首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding light nonaqueous-phase liquid (LNAPL) movement in heterogeneous vadose environments is important for effective remediation design. We investigated LNAPL movement near a sloping fine- over coarse-grained textural interface, forming a capillary barrier. LNAPL flow experiments were performed in a glass chamber (50 cm×60 cm×1.0 cm) using two silica sands (12/20 and 30/40 sieve sizes). Variable water saturations near the textural interface were generated by applying water uniformly to the sand surface at various flow rates. A model LNAPL (Soltrol® 220) was subsequently released at two locations at the sand surface. Visible light transmission was used to quantitatively determine water saturations prior to LNAPL release and to observe LNAPL flow paths. Numerical simulations were performed using the Subsurface Transport Over Multiple Phases (STOMP) simulator, employing two nonhysteretic relative permeability–saturation–pressure (kSP) models. LNAPL movement strongly depended on the water saturation in the fine-grained sand layer above the textural interface. In general, reasonable agreement was found between observed and predicted water saturations near the textural interface and LNAPL flow paths. Discrepancies between predictions based on the van Genuchten/Mualem (VGM) and Brooks–Corey/Burdine (BCB) kSP models existed in the migration speed of the simulated LNAPL plume and the LNAPL flow patterns at high water saturation above the textural interface. In both instances, predictions based on the BCB model agreed better with experimental observations than predictions based on the VGM model. The results confirm the critical role water saturation plays in determining LNAPL movement in heterogeneous vadose zone environments and that accurate prediction of LNAPL flow paths depends on the careful selection of an appropriate kSP model.  相似文献   

2.
The objective of this study was to investigate whether 222Rn in groundwater can be used as a tracer for light non‐aqueous phase liquid (LNAPL) quantification at a field site treated by dual‐phase LNAPL removal. After the break of a pipeline, 5 ha of soil in the nature reserve Coussouls de Crau in southern France was contaminated by 5100 m3 of crude oil. Part of this oil seeped into the underlying gravel aquifer and formed a floating oil body of about 3.9 ha. The remediation consists of plume management by hydraulic groundwater barriers and LNAPL extraction in the source zone. 222Rn measurements were performed in 21 wells in and outside the source zone during 15 months. In uncontaminated groundwater, the radon activity was relatively constant and remained always >11 Bq/L. The variability of radon activity measurements in wells affected by the pump‐and‐skim system was consistent with the measurements in wells that were not impacted by the system. The mean activities in wells in the source zone were, in general, significantly lower than in wells upgradient of the source zone, owing to partitioning of 222Rn into the oil phase. The lowest activities were found in zones with high non‐aqueous phase liquid (NAPL) recovery. LNAPL saturations around each recovery well were furthermore calculated during a period of high groundwater level, using a laboratory‐determined crude oil–water partitioning coefficient of 38.5 ± 2.9. This yielded an estimated volume of residual crude oil of 309 ± 93 m3 below the capillary fringe. We find that 222Rn is a useful and cheap groundwater tracer for finding zones of good LNAPL recovery in an aquifer treated by dual‐phase LNAPL removal, but that quantification of NAPL saturation using Rn is highly uncertain.  相似文献   

3.
Lighter-than-water Non-Aqueous Phase Liquids (LNAPLs), such as jet fuels or gasolines, are common contaminants of soils and ground water. However, the total volume and distribution of an LNAPL is difficult to accurately determine during a site investigation. LNAPL that is entrapped in the saturated zone due to fluctuating water table conditions is particularly difficult to quantify. Yet, the amount of entrapped product in the saturated zone is theoretically higher, per volume of soil, than the residual product in the unsaturated zone, and small amounts of LNAPL in the saturated zone can contaminate large volumes of ground water.
The only method currently available to quantify the amount of LNAPL is direct soil-core sampling combined with laboratory analysis of the fluid extracted from the soil cores. However, direct sampling of saturated ground water systems with conventional samplers presents a number of problems. In this study, a new sampler was developed that can be used to retrieve undisturbed soil and pore fluid samples from below the water table in cohesionless soils. The sampler uses carbon dioxide to cool the bottom of a saturated soil sample in situ to near freezing. Results of a field study where a prototype sampler was tested demonstrate the usefulness of a cryogenic sampler and show that the amount of LNAPL entrapped below the water table can be a significant part of the total LNAPL in the soil.  相似文献   

4.
The present study proposes a methodology for predicting the vertical light nonaqueous-phase liquids (LNAPLs) distribution within an aquifer by considering the influence of water table fluctuations. The LNAPL distribution is predicted by combining (1) information on air/LNAPL and LNAPL/water interface elevations with (2) the initial elevation of the water table without LNAPL effect. Data used in the present study were collected during groundwater monitoring undertaken over a period of 4 months at a LNAPL-impacted observation well. In this study, the water table fluctuations raised the free LNAPL in the subsurface to an elevation of 206.63 m, while the lowest elevation was 205.70 m, forming a thickness of 0.93 m of LNAPL-impacted soil. Results show that the apparent LNAPL thickness in the observation well is found to be three times greater than the actual free LNAPL thickness in soil; a finding that agrees with previous studies reporting that apparent LNAPL thickness in observation wells typically exceeds the free LNAPL thickness within soil by a factor estimated to range between 2 and 10. The present study provides insights concerning the transient variation of LNAPL distribution within the subsurface and highlights the capability of the proposed methodology to mathematically predict the actual LNAPL thickness in the subsurface, without the need to conduct laborious field tests. Practitioners can use the proposed methodology to determine by how much the water table should be lowered, through pumping, to isolate the LNAPL-impacted soil within the unsaturated zone, which can then be subjected to in situ vadose zone remedial treatment.  相似文献   

5.
Accidental release of petroleum hydrocarbons to the subsurface may occur through spills around refineries, leaking pipelines, storage tanks, or other sources. If the spill is large, the hydrocarbon liquids may eventually reach a water table and spread laterally in a pancake-like lens. Hydrocarbons that exist as a separate phase are termed light nonaqueous phase liquids (LNAPLs). The portion of the LNAPL that is mobile, not entrapped as residual saturation, is termed "free product."
This paper presents new analytical solutions for the design of long-term free-product recovery from aquifers with skimmer, single- and dual-pump wells. The solutions are for steady-state flow, based on the assumption of vertical equilibrium, and include the effect of coning of LNAPL, air, and water on flow. The solutions are valid for soils of large hydraulic conductivity where the effect of capillary pressure on coning is small.
The results show how to estimate the maximum rate of inflow of LNAPL for skimmer wells, i.e., wells in which LNAPL is recovered with little or no water production. The paper also shows how to calculate the increase in LNAPL recovery when water is pumped by single- or dual-pump wells. A simple equation is given that can be used to adjust the water rate to avoid smearing of the LNAPL below the water table.  相似文献   

6.
A Sample-Freezing Drive Shoe for a Wire Line Piston Core Sampler   总被引:2,自引:0,他引:2  
Loss of fluids and samples during retrieval of cores of saturated, noncohesive sediments results in incorrect measures of fluid distributions and an inaccurate measure of the stratigraphic position of the sample. To reduce these errors, we developed a hollow drive shoe that freezes in place the lowest 3 inches (75 mm) of a 1.88-inch-diameter (48 mm), 5-foot-long (1.5 m) sediment sample taken using a commercial wire line piston core smapler. The end of the core is frozen by piping liquid carbon dioxide at ambient temperature through a steel tube from a bottle at the land surface to the drive shoe where it evaporates and expands, cooling the interior surface of the shoe to about - 109°F (- 78°C). Freezing a core end takes about 10 minutes. The device was used to collect samples for a study of oil-water-air distributions, and for studies of water chemistry and microbial activity in unconsolidated sediments at the site of an oil spill near Bemidji, Minnesota. Before freezing was employed, samples of sandy sediments from near the water table sometimes flowed out of the core barrel as the sampler was withdrawn. Freezing the bottom of the core allowed for the retention of all material that entered the core barrel and lessened the redistribution of fluids within the core. The device is useful in the unsaturated and shallow saturated zones, but does not freeze cores well at depths greater than about 20 feet (6 m) below water, possibly because the feed tube plugs with dry ice with increased exhaust back-pressure, or because sediment enters the annulus between the core barrel and the core barrel liner and blocks the exhaust.  相似文献   

7.
In situ denitrification relies on indigenous microorganisms to reduce nitrate to N(2) gas. However, when initial nitrate concentrations are large, produced gas volumes also can be very large, potentially resulting in reduced water saturation and hydraulic conductivity in the treatment zone. In this study, we investigated the fate of N(2) and other gases produced during denitrification in a laboratory flow cell containing packed sediment. Denitrifying activity was stimulated by additions of nitrate and ethanol. Microbial activity was monitored by measuring nitrate, nitrite, and ethanol concentrations; gas saturations were measured during the experiment using a gamma imaging system. Biomass was measured using phospholipid fatty acid analysis of sediment samples. Bioenergetic calculations calibrated to measured nitrate consumed and biomass produced predicted that 1.2 L N(2) gas/L water should have been produced following the addition of 100 mM nitrate. However, the maximum measured gas saturation was only 23%, indicating substantial gas loss from the sediment pack. Temporal gamma images and visual observations confirm that small gas bubbles formed in the sediment pack coalesced into larger bubbles and migrated upward through gas-filled channels to the sediment pack surface. Although gas saturations increased, there was no significant change in sediment pack hydraulic conductivity. These results suggest that in permeable reactive barriers used for in situ denitrification, gas production will not necessarily lead to unlimited gas accumulation in the pore space and that the effects of gas production on water saturation and hydraulic conductivity may be relatively minor.  相似文献   

8.
A combination of field measurements, modelling and laboratory experiments was used to evaluate the potential impact of sediment resuspension on phosphorus (P) dynamics. The study was carried out in two adjacent shallow coastal lakes (Lake Honda and Lake Nueva) which, due to their geographic proximity (only 200 m apart), are subject to equal meteorological forcing and represent ideal systems to study how morphometry and sediment properties relate to wind events. The focusing factors (a measure of the fluxes of sediment into the water column through resuspension) estimated by comparing settling fluxes measured in surface sediment traps with those measured in bottom traps, were significantly larger (approximately 34% larger) in Lake Honda (LH; 1.18) than in Lake Nueva (LN; 0.88). Our model estimates of resuspension fluxes (E) were also ca. 40% larger in LH than in LN, in agreement with the observed focusing factors. The larger resuspension fluxes encountered in LH, in comparison with LN, can mainly be explained by differences in lake morphometry. Still, they could arise from differences in grain size distribution or in benthic algae concentration encountered in the lake sediments. By means of adsorption experiments in the laboratory, we show that resuspension events will have different effects on P-dynamics in LH and LN. While the resuspended material from LH tends to adsorb phosphate (PO4 3−), removing it from the water column, in LN the resuspended sediments tend to increase the availability of PO4 3− in solution. These differences arise from (1) higher concentrations of PO4 3− in water in LH compared to LN; and (2) larger PO4 3−adsorption capacity of the LH sediments as a result of the more abundant iron oxyhydroxides and clay.  相似文献   

9.
Groundwater monitoring wells are present at most hydrocarbon release sites that are being assessed for cleanup. If screened across the vadose zone, these wells provide an opportunity to collect vapor samples that can be used in the evaluation of vapor movement and biodegradation processes occurring at such sites. This paper presents a low purge volume method (modified after that developed by the U.S. EPA) for sampling vapor from monitoring wells that is easy to implement and can provide an assessment of the soil gas total petroleum hydrocarbon (TPH) and O2 concentrations at the base of the vadose zone. As a result, the small purge method allows for sampling of vapor from monitoring wells to support petroleum vapor intrusion (PVI) risk assessment. The small purge volume method was field tested at the Hal's service station site in Green River, Utah. This site is well‐known for numerous soil gas measurements containing high O2 and high TPH vapor concentrations in the same samples which is inconsistent with well‐accepted biodegradation models for the vapor pathway. Using the low purge volume method, monitoring wells were sampled over, upgradient, and downgradient of the light nonaqueous phase liquid (LNAPL) footprint. Results from our testing at Hal's show that vapor from monitoring wells over LNAPL contained very low O2 and high TPH concentrations. In contrast, vapor from monitoring wells not over LNAPL contained high O2 and low TPH concentrations. The results of this study show that a low purge volume method is consistent with biodegradation models especially for sampling at sites where low permeability soils exist in and around a LNAPL source zone.  相似文献   

10.
Alight nonaqueous phase liquid (LNAPL) ground water contaminant plume has been discovered by purely geophysical means at the former Wurtsmith Air Force Base (AFB) near Oscoda, Michigan. It is located near another plume called FT-02, which is a well-studied area undergoing natural bioremediation. The plume was discovered by ground penetrating radar (GPR) profiling while extending a long line from FT-02 to establish background variability around that plume. The new plume was apparent because of a high-conductivity "shadow' or GPR reflection attenuation observed below the conductive zone at the top of the aquifer, identical to the pattern observed at the FT-02 plume. Further GPR surveys were conducted by students of a Western Michigan University geophysics field course to outline the proximal part of the plume. The GPR survey was supplemented by an electromagnetic induction (EM) survey which showed a group of four cables crossing the area. Finally, a magnetometer survey was conducted to search for any buried steel objects which might have been missed by the EM survey. The results of the three geophysical surveys were then used by students of a University of Michigan field course to guide subsurface soil and fluid sampling, which verified the presence of residual LNAPL product and ground water with conductivities 2.5 to 3.3 times above background. The plume source is in the vicinity of a vaulted underground storage tank (UST) formerly used for the collection of waste solvents and fuels for subsequent use in the fire training exercises at FT-02. This newly discovered LNAPL plume, along with other "mature' plumes, fits the electrical model which predicts conductive ground water below the decomposing but electrically resistive LNAPLs. Finally, this is a fine example of the cooperative use of a dedicated research site for training by students of two different universities.  相似文献   

11.
This paper reports the results of using the ground‐penetrating radar (GPR) method to detect light non‐aqueous phase liquids (LNAPL) floating on the water table in an area where the thickness of LNAPL present ranges from a few centimetres to several decimetres. To understand the GPR response in this context, GPR theoretical models are calculated using information from the literature and hydrogeological field data. The study revealed that in the case of LNAPL floating on the water table in a static condition, there is an increase in the reflection amplitude from the water table due to the decrease in the capillary fringe. Nevertheless the amplitude of reflection from the water table can discriminate the contaminated from the non‐contaminated zone. Apart from an analysis of the real traces, the analysis of some attributes of the complex trace, instantaneous amplitude, phase and frequency, are also good tools to detect hydrocarbons floating on the water table. Such attributes, depending on both the signal frequency and the hydrocarbon thickness, can also give information about the thickness of the hydrocarbon layer. It is concluded that analysing the lateral variations in signal amplitude of the real trace and in the amplitude, phase and instantaneous frequency of the complex signal permits the delimiting of the area polluted by the hydrocarbon.  相似文献   

12.
The recoverability of light nonaqueous phase liquids (LNAPL) in the subsurface can be estimated using LNAPL transmissivity. LNAPL transmissivity is analogous to aquifer transmissivity in that it represents the volume of LNAPL that flows through a unit width of a porous medium for a unit gradient in a unit time. Methods for estimating LNAPL transmissivity from baildown test data have been modified from the Bouwer and Rice (1976) slug test method by Lundy and Zimmerman (1996) and Huntley (2000). The primary assumptions when estimating LNAPL transmissivity with the Bouwer‐Rice method include, a quasi‐steady‐state model for recharge to the well (the model assumes steady‐state radial flow to the well with rate dependent well drawdown and no storage effects) and that the ratio of change in LNAPL drawdown to change in LNAPL thickness at the well (ds/db) is constant. This ratio will be referred to as the j‐ratio. Rather than having to meet boundary conditions for a predetermined j‐ratio value, each baildown test provides the data to estimate the j‐ratio value that is unique to that data set. This calculation methodology in turn results in the Bouwer‐Rice method being applicable to a wider range of baildown tests where it is not required for the potentiometric surface or LNAPL/water interface to remain constant.  相似文献   

13.
Entrapped biogenic gas in peat can greatly affect peatland biogeochemical and hydrological processes by altering volumetric water content, peat buoyancy, and ‘saturated’ hydraulic conductivity, and by generating over‐pressure zones. These over‐pressure zones further affect hydraulic gradients which influence water and nutrient flow direction and rate. The dynamics of entrapped gas are of global interest because the loss of this gas to the atmosphere via ebullition (bubbling) is likely the dominant transport mechanism of methane (CH4) to the atmosphere from peatlands, which are the largest natural terrestrial source per annum of atmospheric CH4. We investigated the relationship between atmospheric pressure and temperature on volumetric gas content (VGC) and CH4 ebullition using a laboratory peat core incubation experiment. Peat cores were incubated at three temperatures (one core at 4 °C, three cores at 11 °C, and one core at 20 °C) in sealed PVC cylinders, instrumented to measure VGC, pore‐water CH4 concentrations, and ebullition (volume and CH4 concentrations). Ebullition events primarily occurred (71% of the time) during periods of falling atmospheric pressure. The duration of the drop in atmospheric pressure had a larger control on ebullition volume than the magnitude of the drop. VGC in the 20 °C core increased from the onset of the experiment and reached a fluctuating but time‐averaged constant level between experiment day 30 and 115. The change in VGC was low for the 11 °C cores for the initial period of the experiment but showed large increases when the growth chamber temperature increased to 20 °C due to a malfunction. The core maintained at 4 °C showed only a small increase in entrapped gas content throughout the experiment. The 20 °C core showed the largest increase in VGC. The increases in VGC occurred despite pore‐water concentrations of CH4 being below the equilibrium solubility level. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Dam construction greatly alters the channel boundary of rivers, making the dammed river system a human‐controlled system. Based on hydrometric data in the upper Changjiang River basin, the change in behaviour of sediment transport of some dammed rivers was studied. As a result, some phenomena of threshold and complex response were found. When the coefficient (Cr,a) of actual runoff regulation by reservoirs, defined as the ratio of total capacity of reservoirs to annual runoff input, is smaller than 10%, suspended sediment load at Yichang station, the control station of the Changjiang River, shows a mild decreasing trend. When this coefficient becomes larger than 10%, suspended sediment load decreases sharply. The coefficient of 10% can be regarded as a threshold. The Cr,a of 10% is also a threshold, when the variation of suspended sediment concentration (SSC) with Cr,a at Yichang station is considered. The impacts of reservoir construction can be divided into several stages, including road construction, dam building and closure, water storage and sediment trapping. During these stages, some complex response was identified. At the station below the dam, SSC increases and reaches a maximum, and then declines sharply. This phenomenon was found on the main‐stem and several major tributaries of the upper Changjiang River. In the Minjiang River, where a series of dams were built successively, the response of SSC is more complicated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Degassing and in situ development of a mobile gas phase takes place when an aqueous phase equilibrated with a gas at a pressure higher than the subsurface pressure is injected in water-saturated porous media. This process, which has been termed supersaturated water injection (SWI), is a novel and hitherto unexplored means of introducing a gas phase in the subsurface. We give herein a first macroscopic account of the SWI process on the basis of continuum scale simulations and column experiments with CO2 as the dissolved gas. A published empirical mass transfer correlation [Nambi IM, Powers SE. Mass transfer correlations for nonaqueous phase liquid dissolution from regions with high initial saturations. Water Resour Res 2003;39(2):1030. doi:10.1029/2001WR000667] is found to adequately describe non-equilibrium transfer of CO2 between the aqueous and gas phases. Remarkably, the dynamics of gas-water two-phase flow, observed in a series of SWI experiments in homogeneous columns packed with silica sand or glass beads, are accurately predicted by traditional two-phase flow theory and the corresponding gas relative permeability is determined. A key consequence of this finding, namely that the displacement of the aqueous phase by gas is compact at the macroscopic scale, is consistent with pore scale simulations of repeated mobilization, fragmentation and coalescence of large gas clusters (i.e., large ganglion dynamics) driven entirely by mass transfer. The significance of this finding for the efficient delivery of a gas phase below the water table is discussed in connection to the alternative process of in situ air sparging, and potential advantages of SWI are highlighted.  相似文献   

16.
Petroleum liquids, referred to as light non‐aqueous phase liquids (LNAPLs), are commonly found beneath petroleum facilities. Concerns with LNAPLs include migration into clean soils, migration beyond property boundaries, and discharges to surface water. Single‐well tracer dilution techniques were used to measure LNAPL fluxes through 50 wells at 7 field sites. A hydrophobic tracer was mixed into LNAPL in a well. Intensities of fluorescence associated with the tracer were measured over time using a spectrometer and a fiber optic cable. LNAPL fluxes were estimated using observed changes in the tracer concentrations over time. Measured LNAPL fluxes range from 0.006 to 2.6 m/year with a mean and median of 0.15 and 0.064 m/year, respectively. Measured LNAPL fluxes are two to four orders of magnitude smaller than a common groundwater flux of 30 m/year. Relationships between LNAPL fluxes and possible governing parameters were evaluated. Observed LNAPL fluxes are largely independent of LNAPL thickness in wells. Natural losses of LNAPL through dissolution, evaporation, and subsequent biodegradation, were estimated using a simple mass balance, measured LNAPL fluxes in wells, and an assumed stable LNAPL extent. The mean and median of the calculated loss rates were found to be 24.0 and 5.0 m3/ha/year, respectively. Mean and median losses are similar to values reported by others. Coupling observed LNAPL fluxes to observed rates of natural LNAPL depletion suggests that natural losses of LNAPL may be an important parameter controlling the overall extent of LNAPL bodies.  相似文献   

17.
The objectives of the past studies of global cli-matological changes were to obtain and interpret in-formation about various macroclimates and paleoenvi-ronments, and to understand changing processes andmechanisms of the global system environment, so asto provide basic materials for establishing a physicalmodel of forecasting climate environment. To reduceuncertainty of forecast, it is particularly important totake variation sequences in short dimension and highresolution in global climatologic…  相似文献   

18.
Mingguo Zheng  Runkui Li  Jijun He 《水文研究》2015,29(26):5414-5423
Information is scarce on the spatial‐scale effect on sediment concentrations in run‐off. This study addressed this issue within an agricultural subwatershed of the Chinese Loess Plateau, using data observed at a hilltop plot, three nested hillslope plots, two entire‐slope plots (a combination of hillslope and valley side slope) and the subwatershed outlet. Dominated by the splash and sheet erosions, the hilltop plot has a minimum Cae (mean sediment concentration for all recorded events) of 45 kg m?3. Unexpectedly, the high sediment concentrations at the hilltop do not occur at high rainfall intensities or large run‐off events because of the protection of surface soils by relatively thick sheet flows. Because of the emergence of rills, Cae is as high as 310 kg m?3 even on the most upper hillslope. Downslope, both Cae and ESC (extreme large values of recorded sediment concentrations) increase; such a slope length effect attenuates with increasing slope length and event magnitude as a result of insufficient sediment availability associated with rill development. Active mass wastings ensure sufficient sediment supply and thus a spatially invariant Cae (approximately 700 kg m?3) and ESC (approximately 1000 kg m?3) at the scale of the entire slope and subwatershed. Detailed examination shows that most small events experience a decrease in sediment concentrations when moving from the entire slope to the subwatershed, indicating that the spatially invariant sediment concentration is valid only for large run‐off events. This study highlights the control of the spatial scale, which determines the dominant erosional process, on erosional regime. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
人为干扰和气候变化会改变湖泊水位状态,明确不同水位条件下湖泊沉积物有机碳矿化特征及其影响因素,对了解内陆水生态系统碳循环具有重要意义.为探究干旱区典型盐湖沉积物有机碳矿化速率对水位变化的响应,以巴里坤湖干涸湖底原状沉积物为研究对象,初步探究了0(T1)、-9(T2)、-23(T3)、-34(T4)和-45 cm(T5)水位处理对沉积物有机碳矿化速率的影响.结果表明,T1、T2和T3处理有机碳矿化速率在试验初期较高(0~10 d),10 d后缓慢下降,T4和T5处理有机碳矿化速率呈先增加后降低趋势;T1(1.718 μmol/(m2·s))与T3(1.784 μmol/(m2·s))处理有机碳矿化速率不存在显著差异,T1处理有机碳矿化速率是T2、T4和T5处理的1.09、3.31和3.57倍,不同处理有机碳累积矿化量表现为T3 > T1 > T2 > T4 > T5.有机碳累积矿化量(Ct)占沉积物有机碳(C0)的比例(Ct/C0)介于0.012~0.044之间,沉积物有机碳潜在排放量(Ci)占C0的比例(Ci/C0)介于0.018~0.045之间;水位降低,沉积物有机碳矿化常数(k值)减小,T1处理k值最大(0.137 d),T4处理最小(0.032 d).线性方程Cr=0.008x+0.488能较好地模拟有机碳矿化速率(Cr)与水位(x)的关系;不同水位处理有机碳矿化速率与模拟柱中沉积物5 cm温度呈显著的指数函数关系,T4、T5处理有机碳矿化温度敏感系数(Q10)显著高于T1、T2和T3处理,即水位降低增加了巴里坤湖干涸湖底沉积物Q10.因此,就巴里坤湖干涸湖底沉积物而言,水位从0 cm降至-45 cm时有机碳矿化速率降低,Q10增加;反之水位上升则会促进有机碳矿化分解,Q10降低.水位持续下降抑制有机碳矿化可能是维持干旱区盐湖沉积物碳库稳定的机制之一.  相似文献   

20.
A field tracer test was carried out in a light nonaqueous phase liquid (LNAPL) source zone using a well pattern consisting of one injection well surrounded by four extraction wells (5‐spot well pattern). Multilevel sampling was carried out in two observation wells located inside the test cell characterized by heterogeneous lithology. Tracer breakthrough curves showed relatively uniform flow within soil layers. A numerical flow and solute transport model was calibrated on hydraulic heads and tracer breakthrough curves. The model was used to estimate an average accessible porosity of 0.115 for the swept zone and an average longitudinal dispersivity of 0.55 m. The model was further used to optimize the relative effects of viscous forces versus capillary forces under realistic imposed hydraulic gradients and to establish optimal surfactant solution properties. Maximum capillary number (NCa) values between injection and extraction wells were obtained for an injection flow rate of 16 L/min, a total extraction flow rate of 20 L/min, and a surfactant solution with a viscosity of 0.005 Pa?s. The unconfined nature of the aquifer limited further flow rate or viscosity increases that would have led to unrealistic hydraulic gradients. An NCa range of 3.8 × 10?4 to 7.6 × 10?3 was obtained depending on the magnitude of the simulated LNAPL‐water interfacial tension reduction. Finally, surfactant and chase water slug sizing was optimized with a radial form of the simplified Ogata‐Banks analytical solution (Ogata and Banks 1961) so that injected concentrations could be maintained in the entire 5‐spot cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号