首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Much of what is known about groundwater circulation and geochemical evolution in carbonate platforms is based on platforms that are fully confined or unconfined. Much less is known about groundwater flow paths and geochemical evolution in partially confined platforms, particularly those supporting surface water. In north‐central Florida, sea level rise and a transition to a wetter climate during the Holocene formed rivers in unconfined portions of the Florida carbonate platform. Focusing on data from the Santa Fe River basin, we show river formation has led to important differences in the hydrological and geochemical evolution of the Santa Fe River basin relative to fully confined or unconfined platforms. Runoff from the siliciclastic confining layer drove river incision and created topographic relief, reorienting the termination of local and regional groundwater flow paths from the coast to the rivers in unconfined portions of the platform. The most chemically evolved groundwater occurs at the end of the longest and deepest flow paths, which discharge near the center of the platform because of incision of the Santa Fe River at the edge of the confining unit. This pattern of discharge of mineralized water differs from fully confined or unconfined platforms where discharge of the most mineralized water occurs at the coast. Mineralized water flowing into the Santa Fe River is diluted by less evolved water derived from shorter, shallower flow paths that discharge to the river downstream. Formation of rivers shortens flow path lengths, thereby decreasing groundwater residence times and allowing freshwater to discharge more quickly to the oceans in the newly formed rivers than in platforms that lack rivers. Similar dynamic changes to groundwater systems should be expected to occur in the future as climate change and sea level rise develop surface water on other carbonate platforms and low lying coastal aquifer systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Mountainous areas are characterized by steep slopes and rocky landforms, with hydrological conditions varying rapidly from upstream to downstream, creating variable interactions between groundwater and surface water. In this study, mechanisms of groundwater–surface water interactions within a headwater catchment of the North China Plain were assessed along the stream length and during different seasons, using hydrochemical and stable isotope data, and groundwater residence times estimated using chlorofluorocarbons. These tracers indicate that the river is gaining, due to groundwater discharge in the headwater catchment both in the dry and rainy seasons. Residence time estimation of groundwater using chlorofluorocarbons data reveals that groundwater flow in the shallow sedimentary aquifer is dominated by the binary mixing of water approximating a piston flow model along 2 flow paths: old water, carried by a regional flow system along the direction of river flow, along with young water, which enters the river through local flow systems from hilly areas adjacent to the river valley (particularly during the rainy season). The larger mixing ratio of young water from lateral groundwater recharge and return flow of irrigation during the rainy season result in higher ion concentrations in groundwater than in the dry season. The binary mixing model showed that the ratio of young water versus total groundwater ranged from 0.88 to 0.22 and 1.0 to 0.74 in the upper and lower reaches, respectively. In the middle reach, meandering stream morphology allows some loss of river water back into the aquifer, leading to increasing estimates of the ratio of young water (from 0.22 to 1). This is also explained by declining groundwater levels near the river, due to groundwater extraction for agricultural irrigation. The switch from a greater predominance of regional flow in the dry season, to more localized groundwater flow paths in the wet season is an important groundwater–surface water interactions mechanism, with important catchment management implications.  相似文献   

3.
Hydrological interaction between surface and subsurface water systems has a significant impact on water quality, ecosystems and biogeochemistry cycling of both systems. Distributed models have been developed to simulate this function, but they require detailed spatial inputs and extensive computation time. The soil and water assessment tool (SWAT) model is a semi‐distributed model that has been successfully applied around the world. However, it has not been able to simulate the two‐way exchanges between surface water and groundwater. In this study, the SWAT‐landscape unit (LU) model – based on a catena method that routes flow across three LUs (the divide, the hillslope and the valley) – was modified and applied in the floodplain of the Garonne River. The modified model was called SWAT‐LUD. Darcy's equation was applied to simulate groundwater flow. The algorithm for surface water‐level simulation during flooding periods was modified, and the influence of flooding on groundwater levels was added to the model. Chloride was chosen as a conservative tracer to test simulated water exchanges. The simulated water exchange quantity from SWAT‐LUD was compared with the output of a two‐dimensional distributed model, surface–subsurface water exchange model. The results showed that simulated groundwater levels in the LU adjoining the river matched the observed data very well. Additionally, SWAT‐LUD model was able to reflect the actual water exchange between the river and the aquifer. It showed that river water discharge has a significant influence on the surface–groundwater exchanges. The main water flow direction in the river/groundwater interface was from groundwater to river; water that flowed in this direction accounted for 65% of the total exchanged water volume. The water mixing occurs mainly during high hydraulic periods. Flooded water was important for the surface–subsurface water exchange process; it accounted for 69% of total water that flowed from the river to the aquifer. The new module also provides the option of simulating pollution transfer occurring at the river/groundwater interface at the catchment scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The interaction between surface water and groundwater is an important aspect of hydrological processes. Despite its importance, groundwater is not well represented in many land surface models. In this study, a groundwater module with consideration of surface water and groundwater dynamic interactions is incorporated into the distributed biosphere hydrological (DBH) model in the upstream of the Yellow River basin, China. Two numerical experiments are conducted using the DBH model: one with groundwater module active, namely, DBH_GW and the other without, namely, DBH_NGW. Simulations by two experiments are compared with observed river discharge and terrestrial water storage (TWS) variation from the Gravity Recovery and Climate Experiment (GRACE). The results show that river discharge during the low flow season that is underestimated in the DBH_NGW has been improved by incorporating the groundwater scheme. As for the TWS, simulation in DBH_GW shows better agreement with GRACE data in terms of interannual and intraseasonal variations and annual changing trend. Furthermore, compared with DBH_GW, TWS simulated in DBH_NGW shows smaller decreases during autumn and smaller increases in spring. These results suggest that consideration of groundwater dynamics enables a more reasonable representation of TWS change by increasing TWS amplitudes and signals and as a consequence, improves river discharge simulation in the low flow seasons when groundwater is a major component in runoff. Additionally, incorporation of groundwater module also leads to wetter soil moisture and higher evapotranspiration, especially in the wet seasons.  相似文献   

5.
Groundwater discharge flux into rivers (riverine groundwater discharge or RGD) is essential information for the conservation and management of aquatic ecosystems and resources. One way to estimate area-integrated groundwater discharge into surface water bodies is to measure the concentration of a groundwater tracer within the water body. We assessed groundwater discharge using 222Rn, a tracer common in many surface water studies, through field measurements, surface water 222Rn mass balance model, and groundwater flow simulation, for the seldom studied but ubiquitous setting of a flooding river corridor. The investigation was conducted at the dam-regulated Lower Colorado River (LCR) in Austin, Texas, USA. We found that 222Rn in both the river water and groundwater in the river bank changed synchronously over a 12-hour flood cycle. A 222Rn mass balance model allowed for estimation of groundwater discharge into a 500-m long reach of the LCR over the flood. The groundwater discharge ranged between negative values (indicating recharge) to 1570 m3/h; groundwater discharge from groundwater flow simulations corroborated these estimates. However, for the dynamic groundwater discharge estimated by the 222Rn box model, assuming whether the groundwater 222Rn endmember was constant or dynamic led to notably different results. The resultant groundwater discharge estimates are also highly sensitive to river 222Rn values. We thus recommend that when using this approach to accurately characterize dynamic groundwater discharge, the 222Rn in near-stream groundwater should be monitored at the same frequency as river 222Rn. If this is not possible, the 222Rn method can still provide reasonable but approximate groundwater discharge given background information on surface water-groundwater exchange time scales.  相似文献   

6.
Sand rivers are ephemeral watercourses containing sand that are occasionally flooded with rainwater runoff during the rainy season. Although the riverbed appears dry for most of the year, there is perennial groundwater flow within the sand. This water flowing beneath the surface is a valuable resource for local communities; nonetheless our understanding of such river systems is limited. Hence, this paper aims to improve our understanding of the hydrology of sand rivers and to examine the potential use of remote sensing to detect the presence of water in the sand. The relationship between rainfall events and changes in the water level of two sand rivers in the Matabeleland South Province of Zimbabwe was investigated. A lagged relationship was observed for the Manzamnyama River but for the Shashani River the relationship was seen only when considering cumulative rainfall events. The comparison of the modelled flow as simulated by a water balance model with observations revealed the important influence of the effective sediment depth on the recharge and recession of the alluvial channels in addition to the length of the channel. The possibility of detecting water in the alluvial sands was investigated using remote sensing. During the wet season, optical images showed that the presence of water on the riverbed was associated with a smooth signal, as it tends to reflect the incident radiation. A chronological analysis of radar images for different months of the year demonstrates that it is possible to detect the presence of water in the sand rivers. These results are a first step towards the development of a methodology that would aim to use remote sensing to help reducing survey costs by guiding exploratory activities to areas showing signs of water abstraction potential.  相似文献   

7.
Conant B 《Ground water》2004,42(2):243-257
Streambed temperature mapping, hydraulic testing using minipiezometers, and geochemical analyses of interstitial water of the streambed were used to delineate the pattern of ground water discharge in a sandy streambed and to develop a flux-based conceptual model for ground water/surface water interactions. A new and simple empirical method was used to relate fluxes obtained from minipiezometer data to streambed temperatures. The relationship allowed flux to be calculated at locations where only streambed temperature measurements were made. Slug testing and potentiomanometer measurements at 34 piezometers indicated ground water discharge ranged from 0.03 to 446 L/m2/day (and possibly as high as 7060 L/m2/day) along a 60 m long by 11 to 14 m wide reach of river. Complex but similar plan-view patterns of flux were calculated for both summer and winter using hundreds of streambed temperatures measured on a 1 by 2 m grid. The reach was dominated by ground water discharge and 5% to 7% of the area accounted for approximately 20% to 24% of the total discharge. < 12% of the total area consisted of recharge zones or no-discharge zones. A conceptual model for ground water/surface water interactions consisting of five different behaviors was developed based on the magnitude and direction of flux across the surface of the streambed. The behaviors include short-circuit discharge (e.g., high-flow springs), high discharge (e.g., preferential flowpaths), low to moderate discharge, no discharge (e.g., horizontal hyporheic or ground water flow), and recharge. Geological variations at depth played a key role in determining which type of flow behavior occurred in the streambed.  相似文献   

8.
Groundwater-surface water interactions (GSI) connect rivers and streams with riparian areas and the adjacent aquifer. Although these interactions exert a substantial control of quantity and quality of both groundwater and surface water, knowledge on GSI along rivers at the regional scale, particularly for inland waterways, is still limited. We investigated GSI along the river Moselle, an important federal inland waterway in Germany, by using radon and tritium to identify gaining (water flux from the aquifer to the surface water) and losing (water flux from the surface water to the aquifer) stream conditions, respectively. Gaining stream conditions were identified by continuously measuring radon along the river during boat surveys with a high spatial resolution (every 2 km) during intermediate (October 2020) and near low flow conditions (August/September 2021). The tritium concentrations in surface water and groundwater and the resulting tritium inventories were used to characterize losing stream conditions Monthly tritium inventories from 2017 to 2022 revealed a mean loss for the whole period of 20.3 % and a mean gain of 21.8%. Both were probably triggered by a combination of losing stream conditions and flood-induced mass transfer of water from the aquifer back into the river as well as discharge fluctuations. At the investigated site Lehmen there were direct indications of an influence of surface water due to elevated tritium concentrations in the groundwater (up to 13.3 Bq L−1). Using radon mass balance modelling, good agreements of simulated versus measured radon data with respect to two groundwater end-member scenarios were obtained during intermediate flow (Spearman's ρ: 0.97 and 0.99; MAE: 10.1 and 3.4 Bq L−1) and near low flow (Spearman's ρ: 0.97 and 0.99; MAE: 11 and 6.5 Bq L−1). Considerable groundwater inflow was limited to the meander of Detzem, where cumulated groundwater inflow of about 19 m3 s−1 (9.5% of total discharge) and 4.2 m3 s−1 (3.8% of total discharge) was simulated during intermediate and near low flow, respectively. However, the groundwater inflow was relatively low compared to alpine streams, for example. The study will help to better identify and quantify GSI at the regional scale and provide methodological guidance for future studies focusing on inland waterways.  相似文献   

9.
Among the interactions between surface water bodies and aquifers, hyporheic exchange has been recognized as a key process for nutrient cycling and contaminant transport. Even though hyporheic exchange is strongly controlled by groundwater discharge, our understanding of the impact of the regional groundwater flow on hyporheic fluxes is still limited because of the complexity arising from the multi-scale nature of these interactions. In this work, we investigate the role of watershed topography on river-aquifer interactions by way of a semi-analytical model, in which the landscape topography is used to approximate the groundwater head distribution. The analysis of a case study shows how the complex topographic structure is the direct cause of a substantial spatial variability of the aquifer-river exchange. Groundwater upwelling along the river corridor is estimated and its influence on the hyporheic zone is discussed. In particular, the fragmentation of the hyporeic corridor induced by groundwater discharge at the basin scale is highlighted.  相似文献   

10.
Aufeis (also known as icings) are large sheet-like masses of layered ice that form in river channels in arctic environments in the winter as groundwater discharges to the land surface and subsequently freezes. Aufeis are important sources of water for Arctic river ecosystems, bolstering late summer river discharge and providing habitat for caribou escaping insect harassment. The aim of this research is to use numerical simulations to evaluate a conceptual model of subsurface hydrogeothermal conditions that can lead to the formation of aufeis. We used a conceptual model based on geophysical data from the Kuparuk aufeis field on the North Slope of Alaska to develop a two-dimensional heterogeneous vertical profile model of groundwater flow, heat transport, and freeze/thaw dynamics. Modelling results showed that groundwater can flow to the land surface through subvertical high permeability pathways during winter months when the lower permeability soils near the land surface are frozen. The groundwater discharge can freeze on the surface, contributing to aufeis formation throughout the winter. We performed sensitivity analyses on subsurface properties and surface temperature and found that aufeis formation is most sensitive to the volume of unfrozen water available in the subsurface and the rate at which the subsurface water travels to the land surface. Although a trend of warming air temperatures will lead to a greater volume of unfrozen subsurface water, the aufeis volume can be reduced under warming conditions if the period of time for which air temperatures are below freezing is reduced.  相似文献   

11.
Lishan Ran  X. X. Lu 《水文研究》2012,26(8):1215-1229
Reservoirs are an integral component of water resources planning and management. Periodic and accurate assessment of the water storage change in reservoirs is an extraordinarily important aspect for better watershed management and water resources development. In view of the shortcomings of conventional approaches in locating reservoirs' spatial location and quantifying their storage, the remote sensing technique has several advantages, either for a single reservoir or for a group of reservoirs. The satellite‐based remote sensing data, encompassing spatial, spectral and temporal attributes, can provide high‐resolution synoptic and repetitive information with short time intervals on a large scale. Using remote sensing images in conjunction with Google Earth and field check of representative reservoirs, the spatial distribution of constructed reservoirs in the Yellow River basin was delineated, and their storage volume and the residence time of the stored water were estimated. The results showed that 2816 reservoirs were extracted from the images, accounting for 89·5% of the registered total. All large‐ and medium‐sized reservoirs were extracted while small reservoirs may not be extracted due to coarse resolution and cloud‐cover shadows. An empirical relationship between the extracted water surface area and the compiled storage capacity of representative reservoirs was developed. The water storage capacity was estimated to be 66·71 km3, about 92·7% of the total storage capacity reported by the authority. Furthermore, the basin was divided into 10 sub‐basins upon which the water's residence time was analysed. The water discharge in the basin has been greatly regulated. The residence time has surged to 3·97 years in recent years, ranking the Yellow River in the top three of the list in terms of residence time and flow regulation among large river systems in the world. It is expected that it will be further extended in future owing to decreasing water discharge and increasing reservoir storage capacity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
洪泛系统具有复杂动态的水文环境,在季节性洪水脉冲影响下,地表—地下水交互转化对洪泛区水循环和生态环境保护等方面具有重要意义.本文采用野外试验、统计分析和达西定律等研究方法,开展了鄱阳湖洪泛区碟形湖湿地系统(河流—洲滩湿地—碟形湖)地表—地下水文学特征、相互作用和交换通量研究.数据资料显示,在地形地貌影响下,研究区洲滩地...  相似文献   

13.
Understanding groundwater–surface water (GW–SW) interactions is vital for water management in karstic catchments due to its impact on water quality. The objective of this study was to evaluate and compare the applicability of seven environmental tracers to quantify and localize groundwater exfiltration into a small, human-impacted karstic river system. Tracers were selected based on their emission source to the surface water either as (a) dissolved, predominantly geogenic compounds (radon-222, sulphate and electrical conductivity) or (b) anthropogenic compounds (predominantly) originating from wastewater treatment plant (WWTP) effluents (carbamazepine, tramadol, sodium, chloride). Two contrasting sampling approaches were compared (a) assuming steady-state flow conditions and (b) considering the travel time of the water parcels (Lagrangian sampling) through the catchment to account for diurnal changes in inflow from the WWTP. Spatial variability of the concentrations of all tracers indicated sections of preferential groundwater inflow. Lagrangian sampling techniques seem highly relevant for capturing dynamic concentration patterns of WWTP-derived compounds. Quantification of GW inflow with the finite element model FINIFLUX, based on observed in-stream Rn activities led to plausible fluxes along the investigated river reaches (0.265 m3 s−1), while observations of other natural or anthropogenic environmental tracers produced less plausible water fluxes. Important point sources of groundwater exfiltration can be ascribed to locations where the river crosses geological fault lines. This indicates that commonly applied concepts describing groundwater–surface water interactions assuming diffuse flow in porous media are difficult to transfer to karstic river systems whereas concepts from fractured aquifers may be more applicable. In general, this study helps selecting the best suited hydrological tracer for GW exfiltration and leads to a better understanding of processes controlling groundwater inflow into karstic river systems.  相似文献   

14.
Abstract

Abstract River discharge is traditionally acquired by measuring water stage and then converting the water stage to discharge by using a stage–discharge rating curve. The possibility of monitoring river discharge by satellite has not been adequately studied hitherto, because of the difficulty in making sufficiently precise measurements of the water surface. Since the successful launch of commercial satellites with very-high-resolution sensors, it has become possible to derive ground information from satellite data. To determine river discharge in a non-trapezoidal open channel, an efficient approach has been developed that uses mainly satellite data. The method, which focuses on the measurement of surface water width coupled with river width–stage and ?remote? stage–discharge rating curves, was applied to the Yangtze River (Changjiang) and an accurate estimate of river discharge was obtained. The method can be regarded as ancillary to traditional field measurement methods or other remote sensing methods.  相似文献   

15.
C. Guay  M. Nastev  C. Paniconi  M. Sulis 《水文研究》2013,27(16):2258-2270
An assessment of interactions between groundwater and surface water was carried out by applying two different modeling approaches to a small‐scale study area in the municipality of Havelock, Quebec. The first approach involved a commonly used sequential procedure that consists in determining the daily recharge rate using a quasi 2D infiltration model (HELP), applied in the next step as an imposed flux to a 3D finite‐element groundwater flow model. The flow model was calibrated under steady‐state and transient conditions against measured water levels. The second approach was based on a recently developed physically based, 3D fully coupled groundwater–surface water flow model (CATHY) applied to the entire flow domain in an integrated manner. Implementation, calibration, and results of the simulations for both approaches are presented and discussed. For equal annual precipitation (1038 mm/y) and evapotranspiration (556 mm/y), the second approach computed a recharge rate of 233 mm/y (8.9% higher than the first approach) and a net upward flow from the fractured aquifer (the first approach predicted a net downward flow to the rock). The simulated annual discharge was similar for the two approaches (9.6% difference). Both approaches were found to be useful in understanding the interactions between groundwater and surface water, although limitations are apparent in the sequential procedure's inability to account for surface–subsurface feedbacks, for instance near stream reaches where groundwater discharge is prevalent. The decoupled, two‐model approach provides disaggregated surface, vadose, and aquifer flows, and a simple aperçu at the different components of total discharge. The fully coupled model accounts for continuous water exchanges between the land surface, subsurface, and stream channel in a more complex manner, and produces a better match against observed data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Flow regulation and water diversion for irrigation have considerably impacted the exchange of surface water between the Murray River and its floodplains. However, the way in which river regulation has impacted groundwater–surface water interactions is not completely understood, especially in regards to the salinization and accompanying vegetation dieback currently occurring in many of the floodplains. Groundwater–surface water interactions were studied over a 2 year period in the riparian area of a large floodplain (Hattah–Kulkyne, Victoria) using a combination of piezometric surface monitoring and environmental tracers (Cl, δ2H, and δ18O). Despite being located in a local and regional groundwater discharge zone, the Murray River is a losing stream under low flow conditions at Hattah–Kulkyne. The discharge zone for local groundwater, regional groundwater and bank recharge is in the floodplain within ∼1 km of the river and is probably driven by high rates of transpiration by the riparian Eucalyptus camaldulensis woodland. Environmental tracers data suggest that the origin of groundwater is principally bank recharge in the riparian zone and a combination of diffuse rainfall recharge and localized floodwater recharge elsewhere in the floodplain. Although the Murray River was losing under low flows, bank discharge occurred during some flood recession periods. The way in which the water table responded to changes in river level was a function of the type of stream bank present, with point bars providing a better connection to the alluvial aquifer than the more common clay‐lined banks. Understanding the spatial variability in the hydraulic connection with the river channel and in vertical recharge following inundations will be critical to design effective salinity remediation strategies for large semi‐arid floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Nutrient fluxes from developed catchments are often a significant factor in the declining water quality and ecological functioning in estuaries. Determining the relative contributions of surface water and groundwater discharge to nutrient‐sensitive estuaries is required because these two pathways may be characterized by different nutrient concentrations and temporal variability, and may thus require different remedial actions. Quantifying the volumetric discharge of groundwater, which may occur via diffuse seepage or springs, remains a significant challenge. In this contribution, the total discharge of freshwater, including groundwater, to two small nutrient‐sensitive estuaries in Prince Edward Island (Canada) is assessed using a unique combination of airborne thermal infrared imaging, direct discharge measurements in streams and shoreline springs, and numerical simulation of groundwater flow. The results of the thermal infrared surveys indicate that groundwater discharge occurs at discrete locations (springs) along the shoreline of both estuaries, which can be attributed to the fractured sandstone bedrock aquifer. The discharge measured at a sub‐set of the springs correlates well with the area of the thermal signal attributed to each discharge location and this information was used to determine the total spring discharge to each estuary. Stream discharge is shown to be the largest volumetric contribution of freshwater to both estuaries (83% for Trout River estuary and 78% for McIntyre Creek estuary); however, groundwater discharge is significant at between 13% and 18% of the total discharge. Comparison of the results from catchment‐scale groundwater flow models and the analysis of spring discharge suggest that diffuse seepage to both estuaries comprises only about 25% of the total groundwater discharge. The methods employed in this research provide a useful framework for determining the relative volumetric contributions of surface water and groundwater to small estuaries and the findings are expected to be relevant to other fractured sandstone coastal catchments in Atlantic Canada. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Rivers and aquifers are, in many cases, a connected resource and as such the interactions between them need to be understood and quantified for the resource to be managed appropriately. The objective of this paper is to advance the understanding of river–aquifer interactions processes in semi‐arid environments stressed by groundwater abstraction. This is performed using data from a specific catchment where records of precipitation, evapotranspiration, river flow, groundwater levels and groundwater abstraction are analysed using basic statistics, hydrograph analysis and a simple mathematical model to determine the processes causing the spatial and temporal changes in river–aquifer interactions. This combined approach provides a novel but simple methodology to analyse river–aquifer interactions, which can be applied to catchments worldwide. The analysis revealed that the groundwater levels have declined (~ 3 m) since the onset of groundwater abstraction. The decline is predominantly due to the abstraction rather than climatic changes (r = 0.84 for the relationship between groundwater abstraction and groundwater levels; r = 0.92 for the relationship between decline in groundwater levels and magnitude of seasonal drawdown). It is then demonstrated that, since the onset of abstraction, the river has changed from being gaining to losing during low‐flow periods, defined as periods with flow less than 0.5, 1.0 or 1.5 GL/day (1 GL/day = 1 × 106 m3/day). If defined as < 1.0 GL/day, low‐flow periods constitute approximately 65% of the river flows; the periods where the river is losing at low‐flow conditions are thus significant. Importantly, there was a significant delay (> 10 years) between the onset of groundwater abstraction and the changeover from gaining to losing conditions. Finally, a relationship between the groundwater gradient towards the river and the river flow at low‐flow is demonstrated. The results have important implications for water management as well as water ecology and quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Groundwater surface water interaction in the hyporheic zone remains an important challenge for water resources management and ecosystem restoration. In heterogeneous stratified glacial sediments, reach‐scale environments contain an uneven distribution of focused groundwater flow occurring simultaneously with diffusely discharging groundwater. This results in a variation of stream‐aquifer interactions, where focused flow systems are able to temporally dominate exchange processes. The research presented here investigates the direct and indirect influences focused groundwater discharge exerts on the hyporheic zone during baseflow recession. Field results demonstrate that as diffuse sources of groundwater deplete during baseflow recession, focused groundwater discharge remains constant. During baseflow recession the hyporheic zone is unable to expand, while the high nitrate concentration from focused discharge changes the chemistry of the stream. The final result is a higher concentration of nitrate in the hyporheic zone as this altered surface water infiltrates into the subsurface. This indirect coupling of focused groundwater discharge and the hyporheic zone is unaccounted for in hyporheic studies at this time. Results indicate important implications for the potential reduction of agricultural degradation of water quality.  相似文献   

20.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号