and primary productivity were identified as the two main factors driving dinoflagellate cyst community changes through time. Our data provide evidence for an opposite climate trend in West Greenland relative to the NE Atlantic region from c. AD 500 to 1050. For the same period, sea‐surface temperatures in Disko Bay are out‐of‐phase with Greenland ice‐core reconstructed temperatures and marine proxy data from South and East Greenland. This is probably governed by an NAO‐type pattern, which results in warmer sea‐surface conditions with less extensive sea ice in the area for the later part of the Dark Ages cold period (c. AD 500 to 750) and cooler conditions with extensive sea ice inferred for the first part of the Medieval Climate Anomaly (MCA) (c. AD 750 to 1050). After c. AD 1050, the marine climate in Disko Bay becomes in‐phase with trends described for the NE Atlantic, reflected in the warmer interval for the remainder of the MCA (c. AD 1050–1250), followed by cooling towards the onset of the Little Ice Age at c. AD 1400. The inferred scenario of climate deterioration and extensive sea ice is concomitant with the collapse of the Norse Western Settlement in Greenland at c. AD 1350.  相似文献   

11.
New (garnet Sm–Nd and Lu–Hf) and existing (Rb–Sr, 40Ar/39Ar, U–Pb and Sm–Nd) ages and data on deformational fabrics and mineral compositions show for the first time that the garnet growth and ductile deformation in the Alpine Schist belt and Southern Alps orogen, New Zealand are diachronous and partly Cenozoic in age. The dominant metamorphic isograds in the Alpine Schist formed during crustal thickening at a previously unsuspected time, at c. 86 Ma, immediately prior to the opening of the Tasman Sea at c. 84–82 Ma. Obvious changes in the textures and compositional zoning patterns of garnet are not always reliable indicators of polymetamorphism, and fabric elements can be highly diachronous. A detailed timing history for the growth of a single garnet is recorded by a Sm–Nd garnet–whole rock age of 97.8 ± 8.1 Ma for the inmost garnet core (zone 1), Lu–Hf ages of 86.2 ± 0.2 Ma and 86.3 ± 0.2 Ma for overgrowth zones 2 and 3, a step‐leach Sm–Nd age of 12 ± 37 Ma for zone 4, and growth of the garnet rim (zone 5) over the Alpine Fault mylonite foliation during the modern phase of oblique collision that began at c. 5–6 Ma. Plate convergence along the New Zealand portion of the Gondwana margin continued after c. 105 Ma, almost certainly culminating in the oblique collision of a large oceanic plateau (Hikurangi Plateau). The metamorphism of the Alpine Schist at c. 86 Ma is evidence of that hit. The mid‐ to late‐Cretaceous extension that is widespread elsewhere in the New Zealand region is attributed to upper plate extension and slab roll‐back. The effects of the collision with the Hikurangi Plateau may have contributed to the changing plate motions in the region leading up to the opening of the Tasman Sea at c. 82 Ma.  相似文献   

12.
The prograde pressure–temperature (PT) path for the complexly polydeformed Proterozoic Broken Hill Block (Australia) has been reconstructed through detailed structural analysis in conjunction with calculation of compositionally specific PT pseudosections of pelitic rock units within a high‐temperature shear zone that formed early in the tectonic evolution of the terrane. Whilst the overall PT path for the Broken Hill Block has been interpreted to be anticlockwise, the prograde portion of this path has been unresolved. Our results have constrained part of this prograde path, showing an early heating event (M1) at PT conditions of at least c. 600 °C and c. 2.8–4.2 kbar, associated with an elevated geothermal gradient (c. 41–61 °C km?1). This event is interpreted to be the result of rifting at c. 1.69–1.67 Ga, or at c. 1.64–1.61 in the Broken Hill Block. Early rifting was followed by an episode of lithospheric thermal relaxation and burial, during which time sag‐phase sediments of the upper Broken Hill stratigraphy (Paragon Group) were deposited. Following sedimentation, a second tectonothermal event (M2/D2) occurred. This event is associated with peak low‐pressure granulite facies metamorphism (c. 1.6 Ga) and attained conditions of at least 740 °C at c. 5 kbar. A regionally pervasive, high‐temperature fabric (S2) developed during the M2/D2 event, and deformation was accommodated along lithology‐parallel, high‐temperature shear zones. The larger‐scale deformation regime (extensional or shortening) of this event remains unresolved. The M2/D2 event was terminated by intense crustal shortening during the Olarian Orogeny, during which time the first mappable folds within the Broken Hill Block developed.  相似文献   

13.
Flakket on the island of Anholt in Denmark is a cuspate foreland facing the microtidal Kattegat sea. It is composed of a number of beach ridges typically covered by dune sand and separated by swales and wetlands. OSL dating indicates that the evolution of Flakket began c. AD 1000. Foreland growth was punctuated by a major episode of coastal reorganization leading to coastal retreat c. AD 1800. Coastal retreat led to the formation of an erosion surface that separates older and higher‐lying beach‐ridge and swale deposits from younger and lower‐lying deposits. The palaeo‐sea level is deduced from the architecture of the deposits, and interpretation of ground‐penetrating radar data and geomophological observations indicates that relative sea level was about 1.90±0.25 m above present sea level c. AD 1000, but about 0.00±0.25 m relative to present sea level c. AD 1830 and c. AD 1870. Anholt is situated at the margin of the uplifted Fennoscandian area; assuming uplift to be about 1.2 mm a?1 it follows that absolute sea level was about +0.70±0.25 m at AD 1000, but around ?0.22±0.25 m at AD 1830 and around ?0.17±0.25 m at AD 1870. Within the uncertainties of the age control, the sea‐level indicators mapped by ground‐penetrating radar reflections and the variability of estimates of uplift found in the literature, the result obtained for AD 1000 is consistent with findings from the Stockholm area in Sweden and with a recently published global sea‐level curve.  相似文献   

14.
新疆克里雅河洪泛事件与树轮记录的初步研究   总被引:2,自引:2,他引:2       下载免费PDF全文
新疆克里雅河尾闾地带的达里雅博依绿洲位于塔克拉玛干沙漠腹地。在塔克拉玛干沙漠腹地,光、热条件非常充分,水分是影响胡杨生长的主要因子。由于上游截流用于农业生产及河流下渗等因素的影响,导致下游水量逐渐减少,只有特大洪汛期才有洪水泻入下游尾闾地带。因此,胡杨的生长与洪汛期洪水密切相关,洪水较大的年份输入的水量多,有利于胡杨的生长。本文对新疆克里雅河尾闾地带胡杨(Populuseuphratica)树轮进行了初步研究,发现树轮宽度与克里雅河径流量的相关性较差,轮宽与器测径流量的相关系数仅为0.15,考虑到胡杨生长对径流量的滞后效应,滞后3年的轮宽与器测径流量的相关系数为0.30,但与洪水年份有较好的对应性。近百年来的9次洪水年份分别为1941年、1963年、1971年、1972年、1981年、1987年、1996年、2000年和2001年,均对应于胡杨树轮宽度较大的年份,但一些年份有一定的滞后期。  相似文献   

15.
In regions with seasonal temperate climatic regimes, tree growth is rarely controlled by any single environmental factor. As a consequence, the development of robust palaeoclimate reconstructions has proved challenging. Tree‐ring stable carbon isotope ratios (δ13C), however, are controlled primarily by photosynthetic rate, not by net growth. Therefore, at sites where climatic controls on tree‐ring growth are not strongly expressed, a robust (isotopic) palaeoclimate signal may still potentially be preserved. This hypothesis was tested using a 160‐year record of δ13C measured from the pooled latewood cellulose of six Quercus petraea L. (sessile oak) trees from Allt Lan‐las in West Wales, UK. Raw δ13C values were corrected for changes in the isotopic ratio of atmospheric carbon dioxide and for changes in the behaviour of trees due to the increasing availability of atmospheric CO2 since AD 1850. Strong correlations with local summer temperature and sunshine are reported, and also with the Central England Temperature record over the full length of the isotopic chronology (AD 1850–2010) (r = 0.69, P < 0.001). We conclude that tree‐ring stable isotopes can be used to extract strong palaeoclimate signals even from oak trees growing in a temperate maritime climate. This demonstrates the potential for extracting robust palaeoclimatic information from the very long and well‐replicated oak chronologies which have been developed in western and central Europe primarily for dating rather than palaeoclimatic research purposes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Regional‐scale 40Ar–39Ar data presented in this paper reveal significant across‐strike and along‐strike age differences in the Committee Bay belt (CBb), Rae Province, Nunavut, Canada, that complement variations in observed monazite ages. 40Ar–39Ar hornblende ages are c. 1795, 1775, and 1750 Ma in the western, eastern and central parts of the Prince Albert Group (PAG) domain respectively. The migmatite domain and Walker Lake intrusive complex are characterized by c. 1750–1730 40Ar–39Ar hornblende ages without significant along‐strike variation. The 40Ar–39Ar data provide important constraints on the cooling history and on thermal modelling that elucidates the controls on diachroneity and metamorphic patterns within the belt. In the western CBb, prograde monazite growth occurred 26 ± 10 Myr earlier in the migmatite domain (1864 ± 9 Ma; peak P–T = 5 kbar?700 °C) than in the PAG domain (1838 ± 5 Ma; peak P–T = 5 kbar?580 °C). Calculations indicate that this earlier monazite growth results from tectonic thickening of higher heat productivity Archean lithologies in the migmatite domain, which undergoes more rapid prograde heating than the less radiogenetic and lower grade rocks of the PAG domain. Granite generation via biotite dehydration melting at 800 °C and 20 km depth is predicted to occur c. 1835 Ma, in agreement with geochronological constraints. The tectonic burial of crustal domains with contrasting radiogenic properties also explains the general congruence of lower to upper amphibolite facies metamorphic zones generated during the two main orogenic cycles (i.e. M2–D1 and M3–D2). The modelled timing of prograde monazite growth in the migmatite domain suggests that D2 tectonic thickening began at 1872 ± 9 Ma, some 8 ± 3 Myr before monzazite growth, coeval with the inferred time of collision of the Meta Incognita terrane with the southern Rae Province. Along‐strike diachroneity, reflected in 25 Myr younger monazite and 40Ar–39Ar hornblende ages in the eastern relative to the western PAG domain, cannot be accounted for by heat productivity contrasts along the belt. Instead the younger deformation and metamorphism in the eastern CBb was driven by its proximity to the eastern promontory of the Superior Province which collided with the Rae Province at c. 1820 Ma. The 40Ar–39Ar data presented here support the interpretation that the youngest monazite in the CBb crystallized at c. 1790 Ma in the central CBb when this part of the belt was downfolded into a gentle synformal structure while the western part of the belt cooled through 40Ar–39Ar hornblende closure. The results of this study illustrate the important influence of contrasting rock properties on the thermal evolution of orogenic belts and on the temporal record of this evolution.  相似文献   

17.
The last glacial–interglacial transition encompassed rapid climate oscillations that affected both hemispheres. At low latitudes, the pattern of oscillations is not well established. To address this issue, pollen analysis was performed at Ciénega San Marcial, a monsoon‐influenced site located on the southeastern edge of the Sonoran Desert at the limit of the tropical thornscrub. The pollen record covers the Late Wisconsinan glacial termination II, from 15 650 to 13 400 cal. a BP, including GS‐2 and the Lateglacial interstadial, and a recent historical period (AD c. 1919 to 2004). We applied the modern analogue technique, in which pollen taxa are assigned to plant functional types (PFTs), to reconstruct the past climates. At the end of GS‐2, a Juniperus–Pinus woodland is indicative of annual temperatures 10±2 °C colder than present and higher annual precipitation dominated by winter rains. The onset of the Lateglacial interstadial occurs at c. 15 500 cal. a BP, resulting in a lower sedimentation rate and the spread of a xeric grassland. This period is associated with an increase in summer insolation. A weak signal of summer monsoon intensification is dated to 14 825 cal. a BP but is associated with colder winter temperatures. A wider spread of tropical taxa occurs after 13 800 cal. a BP, along with the loss of Juniperus, suggesting a temperature increase of approximately 3 °C. In spite of the earlier Lateglacial warming, the transition from glacial to interstadial conditions seems to be related to North Atlantic atmospheric variations. We conclude that during the last glacial–interglacial transition, the Sonoran Desert at 28.5° latitude was sensitive to climate variations originating in northern latitudes. The recent historical sequence displays summer‐dominant precipitation and additional drivers of climate change, including anthropogenic factors and El Niño, thus showing a stronger Pacific circulation influence in the subrecent period.  相似文献   

18.
Pollen accumulation rates (PARs) provide a potential proxy for quantitative tree volume (m3 ha?1) reconstruction with reliable absolute pollen productivity estimates (APPEs). We obtained APPEs for pine, spruce and birch at their range limits in northern Finland under two temperature periods (‘warm’ and ‘cold’) based on long‐term pollen trap and tree volume records within a 14‐km radius of each trap. APPEs (mean ± SE; × 108 grains m?3 a?1) tend to be higher for the ‘warm’ periods (pine 123.8 ± 24.4, birch 528.0 ± 398.4, spruce 434.3 ± 113.7) compared with the ‘cold’ periods (pine 95.5 ± 37.3, birch 317.3 ± 282.6, spruce 119.6 ± 37.6), although the difference is only significant for spruce. Using an independent temperature record and the APPEs obtained, we reconstruct a low‐frequency record of pine volume changes over the last 1000 years at Palomaa mire, where a high‐resolution record of Pinus PARs is available. Five phases are distinguished in the reconstruction: moderate pine volume, AD 1080–1170; high volume, AD 1170–1340; low volume, AD 1340–1630; very low volume, AD 1630–1810; and rising pine volume, AD 1810–1950. These phases do not coincide with periods of high or low June–July–August temperatures, and thus appear to reflect regional variations in tree volume, while high‐frequency changes within each time‐period block show variations in PARs in response to temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Geochemical and isotopic studies of aeolian sediments in China   总被引:5,自引:0,他引:5  
The Sr and Nd isotopic, rare earth element (REE) and major element compositions, together with mineral and grain‐size proportions, are reported for aeolian loess deposits and desert sands from several Chinese localities. The study was carried out in order to examine regional variations in the isotopic and geochemical features of these aeolian sediments, and to constrain the provenance of Chinese loess. Samples include loesses from the Tarim and Junggar basins and desert sands from the Taklimakan desert in north‐west China, loess from the Ordos area and desert sands from the Tengger and Mu‐us deserts in north‐central China, as well as loess and desert sands from the Naiman area, north‐east China. REE distributions show minimal variation among the Chinese loess deposits, whereas those for the desert sands show regional variations. New isotopic data document a latitudinal variation in Sr and Nd isotopic features for the loesses and desert sands. The Naiman and Junggar loesses have distinctly lower 87Sr/86Sr ratios and higher εNd(0) values than the loesses from the Tarim Basin, the Ordos area and the Loess Plateau. Among the desert sands, the Naiman samples have higher εNd(0) values than the Taklimakan, Tengger and Mu‐us samples. Isotopic data suggest that loesses of the Loess Plateau were supplied from the Tarim Basin loesses and Taklimakan Desert sand, and that the Naiman loesses were supplied from the Junggar Basin loesses. The latitudinal variation in the loesses and desert sands may be partly explained by isotopic variations reported previously for moraines from the Tianshan and west Kunlun Mountains, which are possible sources for the loesses and desert sands. These inferences on the provenance of the loesses and desert sands are consistent with the dust transport pattern over East Asia.  相似文献   

20.
Major-element composition, mineral composition and grain-size distribution have been studied for Quaternary aeolian sediments from the Taklimakan Desert, north-western China, together with the variation of chemical and mineralogical compositions of different grain-size fractions. Aeolian sediments from the Taklimakan Desert have higher ratios of feldspar/quartz and calcite/quartz, finer grain size, poorer roundness of quartz and feldspar grains and lower abundances of frosted quartz, than found in aeolian sediments from other deserts such as the Saudi Arabian Desert. In spite of these immature mineralogical and sedimentological features, the aeolian sediments from the Taklimakan Desert show low regional variations in major-element and mineral compositions and are homogenized. These observations confirm that two processes, glacial activity within surrounding mountains and aeolian activity at the Tarim Basin, are important in the homogenization of the Taklimakan Desert sands. Taklimakan Desert sediments are constantly and effectively supplied from basement rocks in the surrounding mountains by glacial erosion. The supplied sediments are further homogenized by aeolian activity in the desert and are partly blown away, serving as the source of Chinese aeolian loess. Compositional differences are observed between loess (mainly 10–40 μm particles) and the <45 μm fraction of the Taklimakan Desert sediments, as well as between loess and whole rock of the Taklimakan Desert sediments. These observations provide constraints for precise modelling of loess formation, and for assessment of the chemical composition of the upper continental crust based on the chemical composition of aeolian loess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号