首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the levels of arsenic (As) in the water sources of Cankiri Province, the samples were collected from the stations of central Cankiri (n = 27) and Kursunlu town (n = 12) during 2009 and 2010. The concentrations of As were analyzed with an atomic absorption spectrophotometer, and then compared with permissible limit, 10 µg/L in drinking water, by Turkish legislation and World Health Organization (WHO). The As levels were higher than this limit (mean value 10–30 µg/L in 26 stations), whereas, they were found to be >30 µg/L in 12 sampling points. The water sources were categorized for health risk assessment such as reservoir, tap, well, and spring, and then chronic daily intake for oral and dermal exposure to As via drinking water, hazard quotient (HQ), and hazard index were calculated by using indices. The HQ values were found to be >1 in all samples of Cankiri Province. The effects of As on human health were then evaluated using carcinogenic risk (CR). CR values for As were also estimated to be >10?5 in drinking water samples of Cankiri Province and might exert potential CR for people. These assessments would point out required drinking water treatment strategy to ensure safety of consumers.  相似文献   

2.
Although the ingestion of vanadium (V) in drinking water may have possible adverse health effects, there have been relatively few studies of V in groundwater. Given the importance of groundwater as a source of drinking water in many areas of the world, this study examines the potential sources and geochemical processes that control the distribution of V in groundwater on a regional scale. Potential sources of V to groundwater include dissolution of V rich rocks, and waste streams from industrial processes. Geochemical processes such as adsorption/desorption, precipitation/dissolution, and chemical transformations control V concentrations in groundwater. Based on thermodynamic data and laboratory studies, V concentrations are expected to be highest in samples collected from oxic and alkaline groundwater. However, the extent to which thermodynamic data and laboratory results apply to the actual distribution of V in groundwater is not well understood. More than 8400 groundwater samples collected in California were used in this study. Of these samples, high (≥50 µg/L) and moderate (25 to 49 µg/L) V concentrations were most frequently detected in regions where both source rock and favorable geochemical conditions occurred. The distribution of V concentrations in groundwater samples suggests that significant sources of V are mafic and andesitic rock. Anthropogenic activities do not appear to be a significant contributor of V to groundwater in this study. High V concentrations in groundwater samples analyzed in this study were almost always associated with oxic and alkaline groundwater conditions, which is consistent with predictions based on thermodynamic data.  相似文献   

3.
Groundwater resources with high salinity content are found in some parts of the lower Shire River valley (Malawi). This paper discusses the geochemistry of minor elements with regards to the prevailing salinity. Hierarchical clustering and principal component analyses were used to identify factors which relate to both minor elements and samples and were interpreted as reflecting the influence of prevailing saline/brackish groundwater. Concentrations of lead (Pb), boron (B), strontium (Sr) and chromium (Cr) were associated with groundwater with high content of total dissolved solids (TDS). Speciation calculations indicated that dissolved Sr, barium (Ba) and lithium (Li) were mainly in the form of free aqueous ions whereas hydrolysed species were significant for aluminium (Al) and Cr, and carbonate complexes for Pb. Chloride complexes were prevalent for silver (Ag). Solubility of cerussite (PbCO3) and barite (BaSO4) was shown to act as a control on the levels of Pb and Ba, respectively. Thus, Ba concentrations were very low in saline groundwater owing to their high sulphate content. A relatively variable B concentration in the groundwater samples was explained using a binary mixing model of saline and fresh groundwater. The mixing of fresh groundwater with saline groundwater was concomitant with high Na+/Ca2+ ratios and enrichment of B, probably by desorption from clays. The WHO drinking water guidelines for Ba, B, Cr and Pb were exceeded in 6.5%, 9.7%, 16.1% and 64.5% of all the samples, respectively. However, all samples were below the Malawian specification of B in borehole and shallow well water quality (MS 733:2005) of 5.0 mg/L.  相似文献   

4.
The Batu Hijau copper–gold mine on the island of Sumbawa, Indonesia operates a deep-sea tailings placement (DSTP) facility to dispose of the tailings within the offshore Senunu Canyon. The concentrations of trace metals in tailings, waters, and sediments from locations in the vicinity of the DSTP were determined during surveys in 2004 and 2009. In coastal and deep seawater samples from Alas Strait and the South Coast of Sumbawa, the dissolved concentrations of Ag, As, Cd, Cr, Hg, Pb and Zn were in the sub μg/L range. Dissolved copper concentrations ranged from 0.05 to 0.65 μg/L for all depths at these sites. Dissolved copper concentrations were the highest in the bottom-water from within the tailings plume inside Senunu Canyon, with up to 6.5 μg Cu/L measured in close proximity to the tailings discharge. In general, the concentrations of dissolved and particulate metals were similar in 2004 and 2009.  相似文献   

5.
The aim of this study was to assess trace metal contamination of drinking water in the Pearl Valley, Azad Jammu and Kashmir (Pakistan). The objectives were to determine physical properties and the dissolved concentration of five trace metals, i. e., lead, copper, nickel, zinc, and manganese, in drinking water samples collected from various sites of municipal water supply, natural water springs and wells in the valley. Concentrations of the metals in the water samples were determined by flame atomic absorption spectrometry. Results showed physical parameters, i. e., appearance, taste and odor within acceptable limits and pH was between 5.5 and 7.0. The observed concentrations of the metals varied between sources of water samples and between sampling sites. Maximum dissolved concentration observed was 4.7 mg/L for Pb and Mn, 4.6 mg/L for Zn, 2.9 mg/L for Ni and 2.8 mg/L for Cu. The observed concentrations of the metals were compared with the World Health Organization's guideline values for drinking water. Overall, the quality of water samples taken from the water springs at Mutyal Mara and Bonjosa was good; however, the water quality was unsuitable for drinking in Kiraki, Kharick, and Pothi Bala localities particularly. Finally, the authors discuss possible causes for increased concentrations of the trace metals in drinking water in the study area.  相似文献   

6.
In February 1991 Wheal Jane, a tin mine in S.W. England, was closed, the mine drainage pumps were removed and underground water levels were left to rise. By January 1992 the build up of water in the mine was sufficient to cause the Nangiles adit to burst, and contaminated mine water containing high levels of arsenic overflowed into the Carnon River. The river in turn drained into an estuary system which reaches the sea at Falmouth. A contingency plan was introduced, with water being pumped from the mine and treated before discharge through a tailings dam. This brought the discharge from Nangiles under control by late February 1992, although flow recommenced from mid-April until early July 1992.The immediate impact of the discharge and treatment operation on the distribution and speciation of arsenic in the river was the presence of high concentrations of dissolved arsenite, with a level of 240 μg As l−1 being measured below the mine tailings dam. Elevated concentrations of arsenite, typically 9 μg As l−1, persisted in the saline region of the Carnon estuary. By the following July the levels of arsenite had dropped significantly in the river but the levels in Restronguet Creek remained essentially unchanged. In comparison with the arsenite concentrations, the arsenate levels were comparatively low in the whole river/estuary system in the February following the initial discharge. A significant increase was however found in the saline region in the following July.Methylated arsenic species were absent from the river but were present in the biologically productive saline region during the warmer summer sampling period. The July concentrations of dimethylarsenic ranged from 1.0 to 2.1 μg As l−1 and monomethylarsenic from 0.2 to 0.5 μg As l−1.  相似文献   

7.
There is concern about adverse impacts of natural gas (primarily methane) production on groundwater quality; however, data on trace element concentrations are limited. The objective of this study was to compare the distribution of trace elements in groundwater samples with and without dissolved methane in aquifers overlying the Barnett Shale (Hood and Parker counties, 207 samples) and the Haynesville Shale (Panola County, 42 samples). Both shales have been subjected to intensive hydraulic fracturing for gas production. Well clusters with high dissolved methane were previously found in these counties and are thought to be of natural origin. Overall, groundwater in these counties is of excellent quality with typically low elemental concentrations. Several statistical analyses strongly suggest that most trace element concentrations, generally at low background levels, are no higher and even reduced when dissolved methane is present. In addition, trace element concentrations are not correlated with distance to gas wells. The reduction in trace element concentrations is attributed to anaerobic microbial degradation of methane, is associated with a higher pH (>8.5), and, likely, with precipitation of carbonates and pyrite and formation of clays. Trace and other elements are likely incorporated within the precipitating mineral crystalline network or sorbed. High pH values are found throughout these high‐methane clusters (e.g., Parker‐Hood cluster), even in subregions where methane is not present, which is consistent with a pervasive natural origin of dissolved methane rather than a limited gas well source.  相似文献   

8.
The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate‐stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02‐0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2‐11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not.  相似文献   

9.
Several polar contaminants were found in screening analyses of 30 representative surface water samples collected from rivers, lakes, and canals in Berlin. Residues of pharmaceuticals and N-(phenylsulfonyl)-sarcosine originating from various sewage treatment plants effluents were found at concentrations up to the μg/L-level in the surface water, whereas the concentrations of polar pesticides such as dichlorprop and mecoprop were always below 0.1 μg/L. The pharmaceuticals most frequently detected in the surface water samples include clofibric acid, diclofenac, ibuprofen, propiphenazone, and two other drug metabolites. Additional investigations of groundwater wells of a drinking water plant have shown that polar contaminants such as drug residues or N-(phenylsulfonyl)-sarcosine easily leach through the subsoil into the groundwater aquifers when contaminated surface water is used for groundwater recharge in drinking water production.  相似文献   

10.
Abstract

From 1967 until 1986, uranium mine dewatering increased dissolved gross alpha, gross beta, uranium and radium activities and dissolved selenium and molybdenum concentrations in the Puerco River as indicated by time trends, areal patterns involving distance from the mines and stream discharge. Additionally, increased dissolved uranium concentrations were identified in groundwater under the Puerco River from where mine discharges entered the river to approximately the Arizona-New Mexico State line about 65 km downstream. Total mass of uranium and gross alpha activity released to the Puerco River by mine dewatering were estimated as 560 Mg (560 × 106 g) and 260 Ci, respectively. In comparison, a uranium mill tailings pond spill on 16 July 1979, released an estimated 1.5 Mg of uranium and 46 Ci of gross alpha activity. Mass balance calculations for alluvial ground water indicate that most of the uranium released did not remain in solution. Sorption of uranium on sediments and uptake of uranium by plants probably removed the uranium from solution.  相似文献   

11.
Geogenic arsenic in drinking water is a worldwide problem. For private well owners, testing (e.g., private or government laboratory) is the main method to determine arsenic concentration. However, the temporal variability of arsenic concentrations is not well characterized and it is not clear how often private wells should be tested. To answer this question, three datasets, two new and one publicly available, with temporal arsenic data were utilized: 6370 private wells from New Jersey tested at least twice since 2002, 2174 wells from the USGS NAWQA database, and 391 private wells sampled 14 years apart from Bangladesh. Two arsenic drinking water standards are used for the analysis: 10 µg/L, the WHO guideline and EPA standard or maximum contaminant level (MCL) and 5 µg/L, the New Jersey MCL. A rate of change was determined for each well and these rates were used to predict the temporal change in arsenic for a range of initial arsenic concentrations below an MCL. For each MCL and initial concentration, the probability of exceeding an MCL over time was predicted. Results show that to limit a person to below a 5% chance of drinking water above an MCL, wells that are ½ an MCL and above should be tested every year and wells below ½ an MCL should be tested every 5 years. These results indicate that one test result below an MCL is inadequate to ensure long-term compliance. Future recommendations should account for temporal variability when creating drinking water standards and guidance for private well owners.  相似文献   

12.
Groundwater beneath the alluvial plain of the Indus River, Pakistan, is reported to be widely polluted by arsenic (As) and to adversely affect human health. In 79 groundwaters reported here from the lower Indus River plain in southern Sindh Province, concentrations of As exceeded the WHO guideline value for drinking water of 10 μg/L in 38%, with 22% exceeding 50 μg/L, Pakistan's guideline value. The As pollution is caused by microbially‐mediated reductive dissolution of sedimentary iron oxyhydroxides in anoxic groundwaters; oxic groundwaters contain <10 μg/L of As. In the upper Indus River plain, in Punjab Province, localized As pollution of groundwater occurs by alkali desorption as a consequence of ion exchange in groundwater, possibly supplemented by the use for irrigation of groundwater that has suffered ion exchange in the aquifer and so has values >0 for residual sodium carbonate. In the field area in southern Sindh, concentrations of Mn in groundwater exceed 0.4 mg/L in 11% of groundwaters, with a maximum of 0.7 mg/L, as a result of reduction of sedimentary manganese oxides. Other trace elements pose little or no threat to human health. Salinities in groundwaters range from fresh to saline (electrical conductivity up to 6 mS/cm). High salinities result from local inputs of waste water from unsewered sanitation but mainly from evaporation/evapotranspiration of canal water and groundwater used for irrigation. The process does not concentrate As in the groundwater owing to sorption of As to soils. Ion exchange exerts a control on concentrations of Na, Ca, and B but not directly on As. High values of Cl/Br mass ratios (most ?288, the marine value) reflect the pervasive influence on groundwater of sewage‐contaminated water from irrigation canals through seepage loss and deep percolation of irrigation water, with additional, well‐specific, contributions from unsewered sanitation.  相似文献   

13.
Arsenic Removal from Natural Groundwater Using Cupric Oxide   总被引:1,自引:0,他引:1  
Groundwater is a main source of drinking water for some rural areas. People in these rural areas are potentially at risk from elevated levels of arsenic (As) due to a lack of water treatment facilities. The objectives of this study were to (1) measure As concentrations in approximately 50 groundwater samples from rural domestic wells in the western United States, (2) explore the potential of cupric oxide (CuO) particles in removal of As from groundwater samples under natural conditions (i.e., without adding competing anions and adjusting the pH or oxidation state), and (3) determine the effects of As removal on the chemistry of groundwater samples. Forty‐six groundwater well samples from rural domestic areas were tested in this study. More than 50% of these samples exceeded the U.S. Environmental Protection Agency Maximum Contaminant Limit (US EPA MCL) of 10 µg/L for As. CuO particles effectively removed As from groundwater samples across a wide range of pH (7.11 and 8.95) and concentrations of competing anions including phosphate (<0.05 to 3.06 mg/L), silica (<1 to 54.5 mg/L), and sulfate (1.3 to 735 mg/L). Removal of As showed minor effects on the chemistry of groundwater samples, therefore most of the water quality parameters remained within the US EPA MCLs. Overall, results of this study could help develop a simple one‐step process to remove As from groundwater.  相似文献   

14.
Izmir Bay is one of the great natural bays of the Mediterranean. The surface sediment and fish samples were collected during 1997-2009. The sediment concentrations of inner bay showed significant enrichments during sampling periods. Outer and middle bays exhibited low levels of metal enrichments except the estuary of Gediz River. The concentrations were generally higher than the background levels from the Mediterranean and Aegean except Cd and Pb levels gradually decreased. Metal EF is used as an index to evaluate anthropogenic influences of metals in sediments. Maximum metal enrichment was found for Hg in the outer bay, while Pb indicated maximum enrichment in the middle-inner bays. Metal levels were evaluated in sediments in accordance with the numerical SQG of the USEPA. The levels of fish tissues were lower than the results reported from polluted areas of the Mediterranean. The highest BAFs were detected for Hg and Cd in fish.  相似文献   

15.
In a survey in Greece from 1987 to 2000 hepatotoxic cyanobacterial blooms were observed in 9 out of 33 freshwaters. Microcystins (MCYSTs) were detected by HPLC in 7 of these lakes, and the total MCYST concentration per scum dry weight ranged from 50.3 to 1638 ± 464 μg g—1. Cyanobacterial genera (Microcystis, Anabaena, Anabaenopsis, Aphanizomenon, Cylindrospermopsis) with known toxin producing taxa were present in 31 freshwaters. From our data and a review of the literature, it would appear that Mediterranean countries are more likely 1) to have toxic cyanobacterial blooms consisting of Microcystis spp. and 2) to have higher intracellular MCYST concentrations. A case study in Lake Kastoria is used to highlight seasonal patterns of cyanobacterial and MCYST‐LR occurrence and to assess cyanotoxin risk. Cyanobacterial biovolume was high (> 11 μL L—1) throughout the year and was in excess of Guidance Level 2 (10 μL L—1) proposed by WHO for recreational waters and Alert Level 2 for drinking water. Further, surface water samples from April to November exceeded Guidance Level 3, with the potential for acute cyanobacterial poisoning. Intracellular MCYST‐LR concentrations (max 3186 μg L—1) exceeded the WHO guideline for drinking water (1 μg L—1) from September to November with a high risk of adverse health effects. Preliminary evidence indicates that in 3 lakes microcystins are accumulated in some aquatic organisms. Generally, a high risk level can be deduced from the data for the Mediterranean region.  相似文献   

16.
The potential discharge of groundwater contaminated by oil sands process‐affected water (OSPW) is a concern for aquatic ecosystems near tailings ponds. Groundwater in the area, but unaffected by OSPW, may contain similar compounds, complicating the assessment of potential ecological impacts. In this study, 177 shallow groundwater samples were collected from riparian areas along the Athabasca River and tributaries proximate to oil sands developments. For “pond‐site” samples (71; adjacent to study tailings pond), Canadian aquatic life guidelines were exceeded for 11 of 20 assessed compounds. However, “non‐pond” samples (54; not near any tailings pond) provided similar exceedances. Statistical analyses indicate that pond‐site and non‐pond samples were indistinguishable for all but seven parameters assessed, including salts, many trace metals, and fluorescence profiles of aromatic naphthenic acids (ANA). This suggests that, regarding the tested parameters, groundwater adjacent to the study tailings pond generally poses no greater ecological risk than other nearby groundwaters at this time. Multivariate analyses applied to the groundwater data set separated into 11 smaller zones support this conclusion, but show some variation between zones. Geological and potential OSPW influences could not be distinguished based on major ions and metals concentrations. However, similarities in indicator parameters, namely ANA, F, Mo, Se, and Na‐Cl ratio, were noted between a small subset of samples from two pond‐site zones and two OSPW samples and two shallow groundwater samples documented as likely OSPW affected. This indicator‐based screening suggests that OSPW‐affected groundwater may be reaching Athabasca River sediments at a few locations.  相似文献   

17.
Leachate derived from bioleaching process contains high amount of metals that must be removed before discharging the water. Aspergillus fumigatus was isolated from a gold mine tailings and its ability to remove of As, Fe, Mn, Pb, and Zn from aqueous solutions and leachate of bioleaching processes was assessed. Batch sorption experiments were carried out to characterize the capability of fungal biomass (FB) and iron coated fungal biomass (ICFB) to remove metal ions in single and multi‐solute systems. The maximum sorption capacity of FB for As(III), As(V), Fe, Mn, Pb, and Zn were 11.2, 8.57, 94.33, 53.47, 43.66, and 70.4 mg/g, respectively, at pH 6. For ICFB, these values were 88.5, 81.3, 98.03, 66.2, 50.25, and 74.07 mg/g. Results showed that only ICFB was found to be more effective in removing metal ions from the leachate. The amount of adsorbed metals from the leachate was 2.88, 21.20, 1.91, 0.1, and 0.08 mg/g for As, Fe, Mn, Zn, and Pb, respectively. The FT‐IR analysis showed involvement of the functional groups of the FB in the metal ions sorption. Scanning electron microscopy revealed that surface morphological changed following metal ions adsorption. The study showed that the indigenous fungus A. fumigatus was able to remove As, Fe, Mn, Pb, and Zn from the leachate of gold mine tailings and therefore the potential for removing metal ions from metal‐bearing leachate.  相似文献   

18.
Permeable reactive barriers (PRBs), such as mulch biowalls, have been installed at numerous groundwater cleanup sites, and laboratory and field studies have demonstrated biotic and abiotic processes that degrade chlorinated volatile organic compounds (CVOCs) in groundwater passing through these engineered remedies. However, the longevity of mulch biowalls remains a fundamental research question. Soil and groundwater sampling at seven mulch biowalls at Altus Air Force Base (AFB) approximately 10 years after installation demonstrated the ongoing degradation of CVOCs. Trichloroethene was not detected in five of seven groundwater samples collected from the biowall despite upgradient detections above federal drinking water standards. Microbial sampling established the presence of key dechlorinating bacteria and the abundance of genes encoding specific enzymes for degradation, high methane concentrations, low sulfate concentrations, and negative oxidation-reduction potential, all indicative of highly reducing conditions within the biowalls and favorable conditions for CVOC destruction via microbial reductive dechlorination. High cellulose content (>79%) of the mulch, elevated total organic carbon (TOC) content in groundwater, and elevated potentially bioavailable organic carbon (PBOC) measurements in soil samples further supports an ongoing, long-lived source of carbon. These results demonstrate the ongoing and long-term efficacy of the mulch biowalls at Altus AFB. In addition, concentrations of bacteria, TOC, PBOC, and other geochemical parameters suggest a modest impact of the biowalls downgradient. The continued presence of CVOCs downgradient may be attributable to back diffusion from low-permeability shale. However, the biowalls continue to provide benefits by removing CVOCs in groundwater, thus reducing further CVOC loading to the downgradient, low-permeability strata.  相似文献   

19.
Little is known about the impacts of mine waste disposal, including deep-sea tailings, on tropical marine environments and this study presents the first account of this impact on deepwater fish communities. The Lihir gold mine in Papua New Guinea has deposited both excavated overburden and processed tailings slurry into the coastal environment since 1997. The abundances of fish species and trace metal concentrations in their tissues were compared between sites adjacent to and away from the mine. In this study (1999-2002), 975 fish of 98 species were caught. Significantly fewer fish were caught close to the mine than in neighbouring regions; the highest numbers were in regions distant from the mine. The catch rates of nine of the 17 most abundant species were lowest, and in three species were highest, close to the mine. There appears to be limited contamination in fish tissues caused by trace metals disposed as mine waste. Although arsenic (several species) and mercury (one species) were found in concentrations above Australian food standards. However, as in the baseline (pre-mine) sampling, it appears they are accumulating these metals mostly from naturally-occurring sources rather than the mine waste.  相似文献   

20.
Acute toxicity bioassays were conducted on mine tailings produced by pilot plant testing for the proposed Quartz Hill molybdenum mine, which will be situated near Ketchikan, Alaska. Tailings bioassays were conducted in seawater with juvenile coho salmon (Oncorhynchus kisutch), mussel larvae (Mytilus edulis), infaunal amphipods (Rhepoxynius abronius), and euphausiids (Euphausia pacifica). The same general range of mine tailings concentrations was acutely toxic to all four test species with acute effects observed between 61 000 to 277 000 mg l?1 (wet wt) tailings solids (range of 95% confidence limits for LC50 and EC50 values). Chemical analyses of bioassay test solutions and leaching test solutions were conducted for metals (including Cd, Cu, Pb, Zn, Mn and Mo), EPA Priority Pollutant base/neutral organics, and more general parameters such as sulphate, nitrate/nitrite, cyanides, phosphate and ammonia. Parameters possibly contributing to the observed toxicity were complex contaminant mixtures including total suspended solids and heavy metals. The present study provides information related to the marine disposal of mine tailings and shows that these mine tailings present a relatively low level of acutely toxic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号