首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A map has been reconstructed representing the large-scale glacial and glaciofluvial morphology of Northern Karelia and the adjacent area of Soviet Karelia. Observations have been made on the directions of glacial striae and on the distribution of sub-aquatic and supra-aquatic terrain in order to obtain a consistent picture of the course of deglaciation in the area and the factors affecting it. The map indicates that the behaviour of the glacier during the deglaciation was largely governed by the distribution of sub-aquatic and supra-aquatic areas. The marginal zone of the ice sheet was divided into two large lobes in this area. The Finnish Lake District Lobe terminated mostly in water, giving rise to massive glaciofluvial accumulations, while the North Karelian Lobe flowed on the land above the highest shore levels, pushing up several more or less discontinuous narrow end-moraine ridges. Relatively large glaciofluvial deposits were also formed in the supra-aquatic area in places where the ice margin terminated in a local ice-dammed lake. It is evident that the Salpausselkä I and II end-moraines extend as continuous formations only to the zone where the former ice margin rose onto dry land during the deglaciation phase. The spatial and temporal differences in the glacial dynamics and differing depositional environments gave rise to the complex glacial morphology of Northern Karelia.  相似文献   

2.
Tasmania is important for understanding Quaternary climatic change because it is one of only three areas that experienced extensive mid‐latitude Southern Hemisphere glaciation and it lies in a dominantly oceanic environment at a great distance from Northern Hemisphere ice sheet feedbacks. We applied exposure dating using 36Cl to an extensive sequence of moraines from the last glacial at Mt. Field, Tasmania. Glaciers advanced at 41–44 ka during Marine oxygen Isotope Stage (MIS) 3 and at 18 ka during MIS 2. Both advances occurred in response to an ELA lowering greater than 1100 m below the present‐day mean summer freezing level, and a possible temperature reduction of 7–8°C. Deglaciation was rapid and complete by ca. 16 ka. The overall story emerging from studies of former Tasmanian glaciers is that the MIS 2 glaciation was of limited extent and that some glaciers were more extensive during earlier parts of the last glacial cycle. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Coarse crystalline cryogenic cave carbonate (CCC) forms during the slow freezing of standing water pools and represents indirect proof of freezing temperature in the past. The dating by U‐series of CCC deposits from nine caves in the Western Carpathians Mountains of Slovakia suggests that freezing conditions, and possible permafrost conditions, occurred during the Last Permafrost Maximum (LPM, c. 20–18 ka BP). The CCC deposits occur in caves at elevations of between 800 and 1800 m a.s.l. They point to widespread alpine permafrost, the lower limit of discontinuous/sporadic permafrost being approximately 800 m a.s.l. The thickness of permafrost probably varied between 30 and 180 m. In the Vysoké Tatry Mountains at altitudes of ~1800 m a.s.l., one occurrence of CCC suggests that subzero temperatures may have penetrated to a depth of over 285 m.  相似文献   

4.
The interplay between the onshore and offshore areas during the Last Glacial Maximum and the deglaciation of the Scandinavian Ice Sheet is poorly known. In this paper we present new results on the glacial morphology, stratigraphy and chronology of Andøya, and the glacial morphology of the nearby continental shelf off Lofoten–Vesterålen. The results were used to develop a new model for the timing and extent of the Scandinavian Ice Sheet in the study area during the local last glacial maximum (LLGM) (26 to 16 cal. ka BP). We subdivided the LLGM in this area into five glacial events: before 24, c. 23 to 22.2, 22.2 to c. 18.6, 18 to 17.5, and 16.9–16.3 cal. ka BP. The extent of the Scandinavian Ice Sheet during these various events was reconstructed for the shelf areas off Lofoten, Vesterålen and Troms. Icecaps survived in coastal areas of Vesterålen–Lofoten after the shelf was deglaciated and off Andøya ice flowed landwards from the shelf. During the LLGM the relative sea level was stable until 18.5 cal. ka BP, and thereafter there was a sea‐level drop on Andøya. Thus, relative sea level (i.e. a sea level rise) does not seem to be a driving mechanism for ice‐margin retreat in this area but the fall in sea level may have had some importance for the grounding episodes on the banks during deglaciation. The positions of the grounding zone wedges (GZWs) in the troughs are related to the morphology as they are often located where the troughs narrow.  相似文献   

5.
A high‐resolution map of potential frozen ground distribution in NE Asia (90–150°E, 25–60°N) at the period of the Last Permafrost Maximum (LPM, c. 21 000 years ago) was dually reconstructed by means of a statistical classification using air freezing and thawing indices and a topographical downscaling using a digital relief model (ETOPO1). Background LPM climate data were derived from global climate model simulations of the Paleoclimate Model Intercomparison Project, Phase II (PMIP2). The reconstructed LPM map shows the southward shift of the southern limit of climate‐driven permafrost by 400–1500 km, with the greatest advance in the western sector (90–110°E), encompassing an area from central Siberia to most of the Altai area. The advance of environmentally conditional permafrost and seasonally frozen ground was greatest in the eastern sector (110–150°E), with an average shift of about 450 km. The descent of the lower limit of LPM alpine permafrost was in the range of 400–800 m. A comparison of the reconstructed map with published literature shows that this method, simplistically constructed yet effectively recognizing seasonality, continentality and topography, captures local features better than more elaborate methods. The sensitivity examination of a constant atmospheric lapse rate shows that altitudes of 2000–5000 m a.s.l. were most sensitive, though with only a limited effect on overall LPM distribution.  相似文献   

6.
Direct traces of past sea levels are based on the elevation of old coral reefs at times of sea level highstands. However, these measurements are discontinuous and cannot be easily correlated with climate records from ice cores. In this study we show a new approach to recognizing the imprint of sea level changes in continuous sediment records taken from the continental slope at locations that were continuously submerged, even during periods of sea level lowstand. By using a sediment core precisely synchronized with Greenland ice cores, we were able to recognize major floods of the Mediterranean continental shelf over the past 270 kyr. During the last glacial period five flooding events were observed at the onset of the warmest Greenland interstadials. Consistent correspondence between warm climate episodes and eustatic sea level rises shows that these global flooding events were generated by pronounced melting of the Northern Hemisphere ice sheets, due to rapid intensification of Atlantic Meridional Overturning Circulation.The method described in this study opens a new perspective for inter-hemispheric synchronization of marine climate records if applied in other continental margins from the Southern Hemisphere or the equatorial regions.  相似文献   

7.
High‐resolution marine palynological data have been obtained from two very long sediment cores (MD952009 and MD952010) retrieved from the southern Norwegian Sea. The dinoflagellate cyst assemblages show pronounced fluctuations in composition, which correlate strongly with magnetic susceptibility records and also mimic the δ18O signal of the GISP2 Greenland ice‐core. If focusing on the period from 48 to 30 cal. kyr BP, this correlation suggests a paradoxical response of the sea‐surface environments to the atmospheric conditions over Greenland: when the Greenland δ18O signal reflects warm interstadial conditions, the Norwegian Sea depicts cold sea‐surface temperatures with quasi‐perennial sea‐ice cover (based on dinoflagellate cysts). In contrast, when the Greenland δ18O records cold stadial periods, the Norwegian Sea‐surface temperatures are warm (based on dinoflagellate cysts), probably linked to inflow of the North Atlantic Drift. These results, similar in both cores, are contrary to those of previous studies and shed light on a possible decoupling of Norwegian sea surface‐water conditions and atmospheric conditions over Greenland. This decoupling could be linked to an atmosphere–ocean system behaving similar to that which the Northern Hemisphere is experiencing at present, i.e. strongly variable owing to the North Atlantic Oscillation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Data on recent variations in the seasonal extent of snow cover and sea ice, of the terminal position and volume of alpine glaciers, and of ground temperature profiles in permafrost areas are reviewed. The extent of seasonal snow cover and of sea ice has fluctuated irregularly over the last 15–20 years. There is no apparent response to global warming trends. In contrast, most glaciers retreated and thinned from the late 19th century until the 1960s and Alaskan permafrost temperatures have risen 2°–4° C per century. Recently, some glacier advances have been noted.  相似文献   

9.
The nature of permafrost and related environmental conditions in the Weichselian Late Pleniglacial and Lateglacial are reconstructed based on the assessment of frost structures that are best documented in the Loess Belt and in plateau areas composed of glacial till. Investigations were conducted in the central‐eastern part of the European Sand Belt (SE Poland and NW Ukraine) on a fluvio‐aeolian sedimentary succession and took into account its chronological context given by luminescence dating. Various generations of periglacial structures found in these deposits indicate not only the development of permafrost (ice‐wedge pseudomorphs) and decreased humidity (composite wedge casts) but also the degradation of permafrost (large‐scale involutions) and, finally, the establishment of deep seasonal frost (frost cracks). The diversity of structures in the study region appears to result from local conditions rather than increasing continentality of climate towards the east.  相似文献   

10.
The impact of the Laurentide Ice Sheet (LIS) deglaciation on Northern Hemisphere early Holocene climate can be evaluated only once a detailed chronology of ice history and sea‐level change is established. Foxe Peninsula is ideally situated on the northern boundary of Hudson Strait, and preserves a chronostratigraphy that provides important glaciological insights regarding changes in ice‐sheet position and relative sea level before and after the 8.2 ka cooling event. We utilized a combination of radiocarbon ages, adjusted with a new locally derived ΔR, and terrestrial in‐situ cosmogenic nuclide (TCN) exposure ages to develop a chronology for early‐Holocene events in the northern Hudson Strait. A marine limit at 192 m a.s.l., dated at 8.1–7.9 cal. ka BP, provides the timing of deglaciation following the 8.2 ka event, confirming that ice persisted at least north of Hudson Bay until then. A moraine complex and esker morphosequence, the Foxe Moraine, relates to glaciomarine outwash deltas and beaches at 160 m a.s.l., and is tightly dated at 7.6 cal. ka BP with a combination of shell dates and exposure ages on boulders. The final rapid collapse of Foxe Peninsula ice occurred by 7.1–6.9 cal. ka BP (radiocarbon dates and TCN depth profile age on an outwash delta), which supports the hypothesis that LIS melting contributed to the contemporaneous global sea‐level rise known as the Catastrophic Rise Event 3 (CRE‐3).  相似文献   

11.
Sediment proxy records from a continuous, 1.5 million year long deep‐sea sediment core from a site in the western Norwegian Sea were used to obtain new insights into the nature of palaeoceanographic change in the northern North Atlantic (Nordic seas) during the climatic shift of the Mid‐Pleistocene Revolution (MPR). Red‐green sediment colour and magnetic susceptibility records both reveal significant differences in their mean values when comparing the intervals older than 700 000 yr (700 ka) with those from the past 500 kyr. The timing and duration of these changes indicates that the MPR in the Nordic seas is characterised by a gradual transition lasting about 200 kyr. Together with further sedimentological evidence this suggests that the mid‐Pleistocene climate shift was accompanied by a general change in ice‐drift pattern. It is further proposed that prior to the onset of the major late Pleistocene glaciations in the Northern Hemisphere a significant proportion of the ice in the eastern Nordic seas originated from a southern provenance, whereas later it dominantly came from the surrounding landmasses. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Few well‐dated records of the deglacial dynamics of the large palaeo‐ice streams of the major Northern Hemisphere ice sheets are presently available, a prerequisite for an improved understanding of the ice‐sheet response to the climate warming of this period. Here we present a transect of gravity‐core samples through Trænadjupet and Vestfjorden, northern Norway, the location of the Trænadjupet – Vestfjorden palaeo‐ice stream of the NW sector of the Fennoscandian Ice Sheet. Initial ice recession from the shelf break to the coastal area (~400 km) occurred at an average rate of about 195 m a−1, followed by two ice re‐advances, at 16.6–16.4 ka BP (the Røst re‐advance) and at 15.8–15.6 ka BP (the Værøy re‐advance), the former at an estimated ice‐advance rate of 216 m a−1. The Røst re‐advance has been interpreted to be part of a climatically induced regional cold spell while the Værøy re‐advance was restricted to the Vestfjorden area and possibly formed as a consequence of internal ice‐sheet dynamics. Younger increases in IRD content have been correlated to the Skarpnes (Bølling – Older Dryas) and Tromsø – Lyngen (Younger Dryas) Events. Overall, the decaying Vestfjorden palaeo‐ice stream responded to the climatic fluctuations of this period but ice response due to internal reorganization is also suggested. Separating the two is important when evaluating the climatic response of the ice stream. As demonstrated here, the latter may be identified using a regional approach involving the study of several palaeo‐ice streams. The retreat rates reported here are of the same order of magnitude as rates reported for ice streams of the southern part of the Fennoscandian Ice Sheet, implying no latitudinal differences in ice response and retreat rate for this ~1000 km2 sector of the Fennoscandian Ice Sheet (~60–68°N) during the climate warming of this period.  相似文献   

13.
Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions   总被引:11,自引:0,他引:11  
Nelson  F. E.  Anisimov  O. A.  Shiklomanov  N. I. 《Natural Hazards》2002,26(3):203-225
The permafrost regions currently occupy about one quarter of the Earth's land area.Climate-change scenarios indicate that global warming will be amplified in the polarregions, and could lead to a large reduction in the geographic extent of permafrost.Development of natural resources, transportation networks, and human infrastructurein the high northern latitudes has been extensive during the second half of the twentiethcentury. In areas underlain by ice-rich permafrost, infrastructure could be damagedseverely by thaw-induced settlement of the ground surface accompanying climatechange. Permafrost near the current southern margin of its extent is degrading, andthis process may involve a northward shift in the southern boundary of permafrostby hundreds of kilometers throughout much of northern North America and Eurasia.A long-term increase in summer temperatures in the high northern latitudes couldalso result in significant increases in the thickness of the seasonally thawed layerabove permafrost, with negative impacts on human infrastructure located on ice-richterrain. Experiments involving general circulation model scenarios of global climatechange, a mathematical solution for the thickness of the active layer, and digitalrepresentations of permafrost distribution and ice content indicates potential forsevere disruption of human infrastructure in the permafrost regions in response toanthropogenic climate change. A series of hazard zonation maps depicts generalizedpatterns of susceptibility to thaw subsidence. Areas of greatest hazard potential includecoastlines on the Arctic Ocean and parts of Alaska, Canada, and Siberia in whichsubstantial development has occurred in recent decades.  相似文献   

14.
We present new results for relative sea‐level change for southern Greenland for the interval from 9000 cal. yr BP to the present. Together with earlier work from the same region this yields a nearly complete record from the time of deglaciation to the present. Isolation and/or transgression sequences in one lake and five tidal basins have been identified using lithostratigraphic analyses, sedimentary characteristics, magnetic susceptibility, saturated induced remanent magnetisation (SIRM), organic and carbonate content, and macrofossil analyses. AMS radiocarbon dating of macrofossils and bulk sediment samples provides the timescale. Relative sea level fell rapidly and reached present‐day level at ~9300 cal. yr BP and continued falling until at least 9000 cal. yr BP. Between 8000 and 6000 cal. yr BP sea level reached its lowest level of around ~10 m below highest astronomical tide. At around 5000 cal. yr BP, sea level had reached above 7.8 m below highest astronomical tide and slowly continued to rise, not reaching present‐day sea level until today. The isostatic rebound caused rapid isolation of the basins that are seen as distinct isolation contacts in the sediments. In contrast, the late Holocene transgressions are less well defined and occurred over longer time intervals. The late Holocene sea‐level rise may be a consequence of isostatic reloading by advancing glaciers and/or an effect of the delayed response to isostatic rebound of the Laurentide ice sheet. One consequence of this transgression is that settlements of Palaeo‐Eskimo cultures may be missing in southern Greenland. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The size, age and dynamics of Pleistocene glaciers, especially ice sheets that periodically covered the northern seaboard of Eurasia, are crucial for understanding the evolution of arctic climates, sea‐level changes, the biota and tectonism. General ideas on the glacial history of the vast areas of northern Russia between 48° and 148°E, beyond the limits of the Fennoscandian glaciation, have considerably changed during the last two decades. The change towards modern views may even be considered as a paradigm shift from the conventional wisdom of the previous half‐century. The transformation of the main landmarks of late Quaternary glacial history started in the 1970s and accelerated after 1993 as a result of international collaboration in the Russian Arctic. A wealth of new sedimentological, geomorphic and stratigraphic data has recently accumulated for the sedimentary record of the last 200 ka. This information, together with data collected from native geological surveys, has been synthesized in the form of digital maps of ice limits based on key stratigraphic sites. The results have been published as contributions to the international programs QUEEN and APEX and also as parts of global compilations. These publications give general overviews of the Eurasian glacial history, but some important modern data are reported only in the Russian literature and therefore are hardly known to the international community. In this paper I will first consider the background material on the non‐Scandinavian glaciations and then follow this with a review of the modern results obtained in the course of international cooperation. The outcome is inevitably influenced (or biased) by my long‐term experience in studying the Pleistocene of northern Russia. I will not discuss here the extreme northeast of Siberia (western Beringia), as this is a distinct topic partly overviewed in recent publications.  相似文献   

16.
对全球海面变化均衡模式的改进   总被引:5,自引:0,他引:5       下载免费PDF全文
杨学祥 《地质科学》1992,(4):404-408
以J.A.Clark为代表的全球海面变化均衡模式为基础,讨论冰盖形或对地核运动的影响。数值计算表明,由于地核偏离地心的运动,不同海区大约有±1.54m的海面波动。把这个结果叠加在均衡模式的结果之上,会使预测的结果与所观察结果更为符合。  相似文献   

17.
After >500 Ma of absence, major Northern Hemisphere glaciations appeared during the Plio‐Pleistocene, with Greenland leading other northern areas. Here, we propose that three major solid‐Earth processes underpinned build‐up of the Greenland ice‐sheet. First, a mantle‐plume pulse, responsible for the North Atlantic Igneous Province at ~60 Ma, regionally thinned the lithosphere. Younger plume pulses led to uplift, which accelerated at ~5 Ma, lifting the parts of the East Greenland margin closest to Iceland to elevations of more than 3 km above sea level. Second, plate‐tectonic reconstruction shows a ~6° northward component of Greenland motion relative to the mantle since ~60 Ma. Third, a concurrent northward rotation of the entire mantle and crust towards the pole, dubbed True Polar Wander (TPW), contributed an additional ~12° change in latitude. These global geodynamic processes preconditioned Greenland to sustain long‐term glaciation, emphasizing the role of solid‐Earth processes in driving long‐term global climatic transitions.  相似文献   

18.
The extent of multi‐year sea ice impacts climate processes worldwide, such as ocean–atmosphere carbon dioxide exchange and deep ocean current formation. Reconstructing these processes in the past, and assessing the distribution of ecologically and climatically significant features, such as polynas, requires recognition of sediments deposited under multi‐year sea ice, but little is known about their characteristics. Textural analysis of subaerial and sea floor sediment in Explorers Cove, McMurdo Sound, at the mouth of Taylor Valley, Antarctica, augmented with observations of sedimentary structures and faunal components, elucidates how sediment is transported to the sea floor and allows characterization of the deposits. Comparison of grain‐size characteristics of subaerial (moraine, delta and sea‐ice surface) sediment and sea floor sediment from short cores taken at depths of 7 to 25 m indicates that the likely source of the moderately to poorly sorted sea floor sand is deltaic sediment; small glacial meltwater streams have built deltas since Taylor Valley became ice‐free ca 7000 years ago. Windblown sediment accumulating on the multi‐year sea ice close to the coast typically is coarser grained than sediment on the sea floor; this suggests that the transport of sediment through the ice to the sea floor is not the predominant mode of sediment transfer. However, supra‐sea‐ice sediment does move to the sea floor through local fractures. The rate of sedimentation under multi‐year sea ice is low because of limited stream flow and biogenic sedimentation; the ice cover inhibits primary productivity and dampens waves, precluding physical re‐suspension. The upper centimetres of sea floor sediment are churned by epifaunal scallops and brittle stars that leave no telltale biogenic structures and whose calcite ossicles and shells may be poorly preserved. The resulting deposits under multi‐year sea ice are poorly sorted, massive sand that provides little evidence of the bioturbators that have masked the indicators of the original physical depositional processes.  相似文献   

19.
In the Tempo Valley, north-central Ireland, flat-lying calcareous concretions are found within massive sand beds of glaciofluvial outwash which were deposited during the late Weichselian deglacial cycle. ( c . 17 000 14 000 BP). Morphologically, concretions (< 20 cm long. I I cm wide, 3 cm thick) arc bladcd to disc-shaped, lie parallel to sediment bedding planes, and have long axes aligned perpendicular to ice retreat direction. Internally, concretions are massive to framework-supported and were formed as calcareous cements precipitated from solute-rich groundwatcrs. Concretions, related to steep groundwater gradients and vigorous groundwater circulation cells, were formed proglacially at the base of a thin (1.5-2.0 m deep) layer of discontinuous permafrost as meltwater was actively expelled from the retreating ice margin. The presence of a discontinuous permafrost substrate can also help explain regional-scale geomorphic patterns indicating stagnation zone retreat of the Tempo Valley ice mass.  相似文献   

20.
Bauer, I. E. & Vitt, D. H. 2011: Peatland dynamics in a complex landscape: Development of a fen‐bog complex in the Sporadic Discontinuous Permafrost zone of northern Alberta, Canada. Boreas, 10.1111/j.1502‐3885.2011.00210.x. ISSN 0300‐9483. The development of a peatland complex in the Sporadic Discontinuous Permafrost zone of northwestern Alberta, Canada was reconstructed using a series of dated profiles. Peat‐forming communities first established c. 10 230 cal. a BP, and by 8000 cal. a BP the site supported monocot fens or marshes in several isolated topographic depressions. Most of the current peatland area initiated between c. 8000 and 4000 cal. a BP, and involved the replacement of upland habitats by shrubby or treed fen and, in some areas, the establishment of Sphagnum on mineral terrain. Ombrotrophic hummock communities had established by c. 7000 cal. a BP, and permafrost was present at 6800 cal. a BP in at least some peat plateau areas. Macrofossil‐based reconstructions show considerable local diversity in vegetation succession and permafrost dynamics, with cyclic collapse and aggradation in at least one profile and relative stability in others. Lichen‐rich peat is rare in deep‐peat plateau cores, and where charcoal was recovered, fire effects on vegetation trajectories varied between cores. Organic matter accumulation was high in the early Holocene and declined after permafrost formation, with low rates especially over the past 4000 years. The site was burned in a wildfire in 1971, and by 1998 permafrost had disappeared from almost all peat plateau areas. In this part of the discontinuous permafrost zone, peat plateaus are likely to be unsustainable under a warming climate. The hydrology and carbon dynamics of former plateau areas following large‐scale permafrost degradation require further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号