首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To reveal the influence of current warming on tree growth and δ18O in a sensitive high‐latitude region that is undergoing rapid climate change, we examined tree width and the earlywood and latewood δ18O at two sites with a 400‐m elevation difference in the Sygera Mountains of the southeastern Tibetan Plateau. The study period was from 1950 to 2011. The mean tree‐ring index at the low site was higher than that at the high site during the study period. The climatic responses of earlywood and latewood δ18O at both sites were similar. Earlywood δ18O was mainly influenced by the June to August temperature and total cloud cover, whereas latewood δ18O was mainly controlled by relative humidity from July to August. Spatial correlations with CRU TS 3.1 regional data suggest that our δ18O chronologies can represent climatic changes over large regions. The high offset between earlywood δ18O at the two sites (2.3‰ higher at the low site) was mainly influenced by the high temperature lapse rate as a function of altitude during the earlywood growing season. Furthermore, meltwater with lower δ18O values might have affected earlywood δ18O at the high site, and thereby increased the earlywood δ18O offset between two sites. The low latewood δ18O offset between the two sites (0.4‰ higher at the low site) was not significant, but appears to have been primarily influenced by the low precipitation δ18O lapse rate as a function of altitude during the latewood growing season. Earlywood δ18O of Smith fir suitable for reconstructing past temperatures and latewood δ18O suitable for reconstructing past relative humidity on the southeastern Tibetan Plateau were identified.  相似文献   

2.
The geochemical evolution of groundwater in the Ordovician-Cambrian aquifer system in the northern part of the Baltic Artesian Basin (BAB) illustrates how continental glaciations have influenced groundwater systems in proglacial areas. The aquifer system contains water that has originated from various end-members: recent meteoric water, glacial meltwater and relict Na-Cl brine. The saline formation water that occupied the aquifer system prior to the glacial meltwater intrusion has been diluted by meltwaters of advancing-retreating ice sheets. The diversity in the origin of groundwater in the aquifer system is illustrated by a wide variety in δ18O values that range from −11‰ to −22.5‰. These values are mostly depleted with respect to values found in modern precipitation in the area. The chemical and isotopic composition of groundwater has been influenced by mixing between waters originating from different end-members. In addition, the freshening of a previously saline water aquifer due to glacial meltwater intrusion has initiated various types of water-rock interaction (e.g. ion exchange, carbonate mineral dissolution).  相似文献   

3.
Spatial variations of δD and δ18O among seven tributaries and their water sources were investigated in the Heishui Valley of the Yangtze River, China during the dry-season in 2004. A one-way ANOVA (analysis of variation) test showed that both δD (p?18O (p?=?0.045) spatially varied among the seven tributaries. The plot of δ18O versus δD for the river water collected at different locations showed that isotopic fractionation occurred during the snow and glacial melting process. The depleted δ18O and δD in the tributary waters distributed above the local meteoric water line (LMWL) suggested that the glacial and early snowpack meltwater largely recharged these streams during the early spring. The meltwater was isotopically distinguishable from the precipitation and river water, which had been evaporated during warmer and drier times. If glaciers and snow accumulation diminish with future climate warming, the recharge of these tributaries’ baseflow will decline and the security of the water resource in this watershed will be threatened.  相似文献   

4.
A 1000-yr history of climate change in the central Yukon Territory, Canada, is inferred from sediment composition and isotope geochemistry from small, groundwater fed, Seven Mile Lake. Recent observations of lake-water δ18O, lake level, river discharge, and climate variations, suggest that changes in regional effective moisture (precipitation minus evaporation) are reflected by the lake’s hydrologic balance. The observations indicate that the lake is currently 18O-enriched by summer evaporation and that during years of increased precipitation, when groundwater inflow rates to the lake increase, lake-water δ18O values decrease. Past lake-water δ18O values are inferred from oxygen isotope ratios of fine-grained sedimentary endogenic carbonate. Variations in carbonate δ18O, supplemented by those in carbonate and organic δ13C, C/N ratios, and organic carbon, carbonate and biogenic silica accumulation rates, document changes in effective moisture at decadal time scales during the early Little Ice Age period to present. Results indicate that between ~AD 1000 and 1600, effective moisture was higher than today. A shift to more arid climate conditions occurred after ~AD 1650. The 19th and 20th centuries have been the driest of the past millennium. Temporal variations correspond with inferred shifts in summer evaporation from Marcella Lake δ18O, a similarly small, stratified, alkaline lake located ~250 km to the southwest, suggesting that the combined reconstructions accurately document the regional paleoclimate of the east-central interior. Comparison with regional glacial activity suggests differing regional moisture patterns during early and late Little Ice Age advances.  相似文献   

5.
The study investigates the mechanism of glacial meltwater recharge under the Fennosciandian Ice Sheet during the last glacial maximum (LGM) and its impact on regional groundwater flow in the northern Baltic Artesian Basin (BAB) in Estonia and Latvia. The current hypothesis is that a flow reversal occurred in the BAB due to subglacial recharge during the LGM. This hypothesis is supported by an extensive dataset of geochemical and isotopic measurements in the groundwater of northern Estonia, exhibiting significant depletion in δ18O with respect to modern precipitation. To verify the consistency of this hypothesis and better understand groundwater flow dynamics during the LGM period, a numerical model is developed for this area. Two cross-sectional models have been created across the northern BAB, in which groundwater flow and the transport of δ18O have been simulated from the beginning of the LGM to present-day. Several simulations were performed with different subglacial boundary conditions, to investigate the uncertainty related to subglacial recharge of meltwater during the LGM and the subsequent flow reversal in the northern BAB. Several simulations provide a satisfying fit between computed and observed values of δ18O, which means that the hypothesis of subglacial recharge of meltwater is consistent with δ18O distribution. The numerical model suggests that preservation of meltwater in northern Estonia is controlled by confining layers and the proximity to the outcrop area of aquifers, located in the Gulf of Finland. The results also suggest that glacial meltwater has been preserved under the Baltic Sea in the Gulf of Riga.  相似文献   

6.
Oxygen isotope variations in Chinese stalagmites have been widely interpreted as a record of the amount of East Asian summer monsoonal rainfall. This interpretation infers decreasing monsoonal rainfall from the mid‐Holocene and large, dipolar rainfall oscillations within glaciations. However, the speleothem δ18O variations conflict with independent palaeoclimate proxies (cave δ13C, loess/palaeosol magnetic properties, δ13C alkanes), which indicate no systematic decline in rainfall from the mid‐Holocene, and no glacial rainfall maxima. Using mass balance calculations (which incorporate seasonality effects in both δ18O concentration and amount of precipitation), we demonstrate that the cave δ18O variations cannot be accounted for by summer rainfall changes, or rainfall seasonality or winter cooling, but instead reflect changes in moisture source. A possible driver of the δ18O variations in Chinese stalagmites is precessional forcing of inter‐hemispheric temperature gradients, and resultant shifts in the position and intensity of the subtropical pressure cells. Through such forcing, Indian monsoon‐sourced δ18O may have dominated at times of high boreal summer insolation, and local Pacific‐sourced moisture at low insolation. Suppression of summer monsoonal rainfall during glacial stages may reflect diminished sea and land surface temperatures and the radiative impacts of increased regional dust fluxes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Lake sediment, glacier extent and tree rings were used to reconstruct Holocene climate changes from Goat Lake at 550 m asl in the Kenai Mountains, south‐central Alaska. Radiocarbon‐dated sediment cores taken at 55 m water depth show glacial‐lacustrine conditions until about 9500 cal. yr BP, followed by organic‐rich sedimentation with an overall increasing trend in organic matter and biogenic silica content leading up to the Little Ice Age (LIA). Through most of the Holocene, the northern outlet of the Harding Icefield remained below the drainage divide that currently separates it from Goat Lake. A sharp transition from gyttja to inorganic mud about AD 1660 signifies the reappearance of glacier meltwater into Goat Lake during the LIA, marking the maximum Holocene (postglacial) extent. Meltwater continued to discharge into the lake until about AD 1900. A 207 yr tree‐ring series from 25 mountain hemlocks growing in the Goat Lake watershed correlates with other regional tree‐ring series that indicate an average summer temperature reduction of about 1°C during the 19th century compared with the early–mid 20th century. Cirque glaciers around Goat Lake reached their maximum LIA extent in the late 19th century. Assuming that glacier equilibrium‐line altitudes (ELA) are controlled solely by summer temperature, then the cooling of 1°C combined with the local environmental lapse rate would indicate an ELA lowering of 170 m. In contrast, reconstructed ELAs of 12 cirque glaciers near Goat Lake average only 34 ± 18 m lower during the LIA. The restricted ELA lowering can be explained by a reduction in accumulation‐season precipitation caused by a weakening of the Aleutian low‐pressure system during the late LIA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
With accelerated melting of alpine glaciers, understanding the future state of the cryosphere is critical. Because the observational record of glacier response to climate change is short, palaeo‐records of glacier change are needed. Using proglacial lake sediments, which contain continuous and datable records of past glacier activity, we investigate Holocene glacier fluctuations on northeastern Baffin Island. Basal radiocarbon ages from three lakes constrain Laurentide Ice Sheet retreat by ca. 10.5 ka. High sedimentation rates (0.03 cm a?1) and continuous minerogenic sedimentation throughout the Holocene in proglacial lakes, in contrast to organic‐rich sediments and low sedimentation rates (0.005 cm a?1) in neighbouring non‐glacial lakes, suggest that glaciers may have persisted in proglacial lake catchments since regional deglaciation. The presence of varves and relatively high magnetic susceptibility from 10 to 6 ka and since 2 ka in one proglacial lake suggest minimum Holocene glacier extent ca. 6–2 ka. Moraine evidence and proglacial and threshold lake sediments indicate that the maximum Holocene glacier extent occurred during the Little Ice Age. The finding that glaciers likely persisted through the Holocene is surprising, given that regional proxy records reveal summer temperatures several degrees warmer than today, and may be due to shorter ablation seasons and greater accumulation‐season precipitation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation. Oxygen and hydrogen isotopes, with averages of ?7.8‰ and ?53.0‰ for δ18O and δD, respectively, are depleted in winter and rich in spring, and gradually decrease in summer and fall, illustrating that the seasonal effect is considerable. They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious, and the isotope in the middle portion is normally depleted. The isotope compositions of 32 samples collected from shallow groundwater (less than a depth of 150 m) in desert plateau range from ?10.6‰ to ?6.0‰ with an average of ?8.4‰ for δ18O and from ?85‰ to ?46‰ with an average of ?63‰ for δD. Most of them are identical with modern precipitation. The isotope compositions of 22 middle and deep groundwaters (greater than a depth of 275 m) fall in ranges from ?11.6‰ to ?8.8‰ with an average of ?10.2‰ for δ18O and from ?89‰ to ?63‰ with an average of ?76‰ for δD. The average values are significantly less than those of modern precipitation, illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures. Primary analysis of 14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene. The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend, with a relatively flat slope of 3.77, and show that the lake waters were mainly fed by modern precipitation and shallow groundwater.  相似文献   

10.
亚洲树轮稳定氧同位素研究进展   总被引:1,自引:0,他引:1  
树轮稳定氧同位素作为一种高精度的古气候代用指标,在亚洲地区的发展起步晚进步快。树轮稳定氧同位素比率(δ18O)对区域气候信息有较强的记录能力,且与水汽循环关系密切,对于理解复杂的亚洲气候起着重要作用。亚洲地区树轮δ18O对温度的响应主要出现在高纬度地区,中低纬度树轮δ18O主要记录与水分(降水、相对湿度、PDSI等)有关的信号。对亚洲地区已发表的树轮δ18O与气候要素(温度、降水、相对湿度)的相关分析显著性统计显示,生长季气候对树轮δ18O至关重要,树轮δ18O 与温度的显著相关关系呈正相关,与降水和相对湿度的呈负相关,温度和降水通过降水δ18O影响树轮δ18O,但各自的信号强度存在区域差异,而相对湿度信号则广泛记录在不同区域不同树种之中。亚洲树轮稳定氧同位素研究集中于中低纬度地区,因而对大气水文循环的响应主要侧重于对亚洲夏季风和ENSO的研究,对季风降水的记录反映了季风活动的变化特征以及与之有关的环流信息;季节分辨率的树轮稳定氧同位素研究限于低纬热带亚热带区域,但对于理解区域气候和季风活动的年内变化、挖掘年轮不清晰树种的树轮学研究潜力具有重要的意义。  相似文献   

11.
The contribution of stable isotopes in meteorological, climatological and hydrological research is well known. This study analyzed the deuterium and oxygen 18 contents (δD and δ18O) of precipitation in event-based samples at three stations (Glacier No. 1, Zongkong, Houxia) along the upper Urumqi River Basin from May 2006 to August 2007. The δ18O in precipitation revealed a wide range and a distinct seasonal variation at all three stations, with enriched values occurring in summer and depleted values in winter. A statistically significant positive correlation was observed between the δ18O and δD and local surface air temperature, and better linear relationship existed between δ18O and air temperature than that of δD. This suggests that paleoclimatic archives relating to precipitation δ18O and δD can be useful for qualitative temperature reconstruction. The d-excess in precipitation also exhibited a seasonal variability. Based on NCEP/NCAR reanalysis data, three-dimensional isentropic back-trajectories in HYSPLIT model were employed to determine the moisture source for each precipitation event. Results indicate a dominant effect of westerly air masses in summer and the integrated influence of westerly and polar air masses in winter, and d-excess can be used as a sensitive tracer of the moisture transport history.  相似文献   

12.
Reconstructing ice‐lake histories is of considerable importance for understanding deglacial meltwater budgets and the role of meltwater reservoirs for sea‐level rise in response to climate warming. We used the latest data on chronology and ice‐sheet extents combined with an isostatically adjusted digital elevation model to reconstruct the development of proglacial lakes in the area of the Karelian ice stream complex of the Late Weichselian Scandinavian Ice Sheet on the East European Plain. We derived the deglacial ice lake development in seven time‐slices from 19 to 13.8 ka, assuming the individual ice‐marginal positions to be isochronous throughout the studied domain. Modelling is based on mapping of critical drainage thresholds and filling the depressions that are potentially able to hold meltwater. Such an approach underestimates the real dimensions of the ice lakes, because the role of erosion at the thresholds is not considered. Our modelling approach is sensitive to the (local) ice‐margin location. Our results prove the southward drainage of meltwater during the glacier extent maxima and at the beginning of deglaciation whereas rerouting to the west had taken place already around 17.5 ka, which is some 1.5 ka earlier than hitherto supposed. The total ice‐lake volume in the study area was lowest (~300 km3) during the maximum glacier extent and highest (~2000 km3) during the highstand of the Privalday Lake at c. 14.6 ka. At 14.6–14.4 ka, the Privalday Lake drained to the early Baltic Ice Lake. The released ~1500 km3 of water approximately corresponds to 20% of the early Baltic Ice Lake water volume and therefore it is unlikely that it was accommodated there. Thus, we argue that the additional meltwater drained through the Öresund threshold area between the early Baltic Ice Lake and the sea, becoming a part of the Scandinavian Ice Sheet's contribution to the Meltwater Pulse 1A event.  相似文献   

13.
The low-latitude hydrological cycle is a key climate parameter on different timescales, as it contributes to various feedback processes. Modelling studies suggest that the interhemispheric insolation contrast is the major factor controlling the cycle, although the influence of glacial conditions and the phase relationships relative to insolation forcing remain undetermined. In this work, we studied precipitation variability over Papua New Guinea (PNG, 3°S) for the past 400 ka using terrigenous fractions transported by the Sepik River to the Western Pacific Warm Pool (WPWP). A multi-decadal to centennial resolution of the elemental content was obtained using X-ray fluorescence scanning of a marine sediment core using an age model based on 14C dates and benthic foraminiferal δ18O. Indicators of the coarse river particulate fraction (bulk and CaCO3-free basis Ti concentrations, the log intensity ratios of Ti/K and Ti/Ca) displayed a dominant 23 ka periodicity without a clear glacial–interglacial trend. Our precipitation records showed a tight relationship with local summer insolation (3°S, January) with time-dependent lag of 0 to 4 ka. They were generally in anti-phase for U–Th dated Chinese speleothem δ18O records. Based on an analogy to modern climate, we propose that precipitation over PNG was primarily determined by interhemispheric insolation contrast, and the contribution of austral fall/winter precipitation added second-order variability that formed the lags. For the last four climate cycles, the WPWP hydrological cycle was closely associated with the eastern Asian monsoon, and the influence of glacial conditions on the low-latitude hydrological cycle was estimated to be limited.  相似文献   

14.
Postglacial precipitation δ18O history has been reconstructed for two regions of Canada. Long-term shifts in the oxygen-isotope composition of annual precipitation (δ18Op) in southern Ontario appear to have occurred with a consistent isotope–temperature relation throughout the past 11,50014C yr. The modern isotope–temperature relation in central Canada near present boreal treeline evidently became established between 5000 and 4000 years ago, although the relation during the last glacial maximum and deglaciation may also have been similar to present. In the early Holocene, however, unusually high δ18Opapparently persisted, in spite of low temperature locally, probably associated with high zonal index. A rudimentary sensitivity analysis suggests that a small reduction in distillation of moisture in Pacific air masses traversing the western Cordillera, perhaps accompanied by a higher summer:winter precipitation ratio, could have been responsible for the observed effect. Equivalent isotope–temperature “anomalies” apparently occurred elsewhere in western North America in response to changing early-Holocene atmospheric circulation patterns, suggesting that a time-slice map of δ18Opfor North America during this period might provide a useful target for testing and validation of atmospheric general circulation model simulations using isotopic water tracers.  相似文献   

15.
We select four caves and their nearby cities in the monsoonal region of China for studying the relationships among precipitation, temperature, summer monsoon intensity and stalagmite δ18O. The instrumental, historic and stalagmite δ18O records from these areas show strong spatial disparities on annual to decadal scales, so that climatic conditions in a single location cannot represent these of the entire eastern China. On time scales <500 years, stronger summer monsoon may lead to higher rainfall in some locations but not over eastern China. Correlation between the summer monsoon strength and precipitation is not only location-dependent but also changes with time. One may not use the paleoclimatic pattern of cold–dry and warm–wet on glacial/interglacial ages throughout all time scales for climatic conditions in the monsoonal region. On centennial to millennial scales, stalagmite δ18O variation trend from eastern China resemble solar irradiance with lighter δ18O corresponding to increased solar irradiance, and vice versa. The similar trends may reflect climatic feedbacks link to solar forcing to cause changes in the summer monsoon intensity and/or in monsoonal circulation. Changes in monsoonal circulation and intensity affect (1) summer rainfall intensity, (2) summer/winter precipitation ratio, or (3) ratio of moisture from Indian/Pacific oceans, or a combination of the three. Thus, a speleothem δ18O record may not be proper to be used as a proxy of paleo-precipitation amount, especially on short time scales. Based on the four stalagmite δ18O records during the last 2000 years, EASM strength decreased from AD 200 to AD 500, and from AD 1300 to AD 1600 (the 1st half of the Little Ice Age), whereas EASM strength increased from AD 1600 to AD 1900 (the 2nd half of the Little Ice Age). The EASM strength has weakened since early 1900’s.  相似文献   

16.
St. Amour, N. A., Hammarlund, D., Edwards, T. W. D. & Wolfe, B. B. 2010: New insights into Holocene atmospheric circulation dynamics in central Scandinavia inferred from oxygen‐isotope records of lake‐sediment cellulose. Boreas, Vol. 39, pp. 770–782. 10.1111/j.1502‐3885.2010.00169.x. ISSN 0300‐9843 Cellulose‐inferred lakewater oxygen‐isotope records have been obtained from two hydrologically open basins (Lake Spåime and Lake Svartkälstjärn), located on a west–east transect across central Sweden, to investigate changes in atmospheric circulation patterns during the Holocene. The Lake Spåime δ18O record is sensitive to changes in the seasonal distribution of precipitation in the Scandes Mountains of west‐central Sweden, and thus generally portrays variations in δ18O of precipitation (δ18OP) that are governed predominantly by the influence of air masses originating from the North Atlantic. In contrast, the Lake Svartkälstjärn δ18O record appears to reflect the varying influence of air masses delivering moisture from the North Atlantic and the Baltic Sea. A comparison of inferred changes in δ18OP over the Holocene between the two sites reveals systematic patterns of variability over widely different time scales. These include: (1) a previously recognized long‐term regional decline in δ18OP, possibly in response to the declining vigour of Northern Hemisphere atmospheric circulation related to decreasing summer solar insolation; (2) newly identified inverse centennial‐ to millennial‐scale δ18OP fluctuations at the two sites that may be linked to changes in modes of atmospheric circulation analogous to those described at interannual to multidecadal time scales by the North Atlantic Oscillation (NAO) index; and (3) a prolonged interval of apparent climatic stability in the mid‐Holocene (c. 6300–4200 cal. yr BP) characterized by persistently negative NAO‐like circulation.  相似文献   

17.
The oxygen isotopic composition of land-snail shells may provide insight into the source region and trajectory of precipitation. Last glacial maximum (LGM) gastropod shells were sampled from loess from Belgium to Serbia and modern land-snail shells both record δ18O values between 0‰ and − 5‰. There are significant differences in mean fossil shell δ18O between sites but not among genera at a single location. Therefore, we group δ18O values from different genera together to map the spatial distribution of δ18O in shell carbonate. Shell δ18O values reflect the spatial variation in the isotopic composition of precipitation and incorporate the snails' preferential sampling of precipitation during the warm season. Modern shell δ18O decreases in Europe along a N-S gradient from the North Sea inland toward the Alps. Modern observed data of isotopes in precipitation (GNIP) demonstrate a similar trend for low-altitude sites. LGM shell δ18O data show a different gradient with δ18O declining toward the ENE, implying a mid-Atlantic source due to increased sea ice and a possible southern displacement of the westerly jet stream. Balkan LGM samples show the influence of a Mediterranean source, with δ18O values decreasing northward.  相似文献   

18.
This paper presents the results of a high‐resolution Late‐glacial chironomid stratigraphy from Hawes Water, a small carbonate lake in northern Lancashire. The samples were from a core taken from the terrestrialised margin of the present lake, which represents an intermediate depth between the true littoral and the profundal. The chironomid assemblage showed a high degree of sensitivity to both broad‐scale and short‐term temperature changes. Comparison with an existing proxy temperature record (δ18O) for the site confirmed the presence of four temperature inversions within the Late‐glacial Interstadial. A mean July air temperature inference model, derived from acid, soft‐water lakes in Norway and Svalbard, was applied to the data. Despite the absence of carbonate lakes within the Norwegian training set, there was a close similarity between trends in estimated July air temperature and the δ18O trace, with a particularly strong correspondence in the periods of clay deposition. This suggests that this model is highly robust. The inferred maximum Interstadial temperature was 13.4°C, dropping initially to 7.5°C in the Loch Lomond Stadial. Temperatures reach a maximum of nearly 10°C in this period, cool for a short period before rising rapidly to 13.2°C at the start of the Holocene. These temperatures are similar to but slightly higher than those estimated for Whitrig Bog, southeast Scotland, and lower than those inferred from coleopteran‐based models for sites in South Wales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
An investigation using environmental isotopes (δ18O and δD) was conducted to gain insight into the hydrological processes of the Ganga Alluvial Plain, northern India. River-water, shallow-groundwater and lake-water samples from the Gomati River Basin were analyzed. During the winter season, the δ18O and δD compositions of the Gomati River water ranged from ?1.67 to ?7.62 ‰ and ?25.08 to ?61.50 ‰, respectively. Deuterium excess values in the river water (+0.3 to ?13 ‰) and the lake water (?20 ‰) indicate the significance of evaporation processes. Monthly variation of δ18O and δD values of the Gomati River water and the shallow groundwater follows a similar trend, with isotope-depleted peaks for δ18O and δD synchronized during the monsoon season. The isotopically depleted peak values of the river water (δ18O?=??8.30 ‰ and δD?=??57.10 ‰) can be used as a proxy record for the isotopic signature of the monsoon precipitation in the Ganga Alluvial Plain.  相似文献   

20.
Hydrological systems have been seriously affected by changes of glaciations and snow covers in Mount Gongga, Sichuan, China, but the relevance of ice-snow melt for alpine river basin hydrology is so far not well known. To better understand hydrological features of the Hailuogou River, changes of δ18O and δ2H were investigated by analyzing 117 water samples collected from May 2008 to November 2009. Our results show that the stream water contains a relatively intermediate magnitude of isotopic variations, with δ18O ranging from ?18.09 to ?13.08 ‰ and δ2H from ?126.5 to ?88.8 ‰. The average values are both higher than those of ice-snow meltwater, but lower than those of meteoric water. These data also show a gradually increasing trend from upstream to downstream, and these changes might document the fingerprint of ice-snow melt in the headwater region and indicate the increasing recharge of heavy isotope-enriched waters with flow distance. The similarity in slopes of δ2H and δ18O relationship for meteoric waters and stream waters suggests that the isotopic signature of precipitation is well preserved in stream flow, and during the rainfall and stream flow the evaporation is only minor. Based on δ18O model, the results suggested that the fraction of ice-snow meltwater input over the total stream flow ranged from 84.50 to 86.52 % in the headwater region, but the fraction of ice-snow meltwater input from upper basin downward was significantly decreased. The study demonstrates that ice-snow meltwater is a substantially important water source in alpine regions on the edge of Tibetan Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号