首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous paper (hereafter referred to as Paper I) we have tried to show that superdense cores in the nuclei of disk galaxies can be formed by accretion of gas ejected by the evolved stars which populate the central bulge of these galaxies. Solving the equations for radial flow of a magnetized gas, we found that the accretion of an explodable mass at the core can be achieved over a time-scale ranging from a few times 107 and a few times 108 yr. It was shown, however, that the accretion process is seriously inhibited if the gas possesses sufficient rotational velocity but lacks any dissipative, mechanism within the system. Since rotational velocity is an observed parameter of the stars which shed the gas to be accreted, one must consider the existence of some dissipative force in it in order that the accretion process may be efficient. In the present paper, therefore, we have solved the problem of the flow of a rotating, viscous (variable), magnetized gas. With plausible assumptions regarding some of the parameters involved, the time-scale for the accretion of an explodable mass (109 M ) at the core again turns out to be ranging between a few times 107 and a few times 108yr. Such time-scale has been proposed by several authors as that for repeated explosions in nuclei of these galaxies. It has also been proposed by many authors that the spiral arms are generated and destroyed in disk galaxies over the same time-scale. Our solution also yields a nearly linear rotational velocity law which is usually observed in the central regions of these galaxies.  相似文献   

2.
Repeated explosions in the nuclei of galaxies are now accepted as observationally established phenomena. Each explosion leads to the ejection of gas from the central region of a galaxy with velocities depending on the strength of the explosive event. In the process the nucleus temporarily becomes gas-deficient. It is suggested that the mass los is replenished by the accretion of the mass which is shed by those evolved stars in the galactic bulge that possess relatively low rotational velocities. The gas to be accreted is assumed to be magnetized. In the present model, the accretion rate has been assumed to be a function of both radial distance and time. The cross-radial equation of motion has been solved to derive the expression for the rotational velocity which is found to bealmost linear with the radial distance from the centre. The radial equation has been solved to calculate the time-scale over which the nucleus accumulates sufficient mass to undergo instability and suffer explosion. The calculated time-scale range from few multiples of 107 to a few multiples of 108 yr. This range agrees very well with that as has been suggested on the basis of observation in the case of our own Galaxy.  相似文献   

3.
A deep H I survey with the VLA of the spiral galaxy NGC 2403 has revealed the existence of a thick, low density layer of neutral gas surrounding the thin ‘cold’ disk. This layer has a mean rotation velocity 25–50 km s-1 lower than that of the disk and a 10–20 km s-1inflow towards the centre of the galaxy. In the central parts there are velocity differences from rotation of up to 150 km s-1.Chandra observations of NGC 2403 show a diffuse, hot X-ray emitting gas component with a temperature of a few 106 K. These results point at galactic fountain type of flows between disk and halo. ‘Halo’ gas with similar characteristics has also been observed in other spiral galaxies(e.g. NGC 6946, NGC 891). Such gas is probably similar to the IVCs and to some of the HVCs of the Milky Way.  相似文献   

4.
We incorporate a simple scheme for the growth of supermassive black holes into semi-analytic models that follow the formation and evolution of galaxies in a cold dark matter-dominated Universe. We assume that supermassive black holes are formed and fuelled during major mergers. If two galaxies of comparable mass merge, their central black holes coalesce and a few per cent of the gas in the merger remnant is accreted by the new black hole over a time-scale of a few times 107 yr. With these simple assumptions, our model not only fits many aspects of the observed evolution of galaxies, but also reproduces quantitatively the observed relation between bulge luminosity and black hole mass in nearby galaxies, the strong evolution of the quasar population with redshift, and the relation between the luminosities of nearby quasars and those of their host galaxies. The strong decline in the number density of quasars from z ∼2 to z =0 is a result of the combination of three effects: (i) a decrease in the merging rate; (ii) a decrease in the amount of cold gas available to fuel black holes, and (iii) an increase in the time-scale for gas accretion. The predicted decline in the total content of cold gas in galaxies is consistent with that inferred from observations of damped Ly α systems. Our results strongly suggest that the evolution of supermassive black holes, quasars and starburst galaxies is inextricably linked to the hierarchical build-up of galaxies.  相似文献   

5.
A model for the formation of superdense gaseous cores by accretion in the nuclei of disk galaxies has been proposed. Equations for radial flow of gas into the nucleus in the presence of aweak galactic magnetic field have been solved, and time scales for the accretion of an exploding mass in the nucleus (109 M ) have been obtained under several different situations in the absence of any rotation. The time scales are found to lie in the range between a few times 107 yr and 108 yr. Such time scales have been proposed by some authors for repeated explosions in the nuclei of galaxies; they have also proposed that spiral arms in disk galaxies are repeatedly formed and destroyed over such time scales. It is shown that the presence of rotational velocities in the infalling gas practically destroys the efficiency of the accretion process unless such velocities are dissipated by frictional forces within the system. Viscosity of gas is the most obvious dissipative agent. The problem of accretion of a rotating viscous gas will be discussed in a subsequent paper.  相似文献   

6.
This paper deals with the observed variation in the flattening of galaxies with the density of galaxies in the subclusters of Coma surrounding NGC 4889, NGC 4874, and NGC 4839 based on data from the Abastumani Combined Catalog of Galaxies. The mean values of the observed ratios of the diameters of the galaxies, as well as histograms of their distributions, indicate that in the central, dense regions of the subclusters within a volume of 0.5h 75 −1 Mpc3, E and S0 type galaxies are close to spheroidal. A significant reduction in the mean values of the diameters of the galaxies in the subclusters is noted, regardless of their morphology relative to the galaxies in the halo of the Coma cluster. In the subclusters, spiral galaxies are found with a hydrogen deficit that is more than 5 times the hydrogen deficit in spirals within the halo of the cluster. According to their 3-D coordinates, most of the galaxies with a hydrogen deficit are located closer to the south-east edge of the subcluster surrounding NGC 4874 near an extended gas filament in the x-ray region. This may indicate that the subcluster is moving toward a central condensation of faint galaxies in the Coma cluster and a possible merger with it. __________ Translated from Astrofizika, Vol. 50, No. 3, pp. 355–368 (August 2007).  相似文献   

7.
We introduce a differential equation for star formation in galaxies that incorporates negative feedback with a delay. When the feedback is instantaneous, solutions approach a self-limiting equilibrium state. When there is a delay, even though the feedback is negative, the solutions can exhibit cyclic and episodic solutions. We find that periodic or episodic star formation only occurs when two conditions are satisfied. First the delay time-scale must exceed a cloud consumption time-scale. Secondly, the feedback must be strong. This statement is quantitatively equivalent to requiring that the time-scale to approach equilibrium be greater than approximately twice the cloud consumption time-scale. The period of oscillations predicted is approximately four times the delay time-scale. The amplitude of the oscillations increases with both feedback strength and delay time.
We discuss applications of the delay differential equation (DDE) model to star formation in galaxies using the cloud density as a variable. The DDE model is most applicable to systems that recycle gas and only slowly remove gas from the system. We propose likely delay mechanisms based on the requirement that the delay time is related to the observationally estimated time between episodic events. The proposed delay time-scale accounting for episodic star formation in galaxy centres on periods similar to   P ∼ 10 Myr  , irregular galaxies with   P ∼ 100 Myr  , and the Milky Way disc with   P ∼ 2  Gyr, could be that for exciting turbulence following creation of massive stars, that for gas pushed into the halo to return and interact with the disc and that for spiral density wave evolution, respectively.  相似文献   

8.
The evidence is reviewed for a universal magnetic field of strength 10–9–10–8G; it has been extended to include the diffuse fields of galactic clusters and the extensive magnetic halos of spiral galaxies. Some likely effects of the universal fieldB 0 are as follows: (1) As suggested previously,B 0 is coupled to protogalaxies and evolves into magnetic structures which depend on the angle between the field and the gas rotational axis. These provide the blueprints for the various types of the Hubble sequence, (ii) The relatively few grand-design spiral galaxies result from tidal interactioon (M51-type), but normal spirals form as a result of the spiral oblique field) magnetic blueprint acting on sheared gravitational instabilities (Goldreich and Lynden-Bell). (iii) The model explains the prevalent warped galactic disks and perhaps their flat H1 rotation curves. (iv) A variety of puzzling H1 concentrations may have hydromagnetic explanations; they include the high-velocity clouds, streamers, rings and central systems. (v) Clusters of galaxies are known to have diffuse magnetic fields, and these are likely to explain the absence of spiral galaxies and the nature of the intracluster gas. (vi) Spiral galaxies are now known to have extensive magnetic halos. These appear explicable only in terms of the universal magnetic field model.  相似文献   

9.
We present data probing the spatial and kinematical distribution of both the atomic (H  i ) and molecular (CO) gas in NGC 5218, the late-type barred spiral galaxy in the spiral–elliptical interacting pair, Arp 104. We consider these data in conjunction with far-infrared and radio-continuum data, and N -body simulations, to study the galaxies interactions, and the star formation properties of NGC 5218. We use these data to assess the importance of the bar and tidal interaction on the evolution of NGC 5218, and the extent to which the tidal interaction may have been important in triggering the bar. The molecular gas distribution of NGC 5218 appears to have been strongly affected by the bar; the distribution is centrally condensed with a very large surface density in the central region. The N -body simulations indicate a time-scale since perigalacticon of  ∼3 × 108 yr  , which is consistent with the interaction having triggered or enhanced the bar potential in NGC 5218, leading to inflow and the large central molecular gas density observed. Whilst NGC 5218 appears to be undergoing active star formation, its star formation efficiency is comparable to a 'normal' SBb galaxy. We propose that this system may be on the brink of a more active phase of star formation.  相似文献   

10.
High-velocity ejection of gas from the central region of galaxies is now an observationally established phenomenon. Such ejections have been attributed to some kind of activities in the nuclei of galaxies. It has been suggested that conditions leading to explosive events periodically prevail in the centre of galaxies causing recurrent explosions and driving the gas thereby outward with sufficiently high velocities. The magnitude of the ejection velocity and the amount of gas driven out will actually depend on the intensity of the activity at the centre. Remnants of recurrent activity have been discovered in the inner region of our Galaxy. The ‘3-kpc’ arm, the 2.4 kpc arm, the molecular ring at 270 pc and some other features are believed to have been caused by periodic activity at the centre of our Galaxy. We have outlined a model that can explain the recurrent explosions in the centre of a galaxy. The boundary of the nucleus of the Galaxy is considered here as a stationary shock front where high velocity gas coming from the outer regions impinges and gets heated and condensed. This condensed, hot gas then flows inwards by intense gravitational pull, but in course of its passage inward it loses its velocity due to radiation pressure and frictional retardation. A layer of dense, hot gas is therefore formed some distance (typically 0.001 pc) away from the centre where short radio and microwaves are trapped. As the density of gas in this layer is enhanced by the inflowing gas, shorter-wave radiation is trapped. The pressure of radiation therefore gradually builds up in the layer which ultimately overcomes the gravitational pull and the layer is blown off violently. The whole process may be completed over and over again at intervals of 106–107 yr.  相似文献   

11.
If supermassive black holes in centres of galaxies form by merging of black hole remnants of massive Population III stars, then there should be a few black holes of mass one or two orders of magnitude smaller than that of the central ones, orbiting around the centre of a typical galaxy. These black holes constitute a weak perturbation in the gravitational potential, which can generate wave phenomena in gas within a disc close to the centre of the galaxy. Here, we show that a single orbiting black hole generates a three-arm spiral pattern in the central gaseous disc. The density excess in the spiral arms in the disc reaches values of 3–12 per cent when the orbiting black hole is about 10 times less massive than the central black hole. Therefore, the observed density pattern in gas can be used as a signature in detecting the most massive orbiting black holes.  相似文献   

12.
BIMA SONG is a systematic imaging study of the 3 mm CO J = 1 → 0molecular emission within the centres and discs of 44 nearby spiral galaxies on size scales of a few hundred parsecs (6-9"). The overall goal of the survey is to study the role of molecular gas in the evolution of spiral galaxies. To this end, BIMA SONG addresses 1) the distribution and physical conditions of the molecular gas in galactic discs and its relation to star formation, 2) the effects of a stellar bar on the kinematics of molecular gas, including the possible inflow of gas along a bar, and 3) the distribution and role of molecular gas in the central few hundred parsecs of active and quiescent galaxies. The source list includes all (except M33and M31) 44 galaxies of Hubble types Sa–Sd, with declinations δ >−20°, visual magnitudes B < 11.0, velocities v hel <2000 km s-1, and inclinations i < 70°. Beyond the specific scientific questions we will address, this survey will provide a unique database for astronomers who study galaxies at all wavelengths. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The gas properties of barred and unbarred spiral galaxies are compared in two complete samples. It is found that two types of spiral galaxies do not differ from each other in atomic and molecular gas contents. On average there is 6 times more HI than H2 in spiral galaxies and the ratio MH2/MHI decreases from early to late types. The barred and unbarred spirals in general show a similar behaviors of the gas-to-luminosity relationships, but also there are certain differences between them such as correlation of two gas phases (HI and H2)for unbarred galaxies. It is suggested that different behaviors of two types galaxies are due to the higher star forming activity of barred with respect unbarred spirals. The expected values of HI and H2 gas contents have been estimated using blue and far-infrared emission. Published in Astrofizika, Vol. 43, No. 3, pp. 405-410, July–September, 2000.  相似文献   

14.
Immediate consequences of nuclear explosions on the structure and physical state of a galactic disk are considered in this paper. Explosions in the nucleus of a Galaxy generate strong shock waves which, when propagating onward heat and condensing the gas, form thin dense ring-like gaseous features behind it. Such rings and dense gaseous complexes have been observed in the central region of the Galaxy. These features have been treated here as the remnants of galactic shocks generated by nuclear explosions. We have estimated the time elapsed since the corresponding explosion, the energy released by explosion and the initial temperature and the velocity of the shock wave thus generated. The cooling of the gas heated by strong shocks has also been considered. The time taken by shock-heated gas to cool to its original temperature has been estimated to be of the order of 105 to 106 yr, according to the initial shock temperature which is about 9×106 K or 6.4×107 K. The rate of emission of energy and the total amount of energy dissipated away in the form of radiation in the cooling process, have been calculated for different values of initial shocktemperatures and also for different field intensities. The high-energy radiation emitted in the cooling process is suggested here as a source for the heating of dust grains, which ultimately are radiated in the infrared spectrum. Thus, a part of the infrared radiation, as measured by many authors, in the central region of the Galaxy, may originate ultimately from the cooling of the shock-heated gas there.  相似文献   

15.
16.
Summary Over the last decade sensitive observations of radio recombination line emission using high angular resolution synthesis telescopes have become available. As a result it has now become possible to image the physical parameters deduced from radio recombination lines across individual sources. In the case of HII regions this work has resulted in detailed images of radial velocities, electron temperatures and the abundance of singly ionized helium (Y+). Direct observational evidence has been found for pressure broadening and non-LTE effects. Dramatic variations have been found in the ratio of He+ to H+, from as low as a few percent (the galactic centre) to as high 34% in one region of W3. Detailed images have been obtained of the partially ionized medium (CII and H regions) close to HII regions. Observations of recombination lines at very low frequencies have revealed the existence of very low density ionized gas in all directions in our galaxy. Higher resolution observations have led to a partial understanding of this medium. The first complete velocity field of the ionized gas in the centre of our galaxy has been obtained. Very recently the first images were made of extragalactic radio recombination lines, offering the possibility to study the kinematics of the ionized gas in the central few hundred parsecs of external galaxies.  相似文献   

17.
A study of the merger time-scales of various types of interacting galaxies is conducted on the basis of the collisional theory. The results indicate that in the absence of halos, violently interacting galaxies merge in a time-scale of ~ 108 years; but the mildly interacting ones have merger time-scales from ~ 109 to 1010 years. However, in the presence of halos, all types of interacting galaxies are likely to merge in a time-scale of 108 years (as indicated by preliminary calculations). Galaxy evolution by mutual interactions is likely to have its reflection on the fundamental plane, as during the process the dynamical structures of the progenitors change and dissipation occurs.  相似文献   

18.
Self-consistent simulations of seven groups of galaxies with halos have been performed to find a constraint upon the size of missing halos around spiral galaxies. An initial galaxy, which consists of 100 superstars, has half-mass radius 41 kpc and central velocity dispersion 235 km s–1. The simulations start from the epoch of maximum expansion. The initial conditions involve a variety of spatial distributions of galaxies, and the velocity dispersion of galaxies as would be permitted for maximum expansion. Dense groups having collapse times shorter than (2/3)H 0 –1 are shown to form multiple mergers in a Hubble timeH 0 –1 . From a comparison of the frequencies of cD galaxies, or multiple mergers, in observed and simulated groups, it is concluded that the effective radius of missing halos is less than 41 kpc.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

19.
NGC 4921 and 7049 are two spiral galaxies presenting narrow, distinct dust features. A detailed study of the morphology of those features has been carried out using Hubble Space Telescope archival images. NGC 4921 shows a few but well-defined dust arms midway to its centre while NGC 7049 displays many more dusty features, mainly collected within a ring-shaped formation. Numerous dark and filamentary structures, called outgrowths, are found to protrude from the dusty arms in both galaxies. The outgrowths point both outwards and inwards in the galaxies. Mostly they are found to be V-shaped or Y-shaped with the branches connected to dark arm filaments. Often the stem of the Y appears to consist of intertwined filaments. Remarkably, the outgrowths show considerable similarities to elephant trunks in H ii regions. A model of the outgrowths, based on magnetized filaments, is proposed. The model provides explanations of both the shapes and orientations of the outgrowths. Most important, it can also give an account for their intertwined structures. It is found that the longest outgrowths are confusingly similar to dusty spiral arms. This suggests that some of the outgrowths can develop into such arms. The time-scale of the development is estimated to be on the order of the rotation period of the arms or shorter. Similar processes may also take place in other spiral galaxies. If so, the model of the outgrowths can offer a new approach to the old winding problem of spiral arms.  相似文献   

20.
Our aim is to explore the relation between gas, atomic and molecular, and dust in spiral galaxies. Gas surface densities are from atomic hydrogen and CO line emission maps. To estimate the dust content, we use the disk opacity as inferred from the number of distant galaxies identified in twelve HST/WFPC2 fields of ten nearby spiral galaxies. The observed number of distant galaxies is calibrated for source confusion and crowding with artificial galaxy counts and here we verify our results with sub‐mm surface brightnesses from archival Herschel ‐SPIRE data. We find that the opacity of the spiral disk does not correlate well with the surface density of atomic (H I) or molecular hydrogen (H2) alone implying that dust is not only associated with the molecular clouds but also the diffuse atomic disk in these galaxies. Our result is a typical dust‐to‐gas ratio of 0.04, with some evidence that this ratio declines with galactocentric radius, consistent with recent Herschel results. We discuss the possible causes of this high dust‐to‐gas ratio; an over‐estimate of the dust surface‐density, an under‐estimate of the molecular hydrogen density from CO maps or a combination of both. We note that while our value of the mean dust‐to‐gas ratio is high, it is consistent with the metallicity at the measured radii if one assumes the Pilyugin & Thuan (2005) calibration of gas metallicity. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号