首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The global high‐resolution imaging of asteroid 433 Eros by the Near‐Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft has made it possible to develop the first comprehensive picture of the geology of a small S‐type asteroid. Eros displays a variety of surface features, and evidence of a substantial regolith. Large scale facets, grooves, and ridges indicate the presence of at least one global planar structure. Directional and superposition relations of smaller structural features suggest that fracturing has occurred throughout the object. As with other small objects, impact craters dominate the overall shape as well as the small‐scale topography of Eros. Depth/diameter ratios of craters on Eros average ~0.13, but the freshest craters approach lunar values of ~0.2. Ejecta block production from craters is highly variable; the majority of large blocks appear to have originated from one 7.6 km crater (Shoemaker). The interior morphology of craters does not reveal the influence of discrete mechanical boundaries at depth in the manner of craters formed on lunar mare regolith and on some parts of Phobos. This lack of mechanical boundaries, and the abundant evidence of regolith in nearly every high‐resolution image, suggests a gradation in the porosity and fracturing with depth. The density of small craters is deficient at sizes below ~200 m relative to predicted slopes of empirical saturation. This characteristic, which is also found on parts of Phobos and lunar highland areas, probably results from the efficient obliteration of small craters on a body with significant topographic slopes and a thick regolith. Eros displays a variety of regolith features, such as debris aprons, fine‐grained “ponded” deposits, talus cones, and bright and dark streamers on steep slopes indicative of efficient downslope movement of regolith. These processes serve to mix materials in the upper loose fragmental portion of the asteroid (regolith). In the instance of “ponded” materials and crater wall deposits, there is evidence of processes that segregate finer materials into discrete deposits. The NEAR observations have shown us that surface processes on small asteroids can be very complex and result in a wide variety of morphologic features and landforms that today seem exotic. Future missions to comets and asteroids will surely reveal still as yet unseen processes as well as give context to those discovered by the NEAR Shoemaker spacecraft.  相似文献   

2.
Before the Apollo 16 mission, the material of the Cayley Formation (a lunar smooth plains) was theorized to be of volcanic origin. Because Apollo 16 did not verify such interpretations, various theories have been published that consider the material to be ejecta of distant multiringed basins. Results presented in this paper indicate that the material cannot be solely basin ejecta. If smoothplains are a result of formation of these basins or other distant large craters, then the plains materials are mainly ejecta of secondary craters of these basins or craters with only minor contributions of primary-crater or basin ejecta. This hypothesis is based on synthesis of knowledge of the mechanics of ejection of material from impact craters, photogeologic evidence, remote measurements of surface chemistry, and petrology of lunar samples. Observations, simulations, and calculations presented in this paper show that ejecta thrown beyond the continuous deposits of large lunar craters produce secondary-impact craters that excavate and deposit masses of local material equal to multiples of that of the primary crater ejecta deposited at the same place. Therefore, the main influence of a large cratering event on terrain at great distances from such a crater is one of deposition of more material by secondary craters, rather than deposition of ejecta from the large crater. Examples of numerous secondary craters observed in and around the Cayley Formation and other smooth plains are presented. Evidence is given for significant lateral transport of highland debris by ejection from secondary craters and by landslides triggered by secondary impact. Primary-crater ejecta can be a significant fraction of a deposit emplaced by an impact crater only if the primary crater is nearby. Other proposed mechanisms for emplacement of smooth-plains formations are discussed, and implications regarding the origin of material in the continuous aprons surrounding large lunar craters is considered. It is emphasized that the importance of secondary-impact cratering in the highlands has in general been underestimated and that this process must have been important in the evolution of the lunar surface.  相似文献   

3.
From an analysis of 1173 craters possessing single (Type I) and double (Type 2) concentric ejecta deposits, Type 2 craters are found to occur most frequently in areas that have also been described as possessing periglacial features. The frequency of occurence of central peaks and wall failure (terraces plus scallops) within the craters indicate that, by analogy with previous analyses, Type 1 craters form in more fragmental targets than Type 2 craters. The maximum range of the outer ejecta deposits of Type 2 craters, however, consistently extends ~0.8 crater radii further than ejecta deposits of Type 1 craters, suggesting a greater degree of ejecta fluidization for the twin-lobed Type 2 craters. Numerous characteristics of Ries Crater, West Germany, show similarities to craters on Mars, indicating that Martian fluidized ejecta craters may be closer analogs to this terrestrial crater than are lunar craters.  相似文献   

4.
Observations of high resolution photographs of part of one of the prominent rays of the lunar crater Copernicus show that there is a concentration of small bright rayed and haloed craters within the ray. These craters contribute to the overall ray brightness; they have been measured and their surface distribution has been mapped. Sixty-two percent of the bright craters can be identified from study of high resolution photographs as concentric impact craters. These craters contain in their ejecta blankets, rocks from the lunar substrate that are brighter than the adjacent mare surface. It is concluded that the brightness of the large ray from the crater Copernicus is due to the composite effect of many small concentric impact craters with rocky ejecta blankets. If this is the dominant mechanism for the production of other rays from Copernicus and other large lunar craters, then rays may not contain significant amounts of ejecta from the central crater or from large secondary craters. They may in fact only reflect local excavation of mare substrate material by myriads of small secondary or tertiary impact craters.  相似文献   

5.
The Luna-24 site is situated in Mare Crisium at a range of 18.4 km from Fahrenheit, an Eratosthenian-aged crater 6.4 km in diameter. Fahrenheit's ejecta deposits have been degraded to such an extent that secondary craters and rays cannot be unambiguously identified in the vicinity of the Luna-24 site. On the basis of an analogy between Fahrenheit and Lichtenberg B (a much younger crater of comparable size located in northern Oceanus Procellarum) Fahrenheit ejecta deposits near the sample site are inferred to have consisted of secondary crater clusters, subradially aligned secondary crater chains, and lineated terrain furrowed by fine-scale radial grooves. At the range of the Luna-24 site more than 80% of the mare surface should have been morphologically disturbed by the ballistic deposition of Fahrenheit ejecta. Blocks and fragment clusters of primary Fahrenheit ejecta ranging up to 5–20 m in diameter are inferred to have impacted the local surface at velocities of 165–230 m s–1 forming secondary craters ranging up to 100 m in diameter. The maximum depth of excavation of primary Fahrenheit ejecta deposited near the sample site is estimated to be at least 100 m. Primary Fahrenheit ejecta is expected to constitute a substantial fraction of the exterior deposits emplaced at the range of the Luna-24 site. Microgabbro and monomineralic fragments discovered in the Luna-24 drill core may have been derived from gabbroic rocks transported to the sample site by the Fahrenheit cratering event. This hypothesis is consistent with the widespread occurrence and characteristics of Fahrenheit ejecta anticipated in the vicinity of the Luan-24 site. Current interpretations of the drill core sample suggest that the Luna-24 regolith was deposited in its present configuration sometime during the last 0.3 AE implying that at least one local cratering event has occurred since the emplacement of Fahrenheit ejecta 2.0±0.5 AE ago.  相似文献   

6.
Geology of the lunar farside crater Necho   总被引:1,自引:0,他引:1  
The lunar farside crater Necho (30 km diameter) displays intricate morphological and structural characteristics. The highland setting provides a complex impact site when compared with the relatively uniform setting of mare craters. Therefore, the effects of pre-impact topography and structure play a dominant role in Necho's formation and modification. Necho's bright ejecta, extensive rays, fresh morphology, and lack of superposed craters indicate that it is extremely young. The asymmetric distribution of ejecta materials may be due to substrate effects, topographic shalowing, or oblique impact.Necho's interior is divided into five physiographic units based on morphologic differences: three floor units (Necho does not display a true flat floor), one hilly central unit, and the wall unit which includes terraces and smooth walls. The interior of the crater also exhibits an unusual asymmetry in the prevalence of terraced units on the western wall. Interior morphology and terrace orientations are probably the result of pre-impact effects. Structural and topographic orientations associated with three large pre-existing degraded craters dominate the impact site.  相似文献   

7.
Abstract— The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near‐surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3–50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5–2.0 times deeper (≥5s?o difference) with >50% larger cavities (≥2s?o) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ?6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45–70% of their transient cavity volumes, while highland craters preserve only 25–50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9–12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ?1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.  相似文献   

8.
Lunar Clinopyroxene and Plagioclase: Surface Distribution and Composition   总被引:2,自引:0,他引:2  
The Clementine UVVIS images and the spectral and chemical (mineral) characteristics of lunar soil samples previously measured by the Lunar Samples Characterization Consortium were used to map the plagioclase and clinopyroxene abundance in the lunar surface material. An excess of plagioclase was found in young highland craters (e.g., in the crater Tycho) and in their ray systems. For clinopyroxenes, analogous behavior was observed in mare craters (e.g., in the crater Aristarchus). The maps for the FeO and Al2O3 bulk contents and the contents of these oxides in plagioclase and clinopyroxene were estimated by the same technique. These maps were compared to each other and to the predicted distribution of the lunar regolith maturity. The regolith of highland ray systems (e.g., the Tycho crater system) is characterized not only by low maturity but also by peculiar iron and aluminum contents: the lower the soil maturity degree, the smaller the iron content and the greater the aluminum content. This is confirmed by the data for the lunar soil samples from the Apollo 16 landing site. A cluster analysis of the “clinopyroxene content-maturity” and “plagioclase content-maturity” correlation diagrams allowed the mineral mapping of the lunar surface to be performed.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 291–303.Original Russian Text Copyright © 2005 by Shkuratov, Kaydash, Pieters.  相似文献   

9.
Abstract— We have developed a quantitative model for predicting characteristics of ejecta deposits that result from basin‐sized cratering events. This model is based on impact crater scaling equations (Housen, Schmitt, and Holsapple 1983; Holsapple 1993) and the concept of ballistic sedimentation (Oberbeck 1975), and takes into account the size distribution of the individual fragments ejected from the primary crater. Using the model, we can estimate, for an area centered at the chosen location of interest, the average distribution of thicknesses of basin ejecta deposits within the area and the fraction of primary ejecta contained within the deposits. Model estimates of ejecta deposit thicknesses are calibrated using those of the Orientale Basin (Moore, Hodges, and Scott 1974) and of the Ries Basin (Hörz, Ostertag, and Rainey 1983). Observed densities of secondary craters surrounding the Imbrium and Orientale Basins are much lower than the modeled densities. Similarly, crater counts for part of the northern half of the Copernicus secondary cratering field are much lower than the model predicts, and variation in crater densities with distance from Copernicus is less than expected. These results suggest that mutual obliteration erases essentially all secondary craters associated with the debris surge that arises from the impacting primary fragments during ballistic sedimentation; if so, a process other than ballistic sedimentation is needed to produce observable secondary craters. Regardless, our ejecta deposit model can be useful for suggesting provenances of sampled lunar materials, providing information complementary to photogeological and remote sensing interpretations, and as a tool for planning rover traverses (e.g., Haskin et al. 1995, 2002).  相似文献   

10.
We investigate the elevated crater rims of lunar craters. The two main contributors to this elevation are a structural uplift of the preimpact bedrock and the emplacement of ejecta on top of the crater rim. Here, we focus on five lunar complex mare craters with diameters ranging between 16 and 45 km: Bessel, Euler, Kepler, Harpalus, and Bürg. We performed 5281 measurements to calculate precise values for the structural rim uplift and the ejecta thickness at the elevated crater rim. The average structural rim uplift for these five craters amounts to SRU = 70.6 ± 1.8%, whereas the ejecta thickness amounts to ET = 29.4 ± 1.8% of the total crater rim elevation. Erosion is capable of modifying the ratio of ejecta thickness to structural rim uplift. However, to minimize the impact of erosion, the five investigated craters are young, pristine craters with mostly preserved ejecta blankets. To quantify how strongly craters were enlarged by crater modification processes, we reconstructed the dimensions of the transient crater. The difference between the transient crater diameter and the final crater diameter can extend up to 11 km. We propose reverse faulting and thrusting at the final crater rim to be one of the main contributing factors of forming the elevated crater rim.  相似文献   

11.
We use multispectral reflectance data from the lunar Clementine mission to investigate the impact ejecta deposits of simple craters in two separate lunar mare basalt regions, one in Oceanus Procellarum and one in Mare Serenitatis. Over 100 impact craters are studied, and for a number of these we observe differences between the TiO2 (and FeO) contents of their ejecta deposits and the lava flow units in which they are located. We demonstrate that, in the majority of cases, these differences cannot plausibly be attributed to uncorrected maturity effects. These observations, coupled with morphometric crater relationships that provide maximum crater excavation depths, allow the investigation of sub-surface lava flow stratigraphy. We provide estimated average thicknesses for a number of lava flow units in the two study regions, ranging from ∼80 m to ∼600 m. In the case of the Serenitatis study area, our results are consistent with the presence of sub-surface horizons inferred from recent radar sounding measurements from the JAXA Kaguya spacecraft. The average lava flow thicknesses we obtain are used to make estimates of the average flux of volcanic material in these regions. These are in broad agreement with previous studies, suggesting that the variation in mare basalt types we observe with depth is similar to the lateral variations identified at the surface.  相似文献   

12.
We studied a data set of 28 well‐preserved lunar craters in the transitional (simple‐to‐complex) regime with the aim of investigating the underlying cause(s) for morphological differences of these craters in mare versus highland terrains. These transitional craters range from 15 to 42 km in diameter, demonstrating that the transition from simple to complex craters is not abrupt and occurs over a broad diameter range. We examined and measured the following crater attributes: depth (d), diameter (D), floor diameter (Df), rim height (h), and wall width (w), as well as the number and onset of terraces and rock slides. The number of terraces increases with increasing crater size and, in general, mare craters possess more terraces than highland craters of the same diameter. There are also clear differences in the d/D ratio of mare versus highland craters, with transitional craters in mare targets being noticeably shallower than similarly sized highland craters. We propose that layering in mare targets is a major driver for these differences. Layering provides pre‐existing planes of weakness that facilitate crater collapse, thus explaining the overall shallower depths of mare craters and the onset of crater collapse (i.e., the transition from simple to complex crater morphology) at smaller diameters as compared to highland craters. This suggests that layering and its interplay with target strength and porosity may play a more significant role than previously considered.  相似文献   

13.
Distributions of boulders ejected from lunar craters   总被引:1,自引:0,他引:1  
We investigate the spatial distributions of boulders ejected from 18 lunar impact craters that are hundreds of meters in diameter. To accomplish this goal, we measured the diameters of 13,955 ejected boulders and the distance of each boulder from the crater center. Using the boulder distances, we calculated ejection velocities for the boulders. We compare these data with previously published data on larger craters and use this information to determine how boulder ejection velocity scales with crater diameter. We also measured regolith depths in the areas surrounding many of the craters, for comparison with the boulder distributions. These results contribute to understanding boulder ejection velocities, to determining whether there is a relationship between the quantity of ejected boulders and lunar regolith depths, and to understanding the distributions of secondary craters in the Solar System. Understanding distributions of blocky ejecta is an important consideration for landing site selection on both the Moon and Mars.  相似文献   

14.
Twenty-one lunar craters have radar bright ring appearances which are analogous to eleven complete ring features in the earth-based 12.5 cm observations of Venus. Radar ring diameters and widths for the lunar and Venusian features overlap for sizes from 45 to 100 km. Radar bright areas for the lunar craters are associated with the slopes of the inner and outer rim walls, while level crater floors and level ejecta fields beyond the raised portion of the rim have average radar backscatter. We propose that the radar bright areas of the Venusian rings are also associated with the slopes on the rims of craters.The lunar craters have evolved to radar bright rings via mass wasting of crater rim walls and via post impact flooding of crater floors. Aeolian deposits of fine-grained material on Venusian crater floors may produce radar scattering effects similar to lunar crater floor flooding. These Venusian aeolian deposits may preferentially cover blocky crater floors producing a radar bright ring appearance.We propose that the Venusian features with complete bright ring appearances and sizes less than 100 km are impact craters. They have the same sizes as lunar craters and could have evolved to radar bright rings via analogous surface processes.  相似文献   

15.
Mark Settle  James W. Head 《Icarus》1977,31(1):123-135
The variation of rim topography as a function of range from the crater rim has been determined for a group of morphologically fresh lunar craters (D = 10–140 km) using the recent series of Lunar Topographic Orthophotomaps. The rate at which exterior crater topography converges with the surrounding surface is highly variable along different radial directions at individual craters as well as between different craters. At several craters, oblique impact appears to have contributed to azimuthal elevation/range variations. The topographic expression of a crater above the surrounding surface typically decreases to one-tenth of the estimated rim height at a range of 1.3R–1.7R, well within the rough-textured ejecta deposit surrounding the crater. Comparisons with terrestrial craters suggest that the topographic crater rim is predominantly a structural feature. In most craters large portions of the hummocky facies and virtually all of the radial facies, in spite of their rough appearance and local topographic variations, provide no significant net topographic addition to the preexisting surface. The extreme variability of crater rim topography strongly suggests that ejecta thicknesses are highly variable and that a unique power-law expression cannot truly represent the radial variation of ejecta deposit thickness.  相似文献   

16.
Photometric anomalies of the lunar surface studied with SMART-1 AMIE data   总被引:2,自引:1,他引:1  
We present new results from the mapping of lunar photometric function parameters using images acquired by the spacecraft SMART-1 (European Space Agency). The source data for selected lunar areas imaged by the AMIE camera of SMART-1 and the data processing are described. We interpret the behavior of photometric function in terms of lunar regolith properties. Our study reveals photometric anomalies on both small (sub-kilometer) and large (tens of kilometers) scales. We found the regolith mesoscale roughness of lunar swirls to be similar in Mare Marginis, Mare Ingenii, and the surrounding terrains. Unique photometric properties related to peculiarities of the millimeter-scale regolith structure for the Reiner Gamma swirl are confirmed. We identified several impact craters of subkilometer sizes as the source of photometric anomalies created by an increase in mesoscale roughness within the proximal crater ejecta zones. The extended ray systems reveal differences in the photometric properties between proximal and distant ejecta blankets. Basaltic lava flows within Mare Imbrium and Oceanus Procellarum indicate higher regolith porosity for the redder soils due to differences in the chemical composition of lavas.  相似文献   

17.
A. Mantz  R. Sullivan  J. Veverka 《Icarus》2004,167(1):197-203
Images of Eros from the NEAR Shoemaker spacecraft reveal bright and dark albedo features on steep crater walls unlike markings previously observed on asteroids. These features have been attributed to the downslope movement of space-weathered regolith, exposing less weathered material (Science 292 (2001) 484; Meteor. Planet. Sci. 36 (2001) 1617; Icarus 155 (2002) 145). Here we present observations of the interiors of large craters (>1 km in diameter) to test this hypothesis and constrain the origin of the features. We find that bright regions in these craters correspond to steep slopes, consistent with previous work. The geographic distribution of craters with albedo variations shows no pattern and does not resemble the distribution of ponds, another phenomenon on Eros attributed to regolith movement. Shadows and other indications of topography are not observed at feature boundaries, implying that the transported layer is ?1 m thick. The presence of multiple bright and dark units on long slopes with sharp boundaries between them suggests that mobilized regolith may be halted by frictional or other effects before reaching the foot of the slope. Features on crater walls should darken at the same rate as bright ejecta deposits from crater formation; the lack of observed, morphologically fresh craters with bright interiors or ejecta suggests that the albedo patterns are younger than the most recently formed craters greater than about 100 m in diameter. Smaller or micrometeorite impacts, which would not necessarily leave evident deposits of bright ejecta, remain possible causes of albedo patterns. Although their effectiveness is difficult to assess, electrostatic processes and thermal creep are also candidates.  相似文献   

18.
We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks ?1 cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ∼10 μm to 10 mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r* for all three planets. On the Moon, r* ∼ R−0.18 for craters 5-640 km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as r* ∼ R−0.49, consistent with ejecta entrainment in Venus’ dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R−0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials.  相似文献   

19.
Regolith thickness distributions associated with crater populations observed on selected maria surfaces have been calculated using a Monte Carlo computer technique. The calculations assume that the crater type produced and the volume of debris ejected and added to the growing regolith depends on the ratio of crater diameter and regolith thickness present at the time and place of formation of each crater. Calculated thickness distributions obtained are in agreement with those estimated using a previously described statistical method based on the morphology of small lunar craters. Additionally, the Monte Carlo calculations accurately predict the size frequency distributions of the same types of small, fresh lunar craters used in the statistical method. The model employed is therefore realistic. Furthermore, the model calculations presented are shown to have value (a) in predicting the thickness of the regolith from crater populations at various lunar sites, (b) relative dating applications in which crater populations are compared, and (c) in interpreting the origin and history of regolith deposits at specific locations.  相似文献   

20.
Abstract— We have used data from the Clementine and Lunar Prospector spacecraft in conjunction with reflectance spectra collected with Earth‐based telescopes to study the geology of the Hadley‐Apennine portion of the lunar Imbrium basin. The Apennine Mountains and the Imbrium backslope are composed of Imbrium basin ejecta with a noritic or anorthositic norite composition. We find that the two major facies of Imbrium ejecta, the Apenninus material and the Alpes Formation, differ in iron and titanium content. “Pure” anorthosite has tentatively been identified in the ejecta of the crater Conon, based on low‐iron content. A difference in Th and rare earth element (REE) abundance between the northeast Apennine Mountains (lower) and the southwest Apennines (higher) is noted. Pyroclastic deposits are common in the region and are dominated by mare basalt material, probably plug rock ejected in vulcanian eruptions. The Apennine Bench Formation, which is likely to be a deposit of non‐mare volcanic material, has an Fe, Ti and Th composition consistent with that of Apollo 15 KREEP basalt samples thought to be fragments of the Bench. Aristillus crater is a Th and REE hot spot, and the stratigraphy of the impact target site has been reconstructed from knowledge of the composition of the crater interior and exterior deposits. We infer that the target consisted of highland basement, KREEP plutonics and volcanics, and both high‐ and low‐Ti mare basalt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号