共查询到20条相似文献,搜索用时 15 毫秒
1.
Geochemical characteristics of shallow groundwater in Datong basin, northwestern China 总被引:9,自引:0,他引:9
Located in semi-arid regions of northwestern China, Datong basin is a Quaternary sedimentary basin, where groundwater is the most important source for water supply. It is very important to study groundwater characteristics and hydrogeochemical processes for better management of the groundwater resource. We have identified five geochemical zones of shallow groundwater (between 5 and 80 m) at Datong: A. Leaching Zone (Zone I); B. Converging Zone (Zone II); C. Enriching Zone (Zone III); D. Reducing Zone (Zone IV); E. Oxidizing Zone (Zone V). In Zones I, II, and V and some parts of Zones III and IV, hydrolysis of albite/K-feldspar/chalcedony system and/or albite/K-feldspar/quartz system enhanced concentrations of Na+, K+, HCO3− and silicate. In Zone I, dissolution of carbonate and hydrolysis of feldspar generally controlled the groundwater chemistry. Infiltration of meteoric water promoted the formation of HCO3− in the water. In Zone II, the main geochemical processes influencing the groundwater chemistry were dissolutions of calcite and dolomite, ion exchange and evaporation. In Zones III and IV, in addition to ion exchange, evaporation and precipitation of calcite and dolomite, leaching of NaHCO3 in saline–alkaline soils dominated the water quality. Zone IV was under anoxic condition, and reduction reactions led to the decrease of SO42−, NO3− and occurrence of H2S, with the highest arsenic content (mean value of 366 μg/L), far exceeding Maximum Contaminant Level (MCL). Abnormal arsenic in the groundwater resulted in endemic disease of waterborne arsenic poisoning among local people. Zone V overlapped Zone I was intensively affected by coal mining activities. Sulfide minerals, such as pyrite, would have been oxidized when exposed to air due to coal mining, which directly added sulfate to groundwater and thus increased SO42− concentration. Oxidization of sulfide minerals also decreased pH and promoted dissolutions of calcite and dolomite. 相似文献
2.
Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India 总被引:6,自引:0,他引:6
The major part of groundwater in India is found in granitic aquifers. Fluoride in groundwater from a crystalline aquifer in a semi-arid region of granitic rocks in India, known as Maheshwaram watershed, was analyzed for spatial and temporal variability during 1999–2002 to assess the effect of hydrogeological factors on fluoride concentration. Samples were collected from 32 representative wells in the area for the pre- and post-monsoon seasons and analyzed for F content. The CHESS computer program was used to calculate ionic activities of aqueous species and the mineral saturation index (SI) for calcite and fluorite. The GARDENIA computer program was used to calculate the recharge values in the study area. The influences of dissolution kinetics of fluoride minerals and recharge from rainfall on fluoride concentration were of interest and results clearly indicate that fluoride content in groundwater depends on the interaction period of groundwater with host rock. Results could also be utilized for designing remedial measures particularly with dilution method in an optimal way. 相似文献
3.
M.I. Leybourne R.N. Betcher W.D. McRitchie C.A. Kaszycki D.R. Boyle 《Chemical Geology》2009,260(3-4):221-233
New major, trace and isotopic geochemical results from a regional study of springs discharging from the major carbonate rock aquifer in the Interlake Region of Manitoba, Canada, are used to understand water–rock reactions, timing of recharge/discharge, tufa formation processes, and as baseline data. Spring waters are fresh with total dissolved solids (TDS) concentrations ranging from 150 to 880 mg/L. Waters discharging in the northern part of the study area have lower TDS, are dominantly Ca–Mg–HCO3 waters with low SO4 concentrations (<< 50 mg/L), and appear to have interacted primarily with Silurian carbonate lithologies. In contrast, waters in the southeastern part of the study area have higher TDS and have elevated SO4 concentrations (up to 210 mg/L). Spring waters have elevated Mg/Camolar (1.23 ± 0.23), typically greater than congruent dissolution of dolomite. Ca and Mg concentrations and Mg/Camolar indicate that groundwater residence times were sufficient to allow equilibration with bedrock dolomite lithologies; elevated tritium in northern waters indicates a significant recharge component in the 1960's and 1970's. Tufa precipitates that have formed from many of the spring waters are low-Mg calcite (MgO = 1.70 to 5.80 wt.%). Sr concentrations are variable (57 to 657 ppm) and tufa Sr/Camolar ratios appear to be entirely controlled by spring water Sr/Camolar. Empirically determined Sr distribution coefficients (DSr = 0.389 ± 0.083) indicate rapid crystallization following CO2 degassing, consistent with heavier δ13CVPDB compared to spring waters. Sulfate concentrations are generally too low for calcitization (dedolomitization) reactions driven by anhydrite dissolution to be the dominant control on the elevated groundwater Mg/Camolar, implying either extensive sulfate reduction along the flow paths (however, δ13CDIC suggests the elevated SO4 is more consistent with Fe-sulfide oxidation), or that other processes are involved. Major ion ratios suggest that the waters in the southern part of the study area are more consistent with interaction with siliciclastic rocks than with anhydrite dissolution. We suggest that calcitization (dedolomitization) reactions driven by anhydrite dissolution may not dominate all carbonate aquifers and that mixing of waters in karst conduits combined with ion exchange reactions are important controls on water chemistry in these systems. 相似文献
4.
This paper reveals the geochemical processes of dissolution, precipitation and cation exchange that took place during water–rock interaction between water seepages through the Tannur Dam. The Schoeller diagram indicates that there are three major water types originating during water–rock interaction. The first water type is characterized by low salinity that ranges from 1,300 to 2,800 µs/cm, which represents the reservoir water and the water in the right side of the central gallery. The second water type is in the left side of the central gallery, which exhibits medium salinity that reaches about 4,400 µs/cm. The third water type is characterized by very high salinity that reaches a value of around 8,500 µs/cm and represents the water in the right existing adit. The increase of salinity can be explained due to the dissolution of carbonate and sulfate minerals that form the matrix of the foundation and the abutment rocks, and the dissolution of the grout curtain, which is composed of cement and bentonite. Hydrogeochemical modeling, using a computer code PHREEQC, was used to obtain the saturation indices of specific mineral phases, which might be related to interaction with water seepages, and to identify the chemical species of the dissolved ions. The thermodynamic calculations indicate that most of the water samples were undersaturated with respect to gypsum, anhydrite and halite, and were saturated and/or supersaturated with respect to calcite and dolomite. Ca(HCO3)2 is the primary water type, as a result of dissolution of carbonate minerals such as calcite and dolomite prevailing at the dam site. However, cation-exchange processes are responsible for the formation of the Na2SO4 water type from the CaSO4 type that formed due to the dissolution of gypsum. 相似文献
5.
River, rain and spring water samples from a region covered in “Shirasu” ignimbrite were collected on Kyushu Island, Japan. The analytical results were subjected to multivariate statistical analysis and stoichiometric calculation to understand the geographical distribution of chemical components in water and to extract geochemical underlying factors. The multivariate statistical analysis showed that the river-water chemistry is only slightly influenced by hot springs or polluted waters, but is highly controlled by weathering of ignimbrite. On the basis of the stoichiometric calculation based on water–rock interaction, the water chemistry was successfully estimated by a simple equation:\({\left[ {{\text{Si}}} \right]}{\text{ = 2}}{\left[ {{\text{Na}}^{{\text{ + }}} } \right]}{\text{ + }}{\left[ {{\text{Mg}}^{{{\text{2 + }}}} } \right]}\) in the upstream area, complemented by \({\left[ {{\text{Si}}} \right]}{\text{ = }}{\left[ {{\text{Na}}^{{\text{ + }}} } \right]}{\text{ - 3}}{\left[ {{\text{K}}^{{\text{ + }}} } \right]}{\text{ + }}{\left[ {{\text{Mg}}^{{{\text{2 + }}}} } \right]}{\text{ - 2}}{\left[ {{\text{Ca}}^{{{\text{2 + }}}} } \right]}\) in the downstream area. 相似文献
6.
Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin,Northern China 总被引:1,自引:0,他引:1
High fluoride groundwater with F− concentration up to 6.20 mg/L occurs in Taiyuan basin, northern China. The high fluoride groundwater zones are mainly located in the discharge areas, especially in places where shallow groundwater occurs (the groundwater depth is less than 4 m). Regional hydrogeochemical investigation indicates that processes including hydrolysis of silicate minerals, cation exchange, and evaporation should be responsible for the increase in average contents of major ions in groundwater from the recharge areas to the discharge areas. The concentration of F− in groundwater is positively correlated with that of HCO3− and Na+, indicating that groundwater with high HCO3− and Na+ contents help dissolve some fluoride-rich minerals. The water samples with high F− concentration generally have relatively higher pH value, implying that alkaline environment favors the replacement of exchangeable F− in fluoride-rich minerals by OH− in groundwater. In addition, the mixing of karst water along the western mountain front and the evaporation may also be important factors for the occurrence of high fluoride groundwater. The inverse geochemical modeling using PHREEQC supports the results of hydrogeochemical analyses. The modeling results show that in the recharge and flow-through area of the northern Taiyuan basin, interactions between groundwater and fluoride-rich minerals are the major factor for the increase of F− concentration, whereas in the discharge area of the northern basin, the evaporation as well as the mixing of karst water has greater contribution to the fluoride enrichment in groundwater. 相似文献
7.
Hydrochemical appraisal of groundwater and its suitability in the intensive agricultural area of Muzaffarnagar district,Uttar Pradesh,India 总被引:1,自引:0,他引:1
Muzaffarnagar is an economically rich district situated in the most fertile plains of two great rivers Ganga and Yamuna in
the Indo-gangetic plains, with agricultural land irrigated by both surface water as well as groundwater. An investigation
has been carried out to understand the hydrochemistry of the groundwater and its suitability for irrigation uses. Groundwater
in the study area is neutral to moderately alkaline in nature. Chemistry of groundwater suggests that alkaline earths (Ca + Mg)
significantly exceed the alkalis (Na + K) and weak acids exceed the strong acids (Cl + SO4), suggesting the dominance of carbonate weathering followed by silicate weathering. Majority of the groundwater samples (62%)
posses Ca–Mg–HCO3 type of hydrochemical species, followed by Ca–Na–Mg–HCO3, Na–Ca–Mg–HCO3, Ca–Mg–Na–HCO3–Cl and Na–Ca–HCO3–SO4 types. A positive high correlation (r
2 = 0.928) between Na and Cl suggests that the salinity of groundwater is due to intermixing of two or more groundwater bodies
with different hydrochemical compositions. Barring a few locations, most of the groundwater samples are suitable for irrigation
uses. Chemical fertilizers, sugar factories and anthropogenic activities are contributing to the sulphate and chloride concentrations
in the groundwater of the study area. Overexploitation of aquifers induced multi componential mixing of groundwater with agricultural
return flow waters is responsible for generating groundwater of various compositions in its lateral extent. 相似文献
8.
Two tin-polymetallic vein-type deposits widely separated in time and space but with strong similarities in terms of mineralization style, ore mineralogy and chemistry have been studied comparatively with the aim of understanding the mineralogical evolution of In-rich hydrothermal systems. The Tosham deposit, Bhiwani district, Haryana, India, is of Neoproterozoic age and constitutes a Sn–Cu prospect with unusually high In content. The disseminated, crude stockwork and vein mineralization is hosted by greisenised metasedimentary rocks intruded by a porphyritic granite stock and by later rhyolitic effusives. The Goka deposit, Naegi district, Japan is probably of uppermost Cretaceous age and occurs close to a well fractionated ilmenite series granitoid body. The tin-polymetallic vein in the Goka deposit is hosted by a welded tuff unit close to a subvolcanic granodiorite porphyry.The main host minerals of indium in the Tosham and Goka ores are sphalerite, stannite, unidentified Zn–Cu–Fe–In–Sn–S phases and chalcopyrite. Up to 0.48 wt.% In has been noted in the Goka chalcopyrite, whereas at Tosham, the mineral has a maximum In concentration of 1220 ppm. At Goka the sphalerite contains up to 1.89 wt.% In, whereas In-bearing stannite carries up to ca. 9 wt.% of the metal. Roquesite is the other indium mineral present in the Tosham ores, but is absent in Goka. The mineral chemistry of the Tosham and Goka ores suggest that the In-bearing minerals belong to a multi-component Zn–Cu–Fe–(Ag)–Sn–In–S system. Based on various triangular plots of the atomic proportions of the main metals, it is inferred that there are end-member phases, roquesite and stannite, in the Tosham ores co-existing with chalcopyrite. The sphalerite is both pure end-member and Cu–In-bearing in both the Tosham and Goka ores. Some of the analysed stannite grains in Tosham ores could possibly be petrukite. The Zn–Cu–Fe–Sn–In–S system in the two ores has a Sn-poor, high-In solid solution phase and also a Sn-rich, low-In solid solution phase. It seems possible that these two solid solutions were the first to form during hydrothermal ore deposition at high temperatures from a disordered solid solution located at the (Cu + Ag):(Zn + Fe):(In + Sn) = 3:5:2 intersection in the (Cu + Ag)–(Zn + Fe)–(In + Sn) field. With decreasing temperatures, the Sn-poor, In-rich solid solution exsolved the Zn–In-mineral of Ohta [Ohta, E., 1980. Mineralization of Izumo and Sorachi veins of the Toyoha mine, Hokkaido, Japan. Bulletin, Geological Survey of Japan 31, 585–597. (in Japanese with English abstract).] and sphalerite, while the Sn-rich, In-poor solid solution was broken down to stannite and relatively-Cu-rich sphalerite. 相似文献
9.
The impact of vegetation on fractionation of rare earth elements (REE) during water–rock interaction
P. Stille M. Steinmann M.-C. Pierret F. Gauthier-Lafaye D. Aubert A. Probst D. Viville F. Chabaux 《Journal of Geochemical Exploration》2006,88(1-3):341
Previous studies on waters of a streamlet in the Vosges mountains (eastern France) have shown that Sr and rare earth elements (REE) principally originate from apatite dissolution during weathering. However, stream water REE patterns normalized to apatite are still depleted in light REE (LREE, La–Sm) pointing to the presence of an additional LREE depleting process. Speciation calculations indicate that complexation cannot explain this additional LREE depletion. In contrast, vegetation samples are strongly enriched in LREE compared to water and their Sr and Nd isotopic compositions are comparable with those of apatite and waters. Thus, the preferential LREE uptake by the plants at the root–water–soil (apatite) interface might lead to an additional LREE depletion of the waters in the forested catchment. Mass balance calculations indicate that the yearly LREE uptake by vegetation is comparable with the LREE export by the streamlet and, therefore, might be an important factor controlling the LREE depletion in river waters. 相似文献
10.
This paper presents a review of hydrothermal alteration and K–Ar age data from the Toyoha‐Muine area (TMA), where the Toyoha polymetallic (Ag–Pb–Zn–Cu–In) deposit is located near the Pliocene andesitic volcano that formed Mt Muine. Systematic prospect‐scale mapping, sampling, X‐ray analysis and microscopic observation show that hydrothermal alteration is divided into two groups: acid‐pH and neutral‐pH alteration types. The former is further divided into mineral assemblages I, II and III, while the latter into mineral assemblages IV and V. Different mineralogical features in five mineral assemblages are summarized as follows: (I) Quartz (silicified rock); (II) Pyrophyllite or dickite; (III) Kaolinite or halloysite ± alunite; (IV) Sericite or K‐feldspar; and (V) Interstratified minerals (illite/smectite and chlorite/smectite) and/or smectite. K–Ar radiometric ages determined on twenty‐eight K‐bearing samples (whole volcanic rocks and separated hydrothermal minerals) mainly fall into one of three periods: Early Miocene (24.6–21.4 Ma), Middle–Late Miocene (12.5–8.4 Ma) and Pliocene–Pleistocene (3.2–0 Ma). These three periods are characterized as follows. Early Miocene: A minor hydrothermal activity, which might be genetically related to the intermediate or felsic magmatic activities, formed mineral assemblage IV at 24.6 Ma in the northern part of the TMA. Middle to Late Miocene: The basaltic intrusion, andesitic eruption, and granodiorite intrusions induced hydrothermal activities between 12.5 and 8.4 Ma, resulting in the formation of a mineral assemblage IV with some base metal mineralization. Pliocene–Pleistocene: An andesitic eruption formed Mt Muine between 3.2 and 2.9 Ma. The andesitic activity was associated with acid‐pH mineral assemblages I, II and III locally around the volcano. Latent magmatic intrusions subsequent to the andesitic eruption generated hydrothermal activities that formed mineral assemblages IV and V between 1.9 and 0 Ma in the southern and southeastern parts of Toyoha deposit at depth, overprinting the Middle to Late Miocene alteration. The hydrothermal activities also formed mineral assemblages I, II and III along the Yunosawa fault (east of the Toyoha deposit) and assemblage III in the south and southeast of the Toyoha deposit near the surface. 相似文献
11.
Chemical data are used to clarify the hydrogeological regime in the Merdja area in Tébessa, as well as to determine the status of water quality in this area. Groundwater from the aquifer in the Merdja area can be divided into two major groups according to geographical locations and chemical compositions. Water in the center part of the area of study is characterized by the dominance of chloride, sulfate, sodium, and potassium; whereas waters in the limestone aquifers in the west are dominated by the same cations but have higher concentrations of bicarbonate. Stable isotopes show that the Tébessa aquifers contain a single water type, which originated in a distinct climatic regime. This water type deviates from the Global Meteoric Water Line (MWL), as well as from the Mediterranean meteoric water line. The water is poor in tritium, and thus can be considered generally older than 50 years. Piezometric map suggests that water is moving from the west towards the center of the studied area, and from east towards center. Degradation of water quality can be attributed to agricultural fertilizers in most cases, although the wadi El Kebir River is a contributor to pollution in the middle part of the studied area. 相似文献
12.
Recharge mechanism and hydrochemistry evaluation of groundwater in the Nuaimeh area, Jordan, using environmental isotope techniques 总被引:1,自引:3,他引:1
William Bajjali 《Hydrogeology Journal》2006,14(1-2):180-191
The relationship between the stable isotopic and chemical composition of precipitation and groundwater was studied in the Nuaimeh area of the Ajloun Highlands in Jordan. The isotopic composition values of precipitation and groundwater are almost identical. The spatial variation of stable isotopes in precipitation is mainly due to the effect of seasonal temperature, altitude and amount. The groundwater reveals identical variation in isotopic composition to the precipitation due to direct recharge and the karstic nature of the outcropping Turonian aquifer. Tritium levels in wells are high and their content is similar to the weighted mean value of tritium content in precipitation, indicating local recharge and low residence time. The 14C activity in the tritiated groundwater is found to be about half of the 14C activity of precipitation in the region. A geochemical evolution through dissolution of carbonate by water–carbonate rock interactions reduced the atmospheric 14C activity from 114 to 61 pmc in the groundwater. A 14C of around 61 pmc and 7.6 TU values are considered the initial concentration for the recharge in the shallow carbonate aquifer in the Yarmouk Basin. The large fluctuation of water level in observation wells during the rainy season indicates the sensitivity and direct response of the aquifer to the recharge. The chemical composition of the groundwater (Ca2+–HCO3–) gives emphasis to the short duration of water–rock interaction and indicates dissolution of the carbonate aquifer. The elevated concentrations of Cl– and NO3– in groundwater are attributed to anthropogenic sources.
Resumen Fue estudiada la relación entre la composición isotópica estable y la composición química, tanto de la precipitación como del agua subterránea, en el área de Nuaimeh en las montañas de Ajloun, en Jordania. Los valores de la composición isotópica de la precipitación y del agua subterránea son casi idénticos. La variación espacial de los isótopos estables en la precipitación, es debida principalmente al efecto de la temperatura estacional, a la altura y a la cantidad. El agua subterránea muestra una variación idéntica a la precipitación en cuanto a la composición isotópica, debido a la recarga directa y a la naturaleza cársica del acuífero Turoniano aflorante. Los niveles de tritio en los pozos son altos y su contenido es similar al valor medio ponderado del contenido de tritio en la precipitación, indicando una recarga local y un tiempo de residencia corto. Se ha encontrado que la actividad de 14C en el agua subterránea tritiada, es alrededor de la mitad de la actividad del 14C en la precipitación para la región. La evolución geoquímica ocurrida a partir de la disolución del carbonato, por las interacciones roca carbonatada–agua, redujeron la actividad atmosférica del 14C desde 114 en porcentaje de carbono moderno (pcm) hasta 61 pcm en el agua subterránea. Los valores del 14C cercanos a 61 pcm y de 7.6 unidades de tritio, se han considerado como las concentraciones originales para la recarga en el acuífero carbonatado somero de la Cuenca de Yarmouk. Una gran fluctuación en el nivel de agua de los pozos de observación, durante la estación lluviosa, indica la sensibilidad y la respuesta directa del acuífero frente a la recarga. La composición química del agua subterránea (Ca2+–HCO3–), enfatiza en la corta duración de la interacción de agua–roca, e indica disolución del acuífero carbonatado. La concentración elevada de Cl– y NO3– en el agua subterránea, se atribuye a fuentes antropogénicas.
Résumé Dans la région montagneuse dAjloun de Jordanie on a étudié la relation entre la composition chimique et isotopique des précipitations et des eaux souterraines. La composition isotopique est presque identique dans précipitations et les eaux souterraines. La variation spatiale de la teneur en isotopes stables dans les précipitations est déterminée en principal par les variations saisonnière de la température, laltitude ainsi que par la quantité des précipitations. A cause de la recharge directe et de la nature karstique des affleurements de laquifère dage touronienne, les eaux souterraines présentent la même composition isotopique que les précipitations. La teneur en 3H mesurée dans les forages présente des valeurs élevées, proches de la valeur moyenne des précipitations, ce quindique une recharge locale et un temps court de résidence. On a déterminé pour lactivité de 14C une valeur proche de la moitié trouvée dans les précipitations. Lévolution géochimique par dissolution des carbonates pendant linteraction entre leau et les roche a diminué lactivité du 14C, de la valeur de 114 pcm en atmosphère à 61 pcm dans les eaux souterraines. Dans laquifère calcaire de surface de bassin Yarmouk, on a considéré comme de concentrations initiales, les valeurs de 61 pcm pour 14C et 7.2 UT pour 3H. Les grandes fluctuations des niveaux des eaux souterraines observées dans les forages pendant les saisons pluvieux montrent la sensibilité ainsi que la réponse directe de laquifère au recharge. La composition chimique des eaux souterraines (Ca2+–HCO3–) montre de plus le temps court de linteraction entre leau et la roche, en indiquant aussi la dissolution de laquifère calcaire. Les taux élevées de la concentration en Cl– et NO3– dans les eaux souterraines ont été attribuées aux sources humaines.相似文献
13.
The San Antonio-El Triunfo mining district, located at a mountainous region 45 km south-east of La Paz, Baja California,
has been worked since the late 1700s. Mine waste material produced during 200 years of mineral extraction area poses a risk
of local groundwater pollution and eventually, regional pollution to the Carrizal (west basin) and the Los Planes (east basin)
aquifers. There are different types of deposits in the mining area. These are dominated by epithermal veins, in which arsenopyrite
is an important component. Carrillo and Drever (1998a) concluded that, even though the amount of mine waste is relatively
small in comparison to the large scale area, significant As in groundwater derived from the mine waste piles is found locally
in the groundwater. This paper shows the results of geochemical analyses of groundwater samples from the San Antonio-El Triunfo
area and the Carrizal and Los Planes aquifers during several years of monitoring (1993–1997). The highest values of total
dissolved solids (TDS) and As are in the mineralized area where the mining operations occurred (∼1500 ppm TDS and 0.41 ppm
As). The lowest concentrations of TDS and As are, in general, away from the mineralized area (∼500 ppm TDS and 0.01 ppm As).
Sulfate and bicarbonate (alkalinity) are, in general, high near the mineralized area and low away from it. The arsenic concentrations
vary seasonally, especially after the heavy summer thunderstorms. Geochemical modeling (MINTEQA2 and NETPATH) and analysis
of the regional geochemical evolution of the groundwater from the mining area towards the aquifer of Los Planes shows that
the most likely hydrochemical processes include: dilution, precipitation of calcite, and adsorption of As onto surfaces of
iron oxyhydroxides (ferrihydrite). These processes act as natural controls to the extent and amount of As pollution in the
Carrizal and Los Planes aquifers.
Received: 4 May 1999 · Accepted: 22 February 2000 相似文献
14.
The study of brine aquifers in southern Taiwan is highly complicated by hybrid geochemical reactions, which obscure important
geochemical information. Using multivariate analysis on major and minor ion compositions normalized by Cl− content, chemical constituents were combined into two principal components representing brine mixing and mineral precipitation.
Comparing to multivariate analysis on the original data, this procedure reveals more geochemical information. It demonstrates
that the brine groundwater of the region is primarily composed of highly evaporated seawater. The evaporation ratio is >70%;
a point at which calcite, dolomite and gypsum precipitate. Oxygen and hydrogen isotopic compositions confirm this inference;
and further, geochemical modeling quantitatively determined the evaporation ratio to be about 85%. Natural boron contamination
is a consequence of brine groundwater. Two evolutionary trends in the plotting of the Cl/B ratio versus Cl− can be identified: (1) Cl/B ratio decreases with boron being released from clay minerals when brine aquifers are flushed
with freshwater; and (2) Cl/B ratio increases when seawater of a high Cl/B ratio infiltrates coastal aquifers. 相似文献
15.
广西钦州-防城地区次生氧化锰矿床矿物学和地球化学研究及矿床成因意义 总被引:1,自引:0,他引:1
钦州-防城锰矿带是中国次生氧化锰矿的重要产地之一,其含锰岩系为上泥盆统榴江组含锰硅质岩。锰矿床主要赋存在以腐岩带为主的风化壳中,矿石的主要矿物为软锰矿、锰钡矿、隐钾锰矿、锂硬锰矿、钙锰矿等,与之伴生的其他表生矿物有赤铁矿、针铁矿、石英、高岭石和其他粘土矿物。矿石多呈葡萄状、块状、网脉状构造。与原生含锰硅质岩相比,次生氧化锰矿矿石的品位明显提高,Mn含量平均达到42.6%。矿石化学分析和单矿物电子探针成分分析表明,氧化锰矿石中还普遍出现Co、Ni、Cu、Zn等元素的富集,其平均含量分别为0.05%(最高0.40%)、0.09%(最高0.53%)、0.08%(最高0.53%)和1%(最高2.2%);它们主要以类质同象和吸附的形式赋存在锂硬锰矿及隐钾锰矿中。氧化锰矿石和锰氧化物的Mn/Fe比值均较高,一般大于6~10,说明该区化学风化强烈,铁、锰分离显著,有利于形成高品位的优质锰矿。有害杂质元素P主要存在于针铁矿等铁的氧化物中。氧化锰矿的形成和空间分布受气候、构造、含锰岩系及地形地貌等多种因素的影响和控制。 相似文献
16.
Gang Yu Jiangfeng Chen Chunji Xue Yuchuan Chen Fukun Chen Xiaoyue Du 《Ore Geology Reviews》2009,35(3-4):367-382
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating. 相似文献
17.
18.
The purpose of this study was to trace the groundwater flow system in the Nagaoka area using subsurface temperature distribution, stable isotopes and water quality. Temperature-depth profiles were measured four times in observation wells during the period 2000–2002. Water was sampled from both observation and pumping wells during the same period. A combination of tracers was used to conceptualize the groundwater flow system. The flow system appears to be divided into shallow, intermediate and deep systems. It is clear that land use, pumping and the infiltration rate are affecting the shallow flow system.An erratum to this article can be found at 相似文献
19.
A numerical simulation was applied to first characterize the groundwater flow and patterns of nitrate pollution of a small-agricultural
catchment in Tsukuba City, Japan, for a 10-year period. There was a good performance of the flow simulation. In contrast,
although the transport model calculated the evolution of the plume, it only provided estimates of solute concentrations. Groundwater
contamination increased exponentially during the first 594 days of the simulation, reaching then a near-equilibrium state.
Fertilizer applications are responsible for most of the leaching of NO3− to groundwater, therefore, shifting of crops and the associated agricultural practices may translate into decreases of contamination
levels. A series of hypothetical scenarios demonstrated that replacing grasslands by other crops may reduce the contamination
levels up to 12%. As the chosen field is a representative of many other agricultural areas in Japan, the approach and results
should also be applicable to similar cases around the country. 相似文献
20.
Subsurface thermal structure in Tohoku district are characterized by existing data such as geothermal resources maps, drill hole thermal gradients, Curie point depths and hypocenters distribution maps. The collected data are registered in a database system, then, compared in plan view, cross-section and bird's-eye pictures. The comparison indicates that subsurface temperatures extrapolated from drill hole thermal gradients are generally concordant to the Curie point depth, assumed to be 650 °C. Tohoku district is generally divided into 5 type areas; fore arc lowland, fore arc mountain country, Quaternary volcanic terrain, back arc lowland and back arc mountain country. The surface thermal manifestations in Quaternary volcanic terrain are mainly controlled by the magma chambers as heat sources, while, surface thermal features such as hot springs in non-volcanic areas are controlled by degrees of heat flows, and hydrothermal flows in permeable Cenozoic formations and along permeable fault zones. 相似文献