首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary. Geomagnetic variation studies have been conducted in the Gawler Craton and Adelaide Geosyncline of South Australia. The magnetometer stations extend from the coast up to the southern edge of the 1970 array of Gough, McElhinny & Lilley. The coast effect is the dominant feature of the data but use is made of the hypothetical event technique to identify two zones of telluric current concentration. Both of them appear to be associated with linear zones of enhanced electrical conductivity within the crust. The Southern Eyre Peninsula anomaly lies within the Gawler Craton and may identify a major fracture or shear in the upper crust. The conductivity anomaly within the Adelaide Geosyncline appears to be the continuation of the Flinders anomaly discovered by the 1970 array study. It correlates well with the arcuate fold pattern of the Southern Flinders Zone of the Geosyncline and with the local pattern of seismicity. In both anomalies the enhanced conductivity is probably caused by saline waters within fractured crustal rocks.  相似文献   

3.
Interpretation of seismic reflection data have led to a new model of the development of the Queen Charlotte Basin. New multi-channel data collected in 1988 and an extensive network of unpublished older single- and multi-channel profiles from industry image a complex network of sub-basins. Structural styles vary along the axis of the basin from broadly spaced mainly N-trending sub-basins in Queen Charlotte Sound, to closely spaced NW-trending sub-basins in Hecate Strait, to an E-W en echelon belt of sub-basins in Dixon Entrance. Transtensional tectonics dominated in the Miocene and transpression dominated in the Pliocene except in Queen Charlotte Sound. The data we present prove that the origin of the basin is extensional and its most recent deformation is compressive. Evidence for the strike-slip origin of tectonism includes along-axis variations in structures, simultaneous extension and compression in adjacent sub-basins, lack of correlations across faults, and mixed normal and reverse faults within structures. We infer that the Pacific-North America plate boundary has been west of the Queen Charlotte Islands since the Miocene when relative plate motions have been dominantly strike-slip. The formation and development of the Queen Charlotte Basin is the result of distributed shear; by which a small percentage of the plate motion has been taken up in a network of faults across the continental margin. As this region of crust deforms it interacts with neighbouring rigid crust resulting in extension dominating in the south of the basin and compression in the north. Continental crust adjacent to some transform plate boundaries can be sheared over a wide region; the network of basins in southwestern California is a good analogue for the Queen Charlotte Basin.  相似文献   

4.
Allochthonous salt structures and associated primary and secondary minibasins are exposed in Neoproterozoic strata of the eastern Willouran Ranges, South Australia. Detailed geologic mapping using high‐quality airborne hyperspectral remote‐sensing data and satellite imagery, combined with a qualitative structural restoration, are used to elucidate the evolution of this complex, long‐lived (>250 Myr) salt system. Field observations and interpretations at a resolution unobtainable from seismic or well data provide a means to test published models of allochthonous salt emplacement and associated salt‐sediment interaction derived from subsurface data in the northern Gulf of Mexico. Salt diapirs and sheets are represented by megabreccias of nonevaporite lithologies that were originally interbedded with evaporites that have been dissolved and/or altered. Passive diapirism began shortly after deposition of the Callanna Group layered evaporite sequence. A primary basin containing an expulsion‐rollover structure and megaflap is flanked by two vertical diapirs. Salt flowed laterally from the diapirs to form a complex, multi‐level canopy, now partly welded, containing an encapsulated minibasin and capped by suprasalt basins. Salt and minibasin geometries were modified during the Late Cambrian–Ordovician Delamerian Orogeny (ca. 500 Ma). Small‐scale structures such as subsalt shear zones, fractured or mixed ‘rubble zones’ and thrust imbricates are absent beneath allochthonous salt and welds in the eastern Willouran Ranges. Instead, either undeformed strata or halokinetic drape folds that include preserved diapir roof strata are found directly below the transition from steep diapirs to salt sheets. Allochthonous salt first broke through the diapir roofs and then flowed laterally, resulting in variable preservation of the subsalt drape folds. Lateral salt emplacement was presumably on roof‐edge thrusts or, because of the shallow depositional environment, via open‐toed advance or extrusive advance, but without associated subsalt deformation.  相似文献   

5.
Abstract Rifted margin architecture along part of the southern Gabonese margin is interpreted from four deep-penetration, multichannel seismic reflection (MCS) profiles. A series of synthetically faulted crustal blocks are identified, separated by dominantly seaward-dipping fault zones formed during Cretaceous rifting between Africa and South America. Extensional strain ratios are ≅ 1.5. These faults appear either to transect the entire crustal section or are interrupted by discontinuous zones of midcrustal reflections which may represent detachments.
Outer acoustic basement highs are situated just seaward of the continental slope. On the combined basis of seismic geometry, an associated positive magnetic anomaly and an increase in free-air gravity, these outer highs are interpreted to mark faulted transitions from rifted continental crust to 'proto-oceanic crust', presumably composed of mafic volcanic rocks and possibly slivers of attenuated continental crustal blocks. The outer edge of Aptian salt lies °165 km south-west of the edge of the continental shelf. The salt forms an° 1.5-km-thick horizon overlying the outer highs, and it may be autochthonous there, suggesting salt was deposited contemporaneously with emplacement of proto-oceanic crust.
Differential subsidence and tilting between continental rift-blocks during post-rift margin subsidence has resulted in a sympathetic terrace-ramp geometry in overlying Aptian salt. Salt terraces form above tops of crustal blocks, where salt tends to rise vertically, creating pillows and diapirs. Ramps connecting terraces tend to form above seaward-facing fault zones; salt flowage there has been both lateral and vertical, creating triangular diapirs along the footwalls of growth faults. Most of these growth-faults sole within the salt base, but a few continue into the interpreted synrift succession.  相似文献   

6.
The late Palaeozoic Cumberland Basin of Nova Scotia and New Brunswick (eastern Canada) developed as a strike‐slip basin in the aftermath of the Middle Devonian Acadian Orogeny. Following deposition of thick salt during the middle Viséan (middle Mississippian), this basin mainly accommodated fault‐controlled continental deposits during the late Viséan, which generated halokinesis from clastic loading. The Mississippian halokinetic history of this basin is cryptic, as it was severely distorted by subsequent tectonic and halokinetic overprints. After minor structural restoration, the study of upper Viséan minibasin units in wide coastal sections and deep wells allowed a fairly detailed reconstruction of the Mississippian halokinetic setting to be made. Paleoenvironments and depositional settings in the western part of the basin include sectors that were proximal to three fault‐bounded source areas and characterized by alluvial fan systems transitioning laterally into gravelly to sandy braidplain environments. More central areas of the basin were characterized by tidal flats transitioning laterally into shallow marine environments. Because of halokinesis, the marine body was eventually forced to subdivide into three separate salt expulsion minibasins. Although late Viséan marine incursions were short‐lived in the rest of eastern Canada due to ongoing glacioeustatic variations, there are sedimentologic and stratigraphic lines of evidence for the long‐lasting entrapment of restricted marine bodies in salt expulsion minibasins of the western Cumberland Basin. In one minibasin that was characterized by especially high accommodation rates, NE of Hopewell Cape (New Brunswick), the proximal conglomerates and marine carbonates of a fan‐delta setting transition laterally into thick sulphate over a short distance, away from freshwater inputs from the source area. The vertical continuity of the latter sulphate succession suggests that this entrapped evaporitic basin was cut‐off from significant marine influxes, even at times of glacioeustatic highstands. This is in contrast with salt expulsion minibasins in open marine shelf settings, which always remain open to global marine transgressions and regressions.  相似文献   

7.
The Paleoproterozoic (Statherian) Thelon Basin is located in the Churchill Province of the Canadian Shield, formed following the Trans‐Hudson Orogeny. Basin formation followed an interval of felsic volcanism and weathering of underlying bedrock. The diagenetic evolution of the Thelon lasted about one billion years and was punctuated by fluid movement influenced by tectonic events. Early quartz cements formed in well‐sorted, quartz‐rich facies during diagenetic stage 1; fluids in which these overgrowths formed had δ18O values near 0‰ (Vienna Standard Mean Ocean Water). Uranium‐rich apatite cement (P1) also formed during diagenetic stage 1 indicating that oxygenated, uranium‐bearing pore water was present in the basin early in its diagenetic history. Syntaxial quartz cement (Q1) formed in water with δ18O from ?4 to ?0.8‰ in diagenetic stage 2. Diagenetic stage 3 occurred when the Thelon Formation was at ca. 5 km depth, and was marked by extensive illitization, alteration of detrital grains, and uranium mineralization. Basin‐wide, illite crystallized at ~200 °C by fluids with δ18O values of 5–9‰ and δD values of ?60 to ?31‰, consistent with evolved basinal brines. Tectonism caused by the accretion of Nena at ca. 1600 Ma may have provided the mechanism for brine movement during deep burial. Diagenetic stage 4 is associated with fracturing and emplacement of mafic dikes at ca. 1300 Ma, quartz cement (Q3) in fractures and vugs, further illitization, and recrystallization of uraninite (U2). Q3 cements have fluid inclusions that suggest variable salinities, δ18O values of 1.5–9‰, and δD values of ?97 to ?83‰ for stage 4 brines. K‐feldspar and Mg‐chlorite formed during diagenetic stage 5 at ca. 1000 Ma in upper stratigraphic sequences, and in the west. These phases precipitated from low‐temperature, isotopically distinct fluids. Their distribution indicates that the basin hydrostratigraphy remained partitioned for >600 Ma.  相似文献   

8.
9.
The low lying Nal region in western India, linking the Gulf of Kachchh with the Gulf of Khambhat through the Little Rann and Nal Sarovar is barely 15 m above msl and lacks surface exposures. The evolutionary history of the Nal region using remote sensing data and sub-surface lithological correlation indicated that late Quaternary sedimentation in the Nal region was governed by changes in sea level and by tectonism in the region of Cambay Graben. The geomorphic evidence for changes in sea level was found in the form of inland palaeo-deltas and old mud flats. Abrupt changes in lithological data in the vicinity of Nal region pointed to the role of tectonism. Contrary to the earlier view, a shallow sea linked the Gulf of Kachchh to the Gulf of Khambhat only in a time period around Marine Isotope Stage 5. Our studies also suggest that the Nal region itself may not have witnessed any major uplift (beyond 10 m) during late Quaternary.  相似文献   

10.
The synkinematic strata of the Kuqa foreland basin record a rich history of Cenozoic reactivation of the Palaeozoic Tian Shan mountain belt. Here, we present new constraints on the history of deformation in the southern Tian Shan, based on an analysis of interactions between tectonics and sedimentation in the western Kuqa basin. We constructed six balanced cross‐sections of the basin, integrating surface geology, well data and a grid of seismic reflection profiles. These profiles show that the Qiulitage fold belt on the southern edge of the Kuqa basin developed by thin‐skinned compression salt tectonics. The structural styles have been influenced by two major factors: the nature of early‐formed diapirs and the basinward depositional limit of the Kumugeliemu salt. Several early diapirs developed in the western Kuqa basin, soon after salt deposition, which acted to localize the subsequent shortening. Where diapirs had low relief and a thick overburden they tended to tighten into salt domes 3000–7000 m in height. Conversely, where the original diapirs had higher relief and a thinner overburden they tended to evolve into salt nappes, with the northern flanks of the diapirs thrusting over their southern flanks. Salt was expelled forward, up dip along the mother salt layer, tended to accumulate at the distal pinch‐out of Kumugeliemu salt located at the Qiulitage fold belt. Furthermore, the synkinematic strata (6–8 km thick) of the Kuqa basin indicate that during the Cenozoic reactivation of the Tian Shan, shortening of the western Kuqa basin was mainly in the hinterland until the early Miocene. Then, compression spread simultaneously southwards to the Dawanqi anticline, the Qiulitage fold belt and the southernmost blind detachment fold at the end of Miocene. The western Kuqa basin has a shortening of ca. 23 km. We consider that ca. 9 km was consumed from the end of the Miocene (5.2/5.8 Ma) to the early Pleistocene (2.58 Ma) and another ca. 14 km have been absorbed since then. Thus, we obtain a ca. 3.4/2.8 mm year?1 average shortening from 5.2/5.8 to 2.58 Ma, followed by a 60–90% increase in average shortening rate to ca. 5.4 mm year?1 since 2.58 Ma. This suggests that the reactivation of the modern Tian Shan has been accelerating up to the present day.  相似文献   

11.
Salt tectonics have markedly influenced the rapid evolution of the Upper Palaeozoic Cumberland Basin of Atlantic Canada, including the ca. 5 km‐thick Mississippian – Pennsylvanian stratigraphic succession exposed along the UNESCO World Heritage coastline at Joggins, Nova Scotia. A diapiric salt wall is exposed in the Minudie Anticline to the north of the Joggins section on the Maringouin Peninsula of New Brunswick, which corresponds to the fault‐bounded northern margin of the Cumberland Basin. The salt wall is of Visean evaporites of the Windsor Gp that originally were buried by red‐beds of the Mabou Gp in the Serpukhovian, and later by fluvial and floodplain strata (Boss Point Fm, Cumberland Gp) in the Yeadonian (mid‐Bashkirian, Early Pennsylvanian). Folds and faults in the Boss Point and overlying basal Little River formations are truncated by an angular unconformity at the base of overlying red‐beds of the Grande Anse Fm. Re‐evaluation of the palynological data delimits the Grande Anse Fm as Langsettian, providing a tight constraint of less than 2 myr on the timing of deformation. Diversion of palaeoflows by the rising salt structure, noted in previous work on the upper Boss Point Fm, occurs to the north of the diapiric anticline. This is interpreted to signify the development of a mini‐basin on commencement of diapirism once a ~1.5 km‐thick succession of clastic strata had buried the salt. Faults and folds in the succession below the unconformity indicate an initial phase of dextral transpressive strike‐slip motion, which may have promoted halokinesis. Reverse faults indicate shortening associated with northward development and overturn of the Minudie Anticline during transpression; subsequent normal faulting was associated with collapse of the sediment pile and underlying salt structure.  相似文献   

12.
20世纪90年代以来,北极进入了以海冰快速减少为显著特征的快速变化时期。通过分析“波弗特流涡观测计划”在北冰洋加拿大海盆的4个站点上布放剖面观测系统所获得的2003—2011年的温度、盐度剖面观测数据,研究了加拿大海盆北极中层水的变化特征。在观测期间,加拿大海盆中央区中层水核心温度变化较小,楚科奇海台地区有明显下降特征,海盆中央区以北以及加拿大群岛陆坡边缘区核心温度呈持续升高趋势。北极中层水核心深度在4个站点都有不同程度的加深趋势,加深的程度和参与分析的表层淡水含量以及因海冰消失导致的风应力变化有一定的对应特征。4个站点表层(75—200 m)的热含量在无冰海域有明显的增长,在有冰海域热含量较稳定;加拿大海盆200—400 m和400—800 m深度范围内的热含量变化情况与中层水核心深度的变化情况一致,伴随着中层水核心深度加深至400 m乃至更深处,中层水的能量也逐渐下移,造成200—400 m水层能量普遍降低而400—800 m水层能量普遍增加。加拿大海盆4个观测站点因背景环境条件和所受影响的不同,造成了中层水的变化和响应趋势的差异。  相似文献   

13.
14.
15.
Climate anomalies in the southern high latitude associated with the Subtropical Dipole Mode (SDM) are investigated using a 23-year database consisting of SLP (sea level pressure), surface air temperature (SAT) and sea surface temperature (SST). The analysis depicts, for the first time, the spatial variability in the relationship of the above variables with the Subtropical Dipole Mode Index (SDI). It suggests that the SDM signal exists in the southern high latitudes and the correlation fields exhibit a wavenumber-3 pattern around the circumpolar Southern Ocean. Lead-lag correlation analysis used to the SLP, SAT, and SST anomalies with the SDI time series at the positive and negative correlation extremes shows that the southern-high-latitude climate responses to SDM almost instantaneously proposing the connection is by atmospheric and not by oceanic propagation.  相似文献   

16.
17.
The northern Paradox Basin evolved during the Late Pennsylvanian–Permian as an immobile foreland basin, the result of flexural subsidence in the footwall of the growing Uncompahgre Ancestral Rocky Mountain thick‐skinned uplift. During the Atokan‐Desmoinesian (~313–306 Ma) fluctuating glacio‐eustatic sea levels deposited an ~2500 m thick sequence of evaporites (Paradox Formation) in the foreland basin, interfingering with coarse clastics in the foredeep and carbonates around the basin margins. The cyclic deposition of the evaporites produced a repetitive sequence of primarily halite, with minor clastics, organic shales and anhydrite. Sediment loading of the evaporites subsequently produced a series of salt walls and minibasins, through the process of passive diapirism or downbuilding. Faults at the top Mississippian level localised the development of linear salt walls (up to 4500 m high) along a NW–SE trend. A crosscutting NE–SW structural trend was also important in controlling the evaporite facies and the abrupt termination of the salt walls. Seismic, well and field data define the proximal Cutler Group (Permian) as a basinward prograding sequence derived from the growing Uncompahgre uplift that drove salt basinwards (towards the southwest), triggering the growth of the salt walls. Sequential structural restorations indicate that the most proximal salt walls evolved earlier than the more distal ones. The successive development of salt‐withdrawal minibasins associated with each growing salt wall implies that parts of the Cutler Group in one minibasin may have no chronostratigraphic equivalent in other minibasins. Localised changes in along‐strike salt wall growth and evolution were critical in the development of facies and thickness variations in the late Pennsylvanian to Triassic stratigraphic sequences in the flanking minibasins. Salt was probably at or very close to the surface during the downbuilding process leading to localised thinning, deposition of diapir‐derived detritus and rapid facies changes in sequences adjacent to the salt wall structures.  相似文献   

18.
Summary. The Azores—Biscay Rise is a roughly linear north-east—south-west trending feature rising 1500–3000m above its surroundings, which extends from about 4°N, 1°30'W towards the Azores. Its south-western termination is near 40°30'N, 21°30'W. About halfway along its length the Rise intersects the WNW-trending King's Trough. In 1978 a set of bathymetric, magnetic, gravity, GLORIA and seismic reflection and refraction data were obtained in the vicinity of the Rise. Together with earlier data these observations suggest that: (1) there has been no substantial post-emplacement tectonic activity, with the possible exception of the construction of some volcanic seamounts at the south-western end of the Rise, and (2) the Rise is underlain by a low-velocity (low-density) lower crust and is in isostatic equilibrium.
The Rise can be convincingly shown to be the eastern half of a pair of ridges formed by abnormal crustal generation at the Mid-Atlantic Ridge crest between the times of anomalies 33 and 24 (76–56 Ma ago). The western counterpart of the Rise includes Gauss and Milne seamounts in the Newfoundland Basin.
Magnetic anomaly 31 passes uninterruptedly across the Rise and therefore hypotheses that the northern part of the Rise was the site of a Cenozoic transform fault or subduction zone are not supported by our data. It is speculated that King's Trough was linked to the North Spanish Trough by an early Cenozoic east—west transform fault across the northern Iberia Abyssal Plain. This plate boundary became inactive about the middle of the Oligocene epoch.  相似文献   

19.
The Gohpur–Ganga section is located southwest of Itanagar, India. The study area and its adjacent regions lie between the Main Boundary Thrust (MBT) and the Himalayan Front Fault (HFF) within the Sub-Himalaya of the Eastern Himalaya. The Senkhi stream, draining from the north, passes through the MBT and exhibits local meandering as it approaches the study area. Here, five levels of terraces are observed on the eastern part, whereas only four levels of terraces are observed on the western part. The Senkhi and Dokhoso streams show unpaired terraces consisting of very poorly sorted riverbed materials lacking stratification, indicating tectonic activity during deposition. Crude imbrications are also observed on the terrace deposits. A wind gap from an earlier active channel is observed at latitude 27°04′42.4″ N and longitude 93°35′22.4″ E at the height of about 35 m from the present active channel of Senkhi stream. Linear arrangements of ponds trending northeast–southwest on the western side of the study section may represent the paleochannel of Dokhoso stream meeting the Senkhi stream abruptly through this gap earlier. Major lineament trends are observed along NNE–SSW, NE–SW and ENE–WSW direction. The Gohpur–Ganga section is on Quaternary deposits, resting over the Siwaliks with angular contact. Climatic changes of Pleistocene–Holocene times seem to have affected the sedimentation pattern of this part of the Sub-Himalaya, in association with proximal tectonism associated with active tectonic activities, which uplifted the Quaternary deposits. Older and younger terrace deposits seem to mark the Pleistocene–Holocene boundary in the study area with the older terraces showing a well-oxidized and semi-consolidated nature compared to the unoxidized nature of the younger terraces.  相似文献   

20.
Abstract The Amadeus Basin, a broad intracratonic depression (800 times 300 km) in central Australia, contains a complex Late Proterozoic to mid-Palaeozoic depositional succession which locally reaches 14 km in thickness. The application of sequence stratigraphy to this succession has provided an effective framework in which to evaluate its evolution. Analysis of major depositional sequences shows that the Amadeus Basin evolved in three stages. Stage 1 began at about 900 Myr with extensional thinning of the crust and formation of half-grabens. Thermal recovery following extension was well advanced when a second less intense crustal extension (stage 2) occurred towards the end of the Late Proterozoic. Stage 2 thermal recovery was followed by a major compressional event (stage 3) in which major southward-directed thrust sheets caused progressive downward flexing of the northern margin of the basin, and sediment was shed from the thrust sheets into the downwarps forming a foreland basin. This event shortened the basin by 50–100 km and effectively concluded sedimentation. The two stages of crustal extension and thermal recovery produced large-scale apparent sea-level effects upon which eustatic sea-level cycles are superimposed. Since the style of sedimentation and major sequence boundaries were controlled to a large degree by basin dynamics, depositional patterns within the Amadeus and associated basin are, to a large degree, predictable. This suggests that an understanding of major variables associated with basin dynamics and their relationship to depositional sequences may allow the development of generalized depositional models on a basinal scale. The Amadeus Basin is only one of a number of broad, shallow, intracratonic depressions that appeared on the Australian craton during the Late Proterozoic. The development of these basins almost certainly relates to the breakup of a Proterozoic supercontinent and in large part, basin dynamics appears to be tied to this global tectonic event. Onlap and apparent sea-level curves derived from the sequence analysis appear to be composite curves resulting from both basin dynamics and eustatic sea-level effects. It thus appears likely that sequence stratigraphy could be used as a basis for inter-regional correlation; a possibility that has considerable significance in Archaean and Proterozoic basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号