首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term photometric and spectroscopic observations of the yellow symbiotic star LT Del are analyzed. UBV light curves are presented. Based on the observations of 20 cycles, we have refined the orbital period of the star, P = 476 · d 0 ± 1 · d 0. The brightness has been found to be unstable at some orbital phases with an amplitude up to 0 · m 3. We have measured the fluxes in hydrogen and helium emission lines and in continuum and investigated their relationship to the orbital period. The fluxes in hydrogen and HeI lines follow the UBV light curves in phase; the He II 4686 Å flux does not depend on the phase and is constant within the accuracy of our measurements. The intensity ratio of the 4686 Å andHβ lines changes from 0.2 to 0.9 over the period. We interpret the spectroscopic observations based on the hypothesis of heating and ionization of the stellar wind from a cool component by high-frequency radiation from a hot star with a temperature of 105 K. We have estimated the spectral type of the cool star from our photometry and its continuum energy distribution as a bright K2–4 red giant branch halo star. The bolometric luminosity and mass loss rate have been estimated for the K component to be L bol ~ 700L and \(\dot{M}\) ~ 10?8 M yr?1, respectively.  相似文献   

2.
Low-mass galaxies are known to have played the crucial role in the hydrogen reionization in the Universe. In this paper we investigate the contribution of soft x-ray radiation (E ~ 0.1–1 keV) from dwarf galaxies to hydrogen ionization during the initial reionization stages. The only possible sources of this radiation in the process of star formation in dwarf galaxies during the epochs preceding the hydrogen reionization epoch are hot intermediate-mass stars (M ~ 5–8 M) that entered the asymptotic giant branch (AGB) stage and massive x-ray binaries. We analyze the evolution of the intergalactic gas in the neighborhood of a dwarf galaxy with a total mass of 6 × 108M formed at the redshift of z ~ 15 and having constant star-formation rate of 0.01–0.1 M yr?1 over a starburst with a duration of up to 100 Myr. We show that the radiation from AGB stars heats intergalactic gas to above 100 K and ensures its ionization xe ? 0.03 within about 4–10 kpc from the galaxy in the case of a star-formation rate of star formation 0.03–0.1 M yr?1, and that after the end of the starburst this region remains quasi-stationary over the following 200–300 Myr, i.e., until z ~ 7.5. Formation of x-ray binaries form in dwarf galaxies at z ~ 15 results in a 2–3 and 5–6 times greater size of the ionized and heated region compared to the case where ionization is produced by AGB stars exclusively, if computed with the “x-ray luminosity–star-formation rate” dependence (LX ~ fXSFR) factor fX = 0.1 and fX ~ 1, respectively. For fX ? 0.03 the effect of x-ray binaries is smaller that that of AGB star population. Lyα emission, heating, and ionization of the intergalactic gas in the neighborhood of dwarf galaxies result in the excitation of the 21 cm HI line. We found that during the period of the starburst end at z ~11.5–12.5 the brightness temperature in the neighborhood of galaxies is 15–25 mK and the region where the brightness temperature remains close to its maximum has a size of about 12–30 kpc. Hence the epoch of the starburst end is most favorable for 21 cm HI line observations of dwarf galaxies, because at that time the size of the region of maximum brightness temperature is the greatest over the entire evolution of the dwarf galaxy. In the case of the sizes corresponding to almost 0.’1 for z ~ 12 regions with maximum emission can be detected with the Square Kilometre Array, which is currently under construction.  相似文献   

3.
We have performed hydrodynamic calculations of the radial pulsations of helium stars with masses 10MM ≤ 50M, luminosity-to-mass ratios 5 × 103L/ML/M ≤ 2.5 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for helium and heavy-element mass fractions of Y=0.98 and Z=0.02, respectively. We show that the high-temperature boundary of the instability region for radial pulsations at L/M ? 104L/M extends to Teff≈105 K. The amplitude of the velocity variations for outer layers is several hundred km s?1, while the brightness variations in the B band of the UBV photometric system are within the range from several hundredths to half a magnitude. At constant luminosity-to-mass ratio, the radial pulsation period is determined only by the effective temperature of the star. In the ranges of luminosity-to-mass ratios 104L/ML/M ≤ 2 × 104L/M and effective temperatures 5 × 104 K ≤ Teff ≤ 9 × 104 K, the periods of the radial modes are within 6 min ?Π?103 min.  相似文献   

4.
We present the results of our hydrodynamic calculations of radial pulsations in helium stars with masses 1 MM ≤ 10 M, luminosity-to-mass ratios 1 × 103L/ML/M ≤ 2 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for mass fractions of helium Y=0.98 and heavy elements Z=0.02. We show that the lower boundary of the pulsation-instability region corresponds to L/M ~ 103L/M and that the instability region for L/M ? 5 × 103L/M is bounded by effective temperatures Teff ? 3 × 104 K. As the luminosity rises, the instability boundary moves into the left part of the Hertzsprung-Russell diagram and radial pulsations can arise in stars with effective temperatures Teff ? 105 K at L/M ? 7 × 103L/M. The velocity amplitude for the outer boundary of the hydrodynamic model increases with L/M and lies within the range 200 ? ΔU ? 700 km s?1 for the models under consideration. The periodic shock waves that accompany radial pulsations cause a significant change of the gas-density distribution in the stellar atmosphere, which is described by a dynamic scale height comparable to the stellar radius. The dynamic instability boundary that corresponds to the separation of the outer stellar atmospheric layers at a superparabolic velocity is roughly determined by a luminosity-to-mass ratio L/M ~ 3 × 104L/M.  相似文献   

5.
Based on a self-consistent solution of the equations of gas dynamics, kinetics of hydrogen atomic level populations, and radiative transfer, we analyze the structure of a shock wave that propagates in a partially ionized hydrogen gas. We consider the radiative transfer at the frequencies of spectral lines by taking into account the effects of a moving medium in the observer's frame of reference. The flux in Balmer lines is shown to be formed behind the shock discontinuity at the initial hydrogen recombination stage. The Doppler shift of the emission-line profile is approximately one and a half times smaller than the gas flow velocity in the Balmer emission region, because the radiation field of the shock wave is anisotropic. At Mach numbers M1?10 and unperturbed gas densities σ1=10?10 g cm?3, the Doppler shift is approximately one third of the shock velocity U1. The FWHM of the emission-line profile δ ? is related to the shock velocity by δ ? k ? U1, where k ? = 1, 0.6, and 0.65 for the Hα, Hβ, and Hγ lines, respectively.  相似文献   

6.
We performed hydrodynamic computations of nonlinear stellar pulsations of population I stars at the evolutionary stages of the ascending red giant branch and the following luminosity drop due to the core helium flash. Red giants populating this region of the Hertzsprung–Russel diagram were found to be the fundamental mode pulsators. The pulsation period is the largest at the tip of the red giant branch and for stars with initial masses from 1.1 M to 1.9 M ranges from ∏ ≈ 254 day to ∏ ≈ 33 day , respectively. The rate of period change during the core helium flash is comparable with rates of secular period change in Mira type variables during the thermal pulse in the helium shell source. The period change rate is largest (∏?/∏ ≈ ?10?2 yr?1) in stars with initial mass M ZAMS = 1.1 M and decreases to ∏?/∏ ~ ?10?3 yr?1 for stars of the evolutionary sequence M ZAMS = 1.9 M . Theoretical light curves of red giants pulsating with periods ∏ > 200 day show the presence of the secondary maximum similar to that observed in many Miras.  相似文献   

7.
Evolutionary tracks from the zero age main sequence to the asymptotic giant branch were computed for stars with initial masses 2 M M ZAMS ≤ 5 M and metallicity Z = 0.02. Some models of evolutionary sequences were used as initial conditions for equations of radiation hydrodynamics and turbulent convection describing radial stellar pulsations. The early asymptotic giant branch stars are shown to pulsate in the fundamental mode with periods 30 day ? Π ? 400day. The rate of period change gradually increases as the star evolves but is too small to be detected (Π?/Π < 10?5 yr?1). Pulsation properties of thermally pulsing AGB stars are investigated on time intervals comprising 17 thermal pulses for evolutionary sequences with initial masses M ZAMS = 2 M and 3 M and 6 thermal pulses for M ZAMS = 4 M and 5 M . Stars with initial masses M ZAMS ≤ 3 M pulsate either in the fundamental mode or in the first overtone, whereas more massive red giants (M ZAMS ≥ 4 M ) pulsate in the fundamental mode with periods Π ? 103 day. Most rapid pulsation period change with rate ?0.02 yr?1 ? Π?/Π ? ?0.01 yr?1 occurs during decrease of the surface luminosity after the maximum of the luminosity in the helium shell source. The rate of subsequent increase of the period is Π?/Π ? 5 × 10?3 yr?1.  相似文献   

8.
We have compiled a catalog of 903 candidates for type 1 quasars at redshifts 3 < z < 5.5 selected among the X-ray sources of the “serendipitous” XMM-Newton survey presented in the 3XMMDR4 catalog (the median X-ray flux is ≈5 × 10?15 erg s?1 cm?2 in the 0.5–2 keV energy band) and located at high Galactic latitudes |b| > 20° in Sloan Digital Sky Survey (SDSS) fields with a total area of about 300 deg2. Photometric SDSS data as well infrared 2MASS and WISE data were used to select the objects. We selected the point sources from the photometric SDSS catalog with a magnitude error δ mz′ < 0.2 and a color i′ ? z′ < 0.6 (to first eliminate the M-type stars). For the selected sources, we have calculated the dependences χ2(z) for various spectral templates from the library that we compiled for these purposes using the EAZY software. Based on these data, we have rejected the objects whose spectral energy distributions are better described by the templates of stars at z = 0 and obtained a sample of quasars with photometric redshift estimates 2.75 < z phot < 5.5. The selection completeness of known quasars at z spec > 3 in the investigated fields is shown to be about 80%. The normalized median absolute deviation (Δz = |z spec ? z phot|) is σ Δz /(1+z spec) = 0.07, while the outlier fraction is η = 9% when Δz/(1 + z спек.) > 0.2. The number of objects per unit area in our sample exceeds the number of quasars in the spectroscopic SDSS sample at the same redshifts approximately by a factor of 1.5. The subsequent spectroscopic testing of the redshifts of our selected candidates for quasars at 3 < z < 5.5 will allow the purity of this sample to be estimated more accurately.  相似文献   

9.
We systematically investigate the evolution of low-mass (0.35, 0.40, and 0.65M ) helium donors in semidetached binaries with white-dwarf accretors. The initial periods of the binaries are chosen in such a way that the helium abundance in the center of the models at the time of Roche lobe overflow varies between Y c = 0.98 and Y c ? 0.1. The results of our calculations can be used to analyze the formation scenarios and evolutionary status of AM CVn stars. We show that the minimum orbital periods of the semidetached binaries depend weakly on the total mass of the components and the evolutionary phase of the donor at the time of Roche lobe overflow and are 9–10 min. The differences in the mass transfer rates after P orb reaches its minimum in the range P orb ≈ 10–40 min do not exceed a factor of ~2.5. For P orb ? 20 min, the mass-losing stars are weakly degenerate homogeneous cooling objects; the He, C, N, O, and Ne abundances depend on the evolutionary phase at which Roche lobe overflow occurred. For the binaries that are currently believed to be the most probable candidates for AM CVn stars with helium donors, Y ? 0.4, X C ? 0.3, X O ? 0.25, and X N ? 0.5 × 10?2. In the binaries under consideration, once P orb ≈ 40 min has been reached, the mass loss time scale begins to exceed the thermal time scale of the donors, the latter begin to contract, their matter becomes degenerate, and the populations of AMCVn stars with white-dwarf and helium-star progenitors of their donors probably merge together.  相似文献   

10.
We present the results of magnetic field measurements of four chemically peculiar (CP) stars with helium abundance anomalies which are the members of the Orion stellar association OB1. The stars under study were classified as magnetic by other authors earlier. The present paper contains the results of the extensive study of the stars. Magnetic field measurements allowed us to conclude that HD36540 has a weak field and the longitudinal component B e does not exceed 500 G. The longitudinal field of HD36668 varies with the period P = 2. d 11884 and the amplitude from ?2 to +2 kG. The magnetic field of HD36916 has mainly negative polarity and varies within the range from 0 to ?1 kG with the period P = 1.d 565238. HD37058 is a magnetic star, the longitudinal field of which varies from ?1.2 to +0.8 kG with the period P = 14. d 659. The B e field variability pattern for the stars HD36916 and HD37058 is of a simple harmonic type. The longitudinal field of HD36668 is best described with two combined harmonic functions (“a doublewave”). The variability period of HD36540 is still undetermined. For all the stars from this paper, we measured radial velocities V r, axial rotation rates v e sin i, and determined basic parameters of atmospheres (effective temperatures T eff and gravity acceleration log g). We also estimated masses M, luminosities L, and radii R of the stars.  相似文献   

11.
The evolution of a Population-I star with an initial mass M ZAMS = 60 M has been calculated. At the stage when a red giant turns into an early-type helium star, the vast bulk of the stellar mass is concentrated in a compact core surrounded by an extended envelope that is unstable with respect to radial oscillations. The range of effective temperatures within which the instability arises extends to T eff ? 105 K. For the models corresponding to the Wolf-Rayet evolutionary stage (5 × 104 K ≤ T eff ≤ 1.05 × 105 K), hydrodynamic calculations of self-exciting radial stellar pulsations have been performed. The pulsational instability develops in a time interval comparable to the dynamic timescale. Once the amplitude has ceased to grow, the pulsational motions are nonlinear traveling waves propagating from the core boundary to the stellar surface. The velocity amplitude of the outer layers is 500 km s?1 < ΔU < 103 km s?1, depending on the effective temperature. During the evolution of a helium star, the mean ratio of the maximum expansion velocity of the outer layers to the local escape velocity decreases and lies within the range 0.25 < U max/v esc < 0.6 for the models considered. The nonlinearity of the stellar pulsations is responsible for the increase in the mean radius \(\bar r\) of the Lagrangian layers compared to the equilibrium radius r eq. The effect of the increase in mean radius decreases with rising effective temperature from\(\bar r\)/r ~ 10 at T eff = 7 × 104 K to \(\bar r\)/r ≈ 2 at T eff = 105 K. The radial pulsation periods for the models considered lie within the range 0.1 day ≤ Π ≤ 1.6 day and the amplitude of the bolometric magnitude variations does not exceed 0 . m 2.  相似文献   

12.
We investigate the variation of the fraction of galaxies with suppressed star formation (MK < ?21 . m 5) and early-type galaxies (fracE) of the “red sequence” along the projected radius in six galaxy clusters:Coma (A1656), A1139, and A1314 in the Leo supercluster region (z ≈ 0.037) and A2040, A2052, A2107 in the Hercules supercluster region (z ≈ 0.036). According to SDSS (DR10) data, fracE is the highest in the central regions of galaxy clusters and it is, on the average, equal to 0.62 ± 0.03, whereas in the 2–3R/R200c interval and beyond the Rsp ≈ 0.95 ± 0.04 R200m radius that we inferred from the observed profile fracE is minimal and equal to 0.25 ± 0.02. This value coincides with the estimate fracE = 0.24 ± 0.01 that we inferred for field galaxies located between the Hercules and Leo superclusters at the same redshifts. We show that the fraction of galaxies with suppressed star formation decreases continuously with cluster radius from 0.87 ± 0.02 in central regions down to 0.43 ± 0.03 in the 2–3 R/R200c interval and beyond Rsp, but remains, on the average, higher than 26% than the corresponding fraction for field objects. This decrease is especially conspicuous in the galaxy mass interval log M* [M] = 9.5–10. We found that galaxies with ongoing star formation have average clustercentric distances 1.5–2.5 R/R200c and that their radial-velocity dispersions are higher than those of galaxies with suppressed star formation.  相似文献   

13.
Using a reliablymeasured intrinsic (i.e., corrected for absorption effects) present-day luminosity function of high-mass X-ray binaries (HMXBs) in the 0.25–2 keV energy band per unit star formation rate, we estimate the preheating of the early Universe by soft X-rays from such systems. We find that X-ray irradiation, mainly executed by ultraluminous and supersoft ultraluminous X-ray sources with luminosity L X > 1039 erg s?1, could significantly heat (T >T CMB, where T CMB is the temperature of the cosmic microwave background) the intergalactic medium by z ~ 10 if the specific X-ray emissivity of the young stellar population in the early Universe was an order of magnitude higher than at the present epoch (which is possible due to the low metallicity of the first galaxies) and the soft X-ray emission from HMXBs did not suffer strong absorption within their galaxies. This makes it possible to observe the 21 cm line of neutral hydrogen in emission from redshifts z < 10.  相似文献   

14.
Based on the Gaia DR1 TGAS parallaxes and photometry from the Tycho-2, Gaia, 2MASS, andWISE catalogues, we have produced a sample of ~100 000 clump red giants within ~800 pc of the Sun. The systematic variations of the mode of their absolute magnitude as a function of the distance, magnitude, and other parameters have been analyzed. We show that these variations reach 0.7 mag and cannot be explained by variations in the interstellar extinction or intrinsic properties of stars and by selection. The only explanation seems to be a systematic error of the Gaia DR1 TGAS parallax dependent on the square of the observed distance in kpc: 0.18R 2 mas. Allowance for this error reduces significantly the systematic dependences of the absolute magnitude mode on all parameters. This error reaches 0.1 mas within 800 pc of the Sun and allows an upper limit for the accuracy of the TGAS parallaxes to be estimated as 0.2 mas. A careful allowance for such errors is needed to use clump red giants as “standard candles.” This eliminates all discrepancies between the theoretical and empirical estimates of the characteristics of these stars and allows us to obtain the first estimates of the modes of their absolute magnitudes from the Gaia parallaxes: mode(M H ) = ?1.49 m ± 0.04 m , mode(M Ks ) = ?1.63 m ± 0.03 m , mode(M W1) = ?1.67 m ± 0.05 m mode(M W2) = ?1.67 m ± 0.05 m , mode(M W3) = ?1.66 m ± 0.02 m , mode(M W4) = ?1.73 m ± 0.03 m , as well as the corresponding estimates of their de-reddened colors.  相似文献   

15.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

16.
We show that including the recoil upon scattering in the Ly-α line can lead to a noticeable acceleration of the primordial hydrogen recombination. Thus, for example, for the ΛCDM model, the decrease in the degree of ionization exceeds 1% at redshifts z = 800–1050, reaching ≈1.3% at z = 900. The corresponding corrections to the calculated cosmic microwave background power spectra reach 1.1% and 1.7% for TT and EE spectra, respectively. The radiative transfer in these calculations was treated in the quasi-stationary approximation.We have also obtained numerical solutions (in the diffusion approximation) to the nonstationary problem of radiative transfer in the Ly-α line for a partial frequency redistribution with recoil. We trace the evolution of the local line profile and the relative number of uncompensated transitions from the 2p state to the 1s state. We show that including the nonstationarity of the Ly-α line radiative transfer can lead to an additional acceleration of the primordial hydrogen recombination.  相似文献   

17.
We present the results of spectroscopic and photometric studies of a new polar CRTS CSS130604 J 215427+155714, conducted at the telescopes of the SAO RAS. Analysis of the photometric series of observations allowed to clarify the orbital period of the system, P o = 0. d 0672879 (±0.0000003). We build radial velocity curves and trace the intensity variations in the Hβ and Hγ hydrogen lines and He II λ 4686 ?A ionized heliumline. Based on the Hβ and He II lines we build Doppler maps. It is shown that the line formation region is localized near the Lagrange point. The following parameter estimates of the system are obtained:M 1 = 0.83 ± 0.10M , M 2 = 0.15 ± 0.01M , q = M 2/M 1 = 0.18 ± 0.03, i = 53? ± 5?. Based on the results of spectral, photometric and previously published polarimetric observations the possible geometric model of the system is discussed.  相似文献   

18.
An independent analysis of the molecular hydrogen absorption system at redshift z abs = 2.059 in the spectrum of the quasar J 2123?0050 is presented. The H2 system consists of two components (A and B) with column densities \(\log N_{{H_2}}^A = 17.94 \pm 0.01\) and \(N_{{H_2}}^B = 15.16 \pm 0.02\). The spectrum exhibits the lines of HDmolecules (logN HD A = 13.87±0.06) and the neutral speciesCI and Cl I associated with the H2 absorption system. For the molecular hydrogen lines near the quasar’s Lyβ and OVI emission lines, we detect a nonzero residual flux, ~3% of the total flux, caused by the effect of partial coverage of the quasar’s broad-line region by an H2 cloud. Due to the smallness of the residual flux, the effect does not affect the H2 column density being determined but increases the statistics of observations of the partial coverage effect to four cases. The uniqueness of the system being investigated is manifested in a high abundance of the neutral species H2 and CI at the lowest HI column density, logN HI = 19.18 ± 0.15, among the highredshift systems. The H2 and CI column densities in the system being investigated turn out to be higher than those in similar systems in our Galaxy and theMagellanic Clouds by two or three orders ofmagnitude. The \(N_{HD} /2N_{H_2 }\) ratio for component A has turned out to be also unusually high, (4.26 ± 0.60) × 10?5, which exceeds the deuterium abundance (D/H) for high-redshift systems by a factor of 1.5. Using the HI, H2, HD, and CI column densities as well as the populations of excited H2 and CI levels, we have investigated the physical conditions in components A and B. Component A represents the optically thick case; the gas has a low number density (~30 cm?3) and a temperature T ~ 140 K. In component B, the mediumis optically thin with n H ≤ 100 cm?3 and T ≥ 100 K. The ultraviolet (UV) background intensity in the clouds exceeds the mean intensity in our Galaxy by almost an order ofmagnitude. A high gas ionization fraction, \(n_{H^ + } /n_H \sim 10^{ - 2}\), which can be the result of partial shielding of the systemfrom hard UV radiation, is needed to describe the high HD and CI column densities. Using our simulations with the PDRMeudon code, we can reconstruct the observed column densities of the species within the model with a constant density (n H ~ 40 cm?3). A high H2 formation rate (higher than the mean Galactic value by a factor of 10?40) and high gas ionization fraction and UV background intensity are needed in this case.  相似文献   

19.
We present the results of the reduction of our photometric and spectroscopic observations for the eclipsing binary SZ Cam performed with the telescopes at the Astronomical Observatory of the Ural Federal University and the Special Astrophysical Observatory of the Russian Academy of Sciences in 1996–2014. Based on an 11-year-long photometric monitoring of SZ Cam, we have obtained new elements of its photometric orbit and parameters of its components. We have detected low-amplitude periodic light variations in SZ Cam that are possibly related to the ellipsoidal shape of the components of the spectroscopic binary third body. Based on published data and our new spectroscopy, we have found new values for the mass ratio, q = 0.72 ± 0.01, and parameters of the radial velocity curves of the components, V 0 = ?3.6 ± 1.7 km s?1, K 1 = 190.2 ± 1.9 km s?1, and K 2 = 263.0 ± 2.4 km s?1. The component masses have been estimated to be M 1 = 16.1 M and M 2 = 11.6 M . We have obtained new light elements and parameters of the radial velocity curves for the third body, V 0 3b = 4.2 ± 0.6 km s?1 and K 1 3b = 26.6 ± 0.8 km s?1. We have improved the period of the relative orbit of SZ Cam and the third body, P orb = 55.6 ± 1.5 yr.  相似文献   

20.
We study the variations of the properties of groups of galaxies with dynamical masses of 1013 M <M 200<1014 M , represented by two samples: one has redshifts of z < 0.027 and is located in the vicinity of the Coma cluster, the other has z > 0.027, and is located in the regions of the following superclusters of galaxies: Hercules, Leo, Bootes, Ursa Major, and Corona Borealis. Using the archived data of the SDSS and 2MASX catalogs, we determined the concentration of galaxies in the systems by measuring it as the inner density of the group within the distance of the fifth closest galaxy from the center brighter than M K = ?23. m 3. We also measured the magnitude gap between the first and the fourth brightest galaxies ΔM 14 located within one half of the selected radius R 200, the fraction of early-type galaxies, and the ratio of bright dwarf galaxies (Mr = [?18. m 5,?16. m 5]) to giant galaxies (M r < ?18. m 5) (DGR) within the radius R 200. The main aim of the investigation is to find among these characteristics the ones that reflect the evolution of groups of galaxies.We determined that the ratio of bright dwarf galaxies to early-type giant galaxies on the red sequence depends only on the x-ray luminosity: the DGR increases with luminosity. The fraction of early-type galaxies in the considered systems is equal, on average, to 0.65 ± 0.01, and varies significantly for galaxies with σ200 < 300 kms?1. Based on the luminosity of the brightest galaxy, the magnitude gap between the first and the fourth brightest galaxies in the groups, and on model computations of these parameters, we selected four fossil group candidates: AWM4, NGC0533, NGC0741, and NGC6098 (where the brightest galaxy is a double).We observe no increase in the number of faint galaxies (the α parameter of the Schechter function is less than 1) in our composite luminosity function (LF) for galaxy systems with z < 0.027 in the M K = [?26m,?21. m 5] range, whereas earlier we obtained α > 1 for the LF of the Hercules and Leo superclusters of galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号