首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.  相似文献   

2.
Finnish Lapland is known as an area where numerous sites with sediments from Pleistocene glacial and interglacial periods occur. Recent sedimentological observations and dating call for reinterpretation of the record, which shows a complicated Mid‐Weichselian ice‐sheet evolution within the ice‐divide zone. Here, a large, previously unstudied section from a former Hannukainen iron mine was investigated sedimentologically and dated with optically stimulated luminescence (OSL). Ten sedimentary units were identified displaying a variety of depositional environments (glacial, glaciolacustrine, fluvial and aeolian). They are all – except for the lowermost, deeply weathered till – interpreted to be of Mid‐ or Late Weichselian/Holocene age. Five OSL samples from fluvial sediments give ages ranging from 55 to 35 ka, indicating two MIS 3 ice‐free intervals of unknown duration. The Mid‐Weichselian interstadial was interrupted by a re‐advance event, which occurred later than 35 ka and caused glaciotectonic deformation, folding and stacking of older sediments. This new evidence emphasizes the importance of the Kolari area when unravelling the complex Late Pleistocene glacial history of northern Finland and adjacent regions.  相似文献   

3.
Detailed investigations of sediments exposed along river sections in the coastal part of Jameson Land have revealed a Saalian to Holocene glacial history. Eleven sedimentary units have been distinguished. most of which are found in superposition at one single large section. Four subglacially formed till beds are recognized; three of which are of Weichselian age. All the tills are considered to have been deposited at the base of fjord glaciers restricted to the Scoresby Sund basin. The tills are separated by marine, fluvial or deltaic sediments, and demonstrate changes in the depositional environnient considered to represent changes in relative sea level during the ice-free periods. The fossil content. supported by a series of luminescence dates, suggest that most of the succession is of Eemian and Early Weichselian age. From the luminescence dates, a short duration of <10ka is suggested for the Early Weichselian glacial stades. Sedimentation during this period was partly controlled by glacio-isostatic subsidence caused by net growth of the Greenland Ice Sheet. The Middle Weichselian is represented by a large hiatus. whereas the Late Weichselian is represented by a subglacial till.  相似文献   

4.
Winterfeld, M., Schirrmeister, L., Grigoriev, M. N., Kunitsky, V. V., Andreev, A., Murray, A. & Overduin, P. P. 2011: Coastal permafrost landscape development since the Late Pleistocene in the western Laptev Sea, Siberia. Boreas, 10.1111/j.1502‐3885.2011.00203.x. ISSN 0300‐9483. The palaeoenvironmental development of the western Laptev Sea is understood primarily from investigations of exposed cliffs and surface sediment cores from the shelf. In 2005, a core transect was drilled between the Taymyr Peninsula and the Lena Delta, an area that was part of the westernmost region of the non‐glaciated Beringian landmass during the late Quaternary. The transect of five cores, one terrestrial and four marine, taken near Cape Mamontov Klyk reached 12 km offshore and 77 m below sea level. A multiproxy approach combined cryolithological, sedimentological, geochronological (14C‐AMS, OSL on quartz, IR‐OSL on feldspars) and palaeoecological (pollen, diatoms) methods. Our interpretation of the proxies focuses on landscape history and the transition of terrestrial into subsea permafrost. Marine interglacial deposits overlain by relict terrestrial permafrost within the same offshore core were encountered in the western Laptev Sea. Moreover, the marine interglacial deposits lay unexpectedly deep at 64 m below modern sea level 12 km from the current coastline, while no marine deposits were encountered onshore. This implies that the position of the Eemian coastline presumably was similar to today's. The landscape reconstruction suggests Eemian coastal lagoons and thermokarst lakes, followed by Early to Middle Weichselian fluvially dominated terrestrial deposition. During the Late Weichselian, this fluvial landscape was transformed into a poorly drained accumulation plain, characterized by widespread and broad ice‐wedge polygons. Finally, the shelf plain was flooded by the sea during the Holocene, resulting in the inundation and degradation of terrestrial permafrost and its transformation into subsea permafrost.  相似文献   

5.
Sediment successions in coastal cliffs around Mezen Bay, southeastern White Sea, record an unusually detailed history of former glaciations, interstadial marine and fluvial events from the Weichselian. A regional glaciation model for the Weichselian is based on new data from the Mezen Bay area and previously published data from adjacent areas. Following the Mikulinian (Eemian) interglacial a shelf‐centred glaciation in the Kara Sea is reflected in proglacial conditions at 100–90 ka. A local ice‐cap over the Timan ridge existed between 75 and 65 ka. Renewed glaciation in the Kara Sea spread southwestwards around 60 ka only, interrupted by a marine inundation, before it advanced to its maximum position at about 55–50 ka. After a prolonged ice‐free period, the Scandinavian ice‐sheet invaded the area from the west and terminated east of Mezen Bay about 17 ka. The previously published evidence of a large ice‐dammed lake in the central Arkhangelsk region, Lake Komi, finds no support in this study. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
In Ostrobothnia, western Finland, buried fossil soils have been recognised in a number of places in the sandy sediments that occur between glaciofluvial deposits and overlying till. Samples from the soil horizons as well as below and above them were taken for optically stimulated luminescence (OSL) dating. The same sites were also sampled for thermoluminescence (TL) dating. Altogether five TL dates and seventeen OSL dates were obtained. The OSL dates can be grouped into two age classes, (i) 120-163 ka and (ii) 76-106 ka, whereas all TL dates are of the order 135-155 ka. A comparison between the results obtained from the two dating methods shows that OSL dates are generally younger than the TL dates for the same sample. The discrepancy may arise partly from problems of setting a correct residual level in TL dating. If this is the case then the TL dates may indicate an upper limit for the true age. The results support the geological interpretation that the fossil soils were formed during the last interglacial, that the soil-forming processes possibly also continued during the first Early Weichselian stadial and interstadial (Brørup sensu lato), and that in general the till-covered glaciofluvial sequences, interpreted as eskers in Ostrobothnia, were deposited during the Saalian or Early Weichselian deglaciation.  相似文献   

7.
The lithostratigraphy of pre‐Late Weichselian sediments and OSL‐dating results from four localities in the Suupohja area of western Finland, adjacent to the centre of the former Scandinavian glaciations, are presented. The studied sections expose glacifluvial, quiet‐water, littoral and aeolian deposits overlain by Middle and/or Late Weichselian tills. Litho‐ and biostratigraphical results together with seven OSL age determinations on buried glacifluvial sediment at Rävåsen (94±15 ka) and on till‐covered littoral and aeolian sediments at Risåsen, Rävåsen, Jätinmäki and Kiviharju (79±10 to 54±8 ka), accompanied by previous datings and interpretations, suggest that the glacifluvial sediments at Risåsen were deposited at the end of the Saalian Stage (MIS 6) and those at Risåsen were deposited possibly in the Early Weichselian Substage (MIS 5d?). Palaeosol horizons and ice‐wedge casts together with the dated littoral and aeolian sediments between the Harrinkangas Formation (Saalian) and the overlying till(s) indicate that western Finland was ice‐free during most of the Weichselian time. Littoral deposits, dated to the Middle Weichselian (MIS 4–3), occur at altitudes of 50–90 m a.s.l., which indicates significant glacio‐isostatic depression. The depression resulted from expansion of the ice sheet in the west of Finland at that time.  相似文献   

8.
A section, almost 20 km long and up to 80 m high, through alternating layers of diamict and sorted sediments is superbly exposed on the north coast of the Kanin Peninsula, northwestern Russia. The diamicts represent multiple glacial advances by the Barents Sea and the Kara Sea ice sheets during the Weichselian. The diamicts and stratigraphically older lacustrine, fluvial and shallow marine sediments have been thrust as nappes by the Barents Sea and Kara Sea ice sheets. Based on stratigraphic position, OSL dating, sea level information and pollen, it is evident that the sorted sediments were deposited in the Late Eemian-Early Weichselian. Sedimentation started in lake basins and continued in shallow marine embayments when the lakes opened to the sea. The observed transition from lacustrine to shallow marine sedimentation could represent coastal retreat during stable or rising sea level.  相似文献   

9.
The Hitura open pit exposes a sedimentary sequence up to 50 m thick representing Late Saalian to Holocene glacial and non-glacial sediments. The sequence was investigated using sedimentological methods, OSL-dating and pollen and diatom analyses to reconstruct the Middle Weichselian (MWG) glacial event in the central part of the Scandinavian Ice Sheet (SIS). The results indicate that the sediment succession represents two entire glacial advance and retreat cycles. The lowermost deposits are Late Saalian esker and delta sediments overlain by sediments that correlate with the early Eemian lacustrine phase. Remnants of the Eemian soil post-dating the lacustrine phase were also observed. The area was ice-free during the entire Early Weichselian (EWG). The first glacial advance recorded in the sediments is related to the MWG. It started 79 kyr ago, deformed underlying sediments and deposited an immature till, including large detached sediment pods containing remains of organic material, soils and fluvial sediments representing allochthonous material from EWG ice-free stadials and interstadials. The glacial deposits are conformably overlain by glaciolacustrine and littoral accumulations, indicating MWG deglaciation between 62 and 55 kyr ago. Based on the fabric measurements from the till unit overlying the MWG sediments, ice advance during the Late Weichselian (LWG) was initially from the west and later from a north-northwesterly direction. The Hitura strata provide the first dating of the MWG deglaciation (55 to 62 kyr ago) from central parts of the SIS. It can be considered as a key site for studying the growth and decay of SIS during the poorly known early parts of the glaciation.  相似文献   

10.
Lyså, A., Jensen, M. A., Larsen, E., Fredin, O. & Demidov, I. N.* 2010: Ice‐distal landscape and sediment signatures evidencing damming and drainage of large pro‐glacial lakes, northwest Russia. Boreas, Vol. 40, pp. 481–497. 10.1111/j.1502‐3885.2010.00197.x. ISSN 0300‐9483. Sediments from river sections and the morphology of the upper reaches of Severnaya Dvina and Vychegda in northwest Russia show evidence of the existence of large ice‐dammed lakes in the area twice during the Weichselian. During the Late Weichselian, three separate ice‐dammed lakes (LGM lake(s)) existed, the largest one at about 135 m a.s.l. having a volume of about 1510 km3. Stepwise and rapid lake drainage is suggested to have taken place within less than 1000 years. The locations of various passpoints controlled the drainage, and when the lake was at its maximum level water spilled southeastwards into the Volga basin. Later, but before the lake water finally drained into the White Sea, water was routed northeastwards into the southeastern part of the Barents Sea. The oldest lake, the White Sea lake, existed around 67–57 ka ago, slightly in conflict with earlier palaeogeographic reconstructions regarding the chronology. The extent of the lake was constrained by, in addition to the Barents Sea ice‐sheet margin in the north, thresholds in the drainage basin. Later, one threshold was eroded and lowered during the LGM lake drainage. Given a lake level of about 115 m a.s.l., a lake area of about 2.5 × 104 km3 and a water volume of about 4800 km3, the lake drainage northwards and into the ocean probably impacted the ocean circulation.  相似文献   

11.
Coring through glaciotectonically stacked Quaternary sediments situated below sea level on the island of Møn, Denmark, recovered a succession of interstadial sediments of Middle Weichselian age. Plant and animal remains including insects found in laminated sand and mud indicate deposition in a lake surrounded by dwarf shrubs, herbs, mosses and rare trees. The insect fauna indicates a mean July temperature of 8–12 °C, suggesting an arctic to sub‐arctic environment, while winter temperatures around ?8 to ?22 °C suggest periglacial conditions with permafrost. Luminescence dating of sediment samples gave ages from 48–29 ka, and radiocarbon dating indicates deposition of plant fragments between 45 and 36 ka BP. The fossil assemblage from Møn shows close resemblance to those from other sites with similar ages found in the vicinity of the western Baltic Basin.  相似文献   

12.
Sediment cores from lakes Kormovoye and Oshkoty in the glaciated region of the Pechora Lowland, northern Russia, reveal sediment gravity flow deposits overlain by lacustrine mud and gyttja. The sediments were deposited mainly during melting of buried glacier ice beneath the lakes. In Lake Kormovoye, differential melting of dead ice caused the lake bottom to subside at different places at different times, resulting in sedimentation and erosion occurring only some few metres apart and at shifting locations, as further melting caused inversion of the lake bottom. Basal radiocarbon dates from the two lakes, ranging between 13 and 9 ka, match with basal dates from other lakes in the Pechora Lowland as well as melting of ice‐wedges. This indicates that buried glacier ice has survived for ca. 80 000 years from the last glaciation of this area at 90 ka until about 13 ka when a warmer climate caused melting of permafrost and buried glacier ice, forming numerous lakes and a fresh‐looking glacial landscape. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Wohlfarth, B., Alexanderson, H., Ampel, L., Bennike, O., Engels, S., Johnsen, T., Lundqvist, J. & Reimer, P. 2010: Pilgrimstad revisited – a multi‐proxy reconstruction of Early/Middle Weichselian climate and environment at a key site in central Sweden. Boreas, 10.1111/j.1502‐3885.2010.00192.x. ISSN 0300‐9483. The site Pilgrimstad in central Sweden has often been cited as a key locality for discussions of ice‐free/ice‐covered intervals during the Early and Middle Weichselian. Multi‐proxy investigations of a recently excavated section at Pilgrimstad now provide a revised picture of the climatic and environmental development between ~80 and 36 ka ago. The combination of sedimentology, geochemistry, OSL and 14C dating, and macrofossil, siliceous microfossil and chironomid analyses shows: (i) a lower succession of glaciofluvial/fluvial, lacustrine and glaciolacustrine sediments; (ii) an upper lacustrine sediment sequence; and (iii) Last Glacial Maximum till cover. Microfossils in the upper lacustrine sediments are initially characteristic for oligo‐ to mesotrophic lakes, and macrofossils indicate arctic/sub‐arctic environments and mean July temperatures >8 °C. These conditions were, however, followed by a return to a low‐nutrient lake and a cold and dry climate. The sequence contains several hiatuses, as shown by the often sharp contacts between individual units, which suggests that ice‐free intervals alternated with possible ice advances during certain parts of the Early and Middle Weichselian.  相似文献   

14.
A new reconstruction of the interaction between the Saalian Drente glaciation ice margin and the Rhine–Meuse fluvial system is presented based on a sedimentary analysis of continuous core material, archived data and a section in an ice-pushed ridge. Optically Stimulated Luminescence (OSL) was applied to obtain independent age control on these sediments and to establish a first absolute chronology for palaeogeographical events prior to and during the glaciation. We identified several Rhine and Meuse river courses that were active before the Drente glaciation (MIS 11-7). The Drente glaciation ice advance into The Netherlands (OSL-dated to fall within MIS 6) led to major re-arrangement of this drainage network. The invading ice sheet overrode existing fluvial morphology and forced the Rhine–Meuse system into a proglacial position. During deglaciation, the Rhine shifted into a basin in the formerly glaciated area, while the Meuse remained south of the former ice limit, a configuration that persisted throughout most of the Eemian and Weichselian periods. An enigmatic high position of proglacial fluvial units and their subsequent dissection during deglaciation by the Meuse may partially be explained by glacio-isostatic rebound of the area, but primarily reflects a phase of high base level related to a temporary proglacial lake in the southern North Sea area, with lake levels approximating modern sea levels. Our reconstruction indicates that full 'opening' of the Dover Strait and lowering of the Southern Bight, enabling interglacial marine exchange between the English Channel and the North Sea, is to be attributed to events during the end of MIS 6.  相似文献   

15.
Thermoluminescence dating has been carried out on feldspar sand grains from the distal sandur of the Godøya Formation and correlated sediments at Sunnmøre, western Norway. The accumulated dose was determined by the regeneration method. The Godøya Formation, which was earlier assumed to be of Middle Weichselian age, was dated to 105–130 ka and is now assumed to postdate immediately the Eemian interglacial. Dates of sediments previously correlated to the Godøya Formation yielded ages in the ranges of 70–90 and 40–50 ka, thus indicating at least three Weichselian ice-free periods predating the Ålesund interstadial in the area.  相似文献   

16.
Several sections have been studied to understand the distribution and interrelation of basic genetic types of Quaternary deposits in the Uimon basin and adjacent area. The OSL date of 101 ± 10 ka from the glaciolacustrine terrace on the northeastern rim of the basin corresponds to the cool substage of MIS 5. The glaciolacustrine sediments of the northern rim are covered with widespread diamictic flows of the outburst draining of the ice-dammed lake. The diamicts are overlain by a subaerial complex of loesses and three fossil soils. From the OSL loess dates in the range of 43 to 49 ka we infer that the complex formed from the early MIS 3 through the Holocene. This is also supported by radiocarbon dates from alluvial deposits incised into the glaciolacustrine terrace and into megaflood sediments of the final draining of the last paleolake. The OSL dates in the range of 77 to 89 ka from alluvial sediments indicate that postglacial downcutting of the present-day Katun’ valley probably started just after MIS 5. The discrepancy between the beryllium dates from dropstones and Holocene TL-dates of the Katun’ valley floods ranging from 23 to 6 ka can be explained if the younger floods are related to the draining of moraine- and rock slide dammed rather than ice-dammed lakes. The younger floods, though being less voluminous than the glacial megafloods, were capable of producing giant ripple marks.  相似文献   

17.
Little is known about the impact of Late Devensian (Weichselian) aridity on lowland British landscapes, largely because they lack the widespread coversand deposits of the adjacent continent. The concentration of large interformational ice‐wedge casts in the upper part of many Devensian fluvial sequences suggests that fluvial activity may have decreased considerably during this time. The development of optically stimulated luminescence (OSL) dating enables this period of ice‐wedge cast formation to be constrained for the first time in eastern England, where a marked horizon of ice‐wedge casts is found between two distinctive dateable facies associations. Contrasts between this horizon and adjacent sediments show clear changes in environment and fluvial system behaviour in response to changing water supply, in line with palaeontological evidence. In addition to providing chronological control on the period of ice‐wedge formation, the study shows good agreement of the radiocarbon and OSL dating techniques during the Middle and Late Devensian, with direct comparison of these techniques beyond 15 000 yr for the first time in Britain. It is suggested that aridity during the Late Devensian forced a significant decrease in fluvial activity compared with preceding and following periods, initiating a system with low peak flows and widespread permafrost development. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   

19.
A database consisting of radiocarbon (14C), optically stimulated luminescence (OSL), thermoluminescence (TL) and beryllium (10Be) dates was used for timing the advance of the Late Weichselian Scandinavian Ice Sheet (SIS), determining the age of the Last Glacial Maximum (LGM) and the rate of deglaciation. The study area encompasses the southeastern sector of the last SIS between the Baltic Sea and the LGM position in the western part of the East European Plain, covering the Karelian Ice‐Stream Complex (ISC) area in the east and the Baltic ISC area in the west. The linear advance and recession rates of the last SIS were estimated to be between 110 and 330 m a?1 and between 50 and 170 m a?1, respectively. The onset of the last SIS in the Karelian ISC area reached the western shores of Latvia not before 26 OSL ka, and in the Baltic ISC area, on the southern shores of the Gulf of Finland, not before 21 OSL ka. The last SIS reached close to the LGM position earliest in NW Belarus, not earlier than 22.6 cal. 14C ka BP, and latest in the NE of Belarus, not earlier than 19.1 cal. 14C ka BP. The Baltic ISC area between the LGM position and the western shores of Latvia was deglaciated in about 8 ka, and in the Karelian ISC area, between the LGM position and the southern shores of the Gulf of Finland, in about 2.6 ka. The whole area between the LGM position and the Baltic Sea was deglaciated between 14.2 10Be ka and 13.3 cal. 14C ka BP.  相似文献   

20.
Coastal Jameson Land is characterized by thick Quaternary deposits from the last interglacial/glacial cycle. The successions at the mouth of Langelandselv exhibit a key stratigraphy where sediments from the Langelandselv interglaciation (Eemian) are overlain by three till units interbedded with glacimarine and deltaic interstadial successions. Immediately after the retreat of glaciers after the extensive Scoresby Sund glaciation (Saalian). advection of warm Atlantic surface water surpassed what is known from the Holocene. The two lowermost Weichselian tills, deposited during the Aucellaelv and Jyllandselv stades (Early Weichselian), reflect short-lasting readvances of fjord glaciers. Luminescence dates and correlation with adjacent areas suggest ages of 110–80 ka and 70–60 ka for the Hugin Sø and the Møselv interstades, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号