首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palaeotemperature reconstruction for the period of 20?18 ka BP in Siberia is here based on δ18O analysis and 14C dating of large syngenetic ice wedges. Dozens of yedoma exposures, from Yamal Peninsula to Chukotka, have been studied. Snow meltwater is considered to be the main source of ice‐wedge ice. The modern relationship between δ18O composition of ice‐wedge ice and winter temperature is used as a base for reconstruction. In modern ice wedges (elementary veins that have accumulated during the last 60–100 years) δ18O fluctuates between ?14 and ?20‰ in western Siberia and between ?23 and ?28‰ in northern Yakutia. The trend in δ18O distribution in ice wedges dated at 20?18 ka BP is similar to the modern one. For example, the δ18O values in Late Pleistocene wedges are more negative going from west to east by 8–10‰, i.e. from ?19 to ?25‰ in western Siberian ice wedges to ?30 to ?35‰ in northern Yakutia. However, values are as high as ?28 to ?33‰ in north Chukotka and the central areas of the Magadan Region and even as high as ?23 to ?29‰ in the east of Chukotka. The same difference between the oxygen isotope composition of ice wedges in the eastern and western regions of Siberian permafrost (about 8–10‰) is also preserved from 20?18 ka BP to the present: δ18O values obtained from large ice wedges from the Late Pleistocene vary from ?19 to ?25‰ in western Siberia to ?30 to ?35‰ in northern Yakutia. We conclude that, at 20?18 ka BP, mean January temperatures were about 8–12°C lower (in Chukotka up to 17–18°C) than at present.  相似文献   

2.
Recent investigations into relict periglacial phenomena in northern and western China and on the Qinghai–Tibet Plateau provide information for delineating the extent of permafrost in China during the Late Pleistocene. Polygonal and wedge‐shaped structures indicate that, during the local Last Glacial Maximum (LLGM, between ~35 and 10.5 ka BP), the southern limit of latitudinal permafrost in northern China advanced southward at least to ~38–40°N in the east and to ~37–39°N in the west. This represents an advance of about 5–10° of latitude beyond present‐day permafrost limits. The lower limits of elevationally controlled permafrost on the Qinghai–Tibet Plateau and its peripheries were about 1000 m lower: this permafrost was largely continuous during the LLGM. This suggests a cooling of between 4 and 10°C, or more. This paper discusses the extent of permafrost during the LLGM and presents maps that have been constructed on the basis of extensive and integrative analysis of all reliable and pertinent data. The results indicate that the extent of LLGM permafrost in China was between ~3.8 and 4.3×106 km2. This is 80 to 100% more than that of ~2.15×106 km2 in the 1970s, and 120 to ~150% more than that of ~1.75×106 km2 today.  相似文献   

3.
High‐precision correlation of palaeoclimatic and palaeoenvironmental records is crucial for testing hypotheses of synchronous change. Although radiocarbon is the traditional method for dating late Quaternary sedimentary sequences, particularly during the last glacial–interglacial transition (LGIT; 15–9 ka), there are inherent problems with the method, particularly during periods of climate change which are often accompanied by major perturbations in atmospheric radiocarbon content. An alternative method is the use of tephras that act as time‐parallel marker horizons. Within Europe, numerous volcanic centres are known to have erupted during the LGIT, providing considerable potential for high‐precision correlation independent of past radiocarbon fluctuations. Here we report the first identification of the Vedde Ash and Askja Tephra in Ireland, significantly extending the known provenance of these events. We have also identified two new horizons (the Roddans Port Tephras A and B) and tentatively recognise an additional horizon from Vallensgård Mose (Denmark) that provide crucial additional chronological control for the LGIT. Two phases of the Laacher See Tephra (LST) are reported, the lower Laacher See Tephra (LLST) and probably the C2 phase of the Middle Laacher See Tephra (MLST‐C2) indicating a more northeasterly distribution of this fan than reported previously. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
The Ledo‐Paniselian Aquifer in Belgium offers unique opportunities to study periglacial groundwater recharge during the Last Glacial Maximum (LGM), as it was located close to the southern boundary of the ice sheets at that time. Groundwater residence times determined by 14C and 4He reveal a sequence of Holocene and Pleistocene groundwaters and a gap between about 14 and 21 ka, indicating permafrost conditions which inhibited groundwater recharge. In this paper, a dataset of noble gas measurements is used to study the climatic evolution of the region. The derived recharge temperatures indicate that soil temperatures in the periods just before and after the recharge gap were only slightly above freezing, supporting the hypothesis that permafrost caused the recharge gap. The inferred glacial cooling of 9.5°C is the largest found so far by the noble gas method. Yet, compared to other palaeoclimate reconstructions for the region, recharge temperatures deduced from noble gases for the cold periods tend to be rather high. Most likely, this is due to soil temperatures being several degrees higher than air temperatures during periods with extended snow cover. Thus the noble‐gas‐derived glacial cooling of 9.5°C is only a lower limit of the maximum cooling during the LGM. Some samples younger than the recharge gap are affected by degassing, possibly related to gas production during recharge in part of the recharge area, especially during times of melting permafrost. The findings of this study, such as the occurrence of a recharge gap and degassing related to permafrost and its melting, are significant for groundwater dynamics and geochemistry in periglacial areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Geochemical (element analysis, molecular analysis of organic compounds), physical, palynological, mineralogical and sedimentary facies analysis were performed to characterise the sedimentary record in Fuentillejo maar‐lake in the Central Spanish Volcanic Field of Campo de Calatrava, in order to reconstruct the palaeoenvironmental and palaeoclimatic processes which controlled vegetation patterns and deposition of different sedimentary facies. The upper 20 m of core FUENT‐1 show variations in clastic input, water chemistry, vegetation and organic fraction sources in the lake throughout the Late Pleistocene and Holocene. The temporal framework provided by 14C accelerator mass spectrometry dating allows assigning the sequence to the last 50 cal. ka BP. Arid phases identified in the FUENT‐1 sequence are correlated to Heinrich events (HE) and to stadials of the Dansgaard/Oeschger (D/O) cycles. Siliciclastic facies with high magnetic susceptibility values, high Juniperus pollen content, a low Paq index (aquatic macrophysics proxy index), a decrease in the relative percentage of the n‐C27 and an increase in the n‐C31 alkanes are indicative of arid and colder climatic events related to HE 2, HE 1 and the Younger Dryas (YD). Similar short cold and arid phases during the Holocene were identified at 9.2–8.6, 7.5–7 and 5.5–5 cal. ka BP. In dolomite–mud facies, the pollen data show an increase in the herbs component, mainly – Chenopodiaceae, Artemisia and Ephedra – steppe taxa; a low Paq index, a decrease in the relative percentage of the n‐C27 alkane and an increase in the n‐C31 alkane are also observed. This facies was probably the result of lower lake levels and more saline–alkaline conditions, which can be interpreted as linked to arid–warm periods. These warm and arid phases were more frequent during Marine Isotope Stage (MIS) 3 and the interstadials of MIS 2. HE 4, HE 2, HE 1 and the YD in core FUENT‐1 were immediately followed by increases of warm steppe pollen assemblages that document rapid warming similar to the D/O cycles but do not imply increasing humidity in the area. Fuentillejo hydrology is controlled by changes in the atmospheric and oceanic systems that operated on the North Atlantic region at millennial scale during the last 50 cal. ka BP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
9.
The new Antarctic TALDICE ice core (72° 49′ S, 159° 11′ E, 1620 m depth), containing abundant primary tephras, provides the opportunity to elucidate the late Quaternary volcanic history of the south polar region, as well as to broaden the East Antarctic tephrostratigraphic framework. Here grain size and glass compositional data for representative tephra layers from the last 70 ka core section are used for source identification. Results point to origin of layers from centres of the Melbourne Volcanic Province (McMurdo Volcanic Group), located ~250 km from the coring site. Occurrence of tephra layers within the ice core record suggests that explosive activity in the identified source was not constant over the considered period, with a minimum of activity between 20 and 35 ka, and increased activity back to 65 ka. In addition to palaeovolcanic implications, the TALDICE tephra layers offer prospects for firm correlations between diverse widely separated palaeoarchives and for accurate dating of the Antarctic climatic record. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
On the basis of sedimentological analysis of two cores taken at Chatillon, Lake Le Bourget (northern French Pre‐Alps), and well dated by radiocarbon dates in addition to tree ring dates obtained from an archaeological layer, this paper presents a high‐resolution lake‐level record for the period 4500–3500 cal. a BP. The collected data provide evidence of a complex palaeohydrological (climatic) oscillation spanning the ca. 4300–3850 cal. BP time interval, with major lake‐level maxima at ca. 4200 and 4050–3850 cal. a BP separated by a lowering episode around 4100 cal. a BP. The lake‐level highstands observed at Chatillon between 4300 and 3850 cal. BP appear to be synchronous with (i) a major flooding period recorded in deep cores from the large lakes Le Bourget and Bodensee, and (ii) glacier advance and tree line decline in the Alps. Such wetter and cooler climatic conditions in west‐central Europe around 4000 cal. a BP may have been a nonlinear response to decrease and seasonal changes in insolation. They may also provide a possible explanation for the general abandonment of prehistoric lake dwellings north of the Alps between 4360 and 3750 cal. a BP. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The sediment record from the Piànico palaeolake in the southern Alps is continuously varved, spans more than 15 500 years, and represents a key archive for interglacial climate variability at seasonal resolution. The stratigraphic position of the Piànico Interglacial has been controversial in the past. The identification of two volcanic ash layers and their microscopic analysis provides distinct marker layers for tephrochronological dating of these interglacial deposits. In addition to micro‐facies analyses reconstructing depositional processes of both tephra layers within the lake environment, their mineralogical and geochemical composition has been determined through major‐element electron probe micro‐analysis on glass shards. Comparison with published tephra data traced the volcanic source regions of the Piànico tephras to the Campanian volcanic complex of Roccamonfina (Italy) and probably the Puy de Sancy volcano in the French Massif Central. Available dating of near‐vent deposits from the Roccamonfina volcano provides a robust tephrochronological anchor point at around 400 ka for the Piànico Interglacial. These deposits correlate with marine oxygen isotope stage (MIS) 11 and thus are younger than Early to Middle Pleistocene previously suggested by K/Ar dating and older than the last interglacial as inferred from macrofloral remains and the geological setting. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Planktonic foraminiferal Mg/Ca ratios and oxygen isotopic compositions of a spliced sediment record from Feni Drift, NE Atlantic Ocean (box core M200309 and piston core ENAM9606) trace late Holocene sea surface temperature (SST) and salinity changes over the past 2400 years. At this location, the variability of SST and oxygen isotopic composition of seawater (δ18Ow) reflects variable northward advection of warm and saline surface waters, which appears linked to climate variability over the adjacent European continent. Our records reveal a general long-term cooling trend. Superimposed on this overall trend, partly higher temperatures and salinities from 180 to 560 AD and 750 to 1160 AD may be ascribed to the Roman and Medieval Warm Periods, respectively. Subsequently, our record displays highly variable surface water conditions; the main Little Ice Age SST minimum is restricted to the 15th and 16th centuries AD. Pervasive multidecadal- to centennial-scale variability throughout the sedimentary proxy records can be partly attributed to solar forcing and/or variable heat extraction from the surface ocean caused by shifts in the prevailing state of the North Atlantic Oscillation (NAO). High salinities in the 17th and 18th centuries are considered to reflect tropical anomalies linked to a southward shift of the Intertropical Convergence Zone, propagating across the North Atlantic Ocean.  相似文献   

13.
14.
At Bangriposi, variable stages in replacement of staurolite by chloritoid – Na–K–Ca mica shimmer aggregates in muscovite schists provides insight into the complex interplay between fluid flow, mass transfer, and dissolution–precipitation during pseudomorph growth. Idioblastic chloritoid growing into mica caps without causing visible deformation, and monomineralic chloritoid veins (up to 300 μm wide) within shimmer aggregates replacing staurolite attest to chloritoid nucleation in fluid‐filled conduits along staurolite grain boundaries and crystallographic planes. The growth of shimmer aggregates initiated along staurolite margins, and advanced inwards into decomposing staurolite along networks of crystallographically controlled fluid‐filled conduits. Coalescence among alteration zones adjacent to channel fills led to dismemberment and the eventual demise of staurolite. Mass balance calculation within a volume‐fixed, silica‐conserved reference frame indicate the shimmer aggregates grew via precipitation from fluids in response to mass transport that led to the addition of H2O, K2O, Na2O and CaO in the reaction zone, and Al2O3 was transported outward from the inward‐retreating margin of decomposing staurolite. This aided precipitation of chloritoid in veins and in the outer collars, and as disseminated grains in the shimmer aggregates at mid‐crustal condition (~520 ± 20 °C, 5.5 ± 2.0 kbar). Computation using one‐dimensional transport equation suggests that staurolite decomposition involved advection dominating over diffusive transport; the permeation of externally derived H2O caused flattening of chemical potential gradients in H2O and aqueous species, for example, and , computed using the Gibbs method. This suggests that staurolite decomposition was promoted by the infiltration of a large volume of H2O that flattened existing chemical potential gradients. In the initial stages of replacement, chloritoid super‐saturation in fluid caused preferential nucleation and growth of chloritoid at staurolite grain boundaries and in crystallographic planes. As reaction progressed, further chloritoid nucleation was halted, but chloritoid continued to grow as the 3‐mica aggregates continued to replace the remaining staurolite in situ, while the chloritoid‐compatible elements were transported in the water‐rich phase facilitating continued growth of the existing chloritoid grains.  相似文献   

15.
16.
Twelve 1–2 m, 10-cm-diameter gravity cores collected in 1988 and 1991, from the continental shelf and fjords of East Greenland near Kangerlussuaq Fjord/Trough (ca. 68°N, 32°W), have distinct changes in lithofacies and in the quantity of iceberg rafted (IRD) sediments. These changes are readily observed in X-radiographs of the split cores. We quantify the IRD contribution through grain-size analyses and counting the number of clasts >2 mm from the X-radiographs. Chronological control is provided by acclerated mass spectroscopy 14C dates on foraminifera. During deglaciation, after 14 cal.ka there was one interval of IRD accumulation ca. 12–13 cal.ka, followed by a brief return to IRD conditions centred at 9 cal.ka. Thereafter, a prominent feature of most cores on the shelf is an increase in IRD accumulation that started ca. 5–6 cal.ka, and which has increased toward the present. Indicators of iceberg rafting, such as the net sand flux and numbers of clasts >2 mm ka−1, follow a power law distribution when graphed against distance from the present East Greenland coast, a measure of the position of the glacier margins. The form of the relationship indicates that there is a dramatic decrease in the supply of sediment from the fjords to the shelf. These relationships are used to estimate changes in the location of the ice margin during the late Quaternary based on a site on the East Greenland slope, Denmark Strait, and to discuss factors that can negate such a simple transfer function. © 1997 by John Wiley & Sons Ltd.  相似文献   

17.
18.
19.
20.
The inflow of Atlantic Water to the Nordic seas from mid–late Younger Dryas to earliest Holocene (12 450–10 000 a BP) is reconstructed on the basis of a high‐resolution core (LINK14) from 346 m water depth on the east Faroe shelf. We have analysed the distribution of planktic and benthic foraminifera, stable isotopes and ice‐rafted debris (IRD), and calculated absolute temperatures and salinities by transfer functions. During the investigated time period there was almost continuous inflow of Atlantic Water to the Nordic seas. Deposition of IRD during the mid–late Younger Dryas and Pre‐Boreal coolings indicates the presence of melting icebergs and that summer sea surface temperatures were low. The east–west temperature gradient across the Faroe–Shetland Channel was much steeper than today. The cold conditions around the Faroe Islands are attributed to stronger East Greenland and East Icelandic currents than at present. The near‐continuous inflow of Atlantic Water is consistent with published evidence suggesting that deep convection took place in the Nordic seas, although the convection sites probably had shifted to a more easterly position than at present. Around the time of deposition of the Saksunarvatn Tephra c. 10 350 a BP, sea surface temperatures increased to the present level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号