首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Karstified carbonate aquifers may receive significant recharge contributions from losing streams, hence, the knowledge about surface water-groundwater (SW-GW) interactions is crucial with regard to water management (e.g., source protection zone delineation). The dynamics of SW-GW interactions may depend on factors such as the relative water levels between streams and aquifers, resulting in a temporal variation of exchange, which imposes complexity to the understanding of such dynamics. This study highlights the use of high-resolution time series and multiresolution analysis to help to gain insights into such complex dynamics. Wavelet coherence is applied on hourly time series of rainfall, stream, and spring discharges of a low-lying karstified spring catchment to yield a correlation in the time-frequency domain. This analysis provides comprehensive information on the overall impact of the river on the spring, which is supported by the cross-correlation function, as well as by more detailed information, including time-variant influences such as a threshold level of influence. Field observations of turbidity sampling at the spring appear to support this interpretation. This innovative approach relies on basic hydrological parameters, water level, or discharge, and is therefore applicable to many other systems with such existing time series.  相似文献   

4.
Multiple working hypotheses can be used to evaluate permissible alternative hydrogeological interpretations at sites with limited subsurface control. This approach was applied to test the viability of three conceptual aquifer system architecture models coupled with three hypothesized source locations for a 1,4-dioxane plume in a heterogeneous glacial aquifer system in Washtenaw County, Michigan. The three alternative conceptual models characterized the site hydrogeology with increasingly complex distributions of hydrostratigraphic units: (A) an effective aquifer, (B) a layered confined aquifer, and (C) a discretely heterogeneous aquifer model. Each was incorporated into an independently calibrated numerical ground water flow (MODFLOW) model. Steady-state and transient flow simulations of the alternative models were evaluated using both hydraulic flow field characteristics observed under natural conditions and the perturbed response after local remedial pumping activity began. Three plausible locations where 1,4-dioxane could have entered the aquifer system were identified using historical information at the site: (1) manufacturing waste water disposal lagoons, (2) a 60 foot (18 m) deep kettle lake, and (3) a shallow impoundment on a local stream. Advective transport modeling (MODPATH) was used to assess the consistency of the hypothesized source locations with observed contaminant migration pathways inferred from the mapped location of the plume. Evaluation of the nine combinations of hydrogeologic conceptualizations and 1,4-dioxane source locations led to elimination of four working hypotheses and discounting of two others, leading to reduced overall uncertainty and the development of new insights into the system behavior.  相似文献   

5.
6.
7.
The concept of equivalent freshwater head was adapted to predict the conditions under which density‐driven flow would adversely impact measured groundwater velocities using point velocity probes (PVPs). Theoretically, vertical flow will result from any density contrast between the PVP tracer and the groundwater. However, laboratory testing of tracers with salinities ranging from 0 to 2000 mg NaCl/L showed that horizontal velocities could be determined with good accuracy with up to 60% of the total flow being vertical due to density effects in a gravel medium. The available data suggest that density effects are less likely to be pronounced in sandy sediments. The relative amount of vertical flow due to tracer density can be estimated from vertical and horizontal velocities measured with PVPs, or from the ratio of vertical to horizontal hydraulic gradients. The equivalent freshwater gradient produced from a given tracer salinity at 10 °C (a typical groundwater temperature at moderate latitudes) can be estimated from 7.80 × 10?7 × (MNaCl), where MNaCl is the mass of NaCl added, in mg, to 1 L of site groundwater in the mixing of the tracer. Equations for other temperatures were also determined.  相似文献   

8.
9.
10.
11.
12.
Inflow to a tunnel is a great public concern and is closely related to groundwater hydrology, geotechnical engineering, and mining engineering, among other disciplines. Rapid computation of inflow to a tunnel provides a timely means for quickly assessing the inflow discharge, thus is critical for safe operation of tunnels. Dewatering of tunnels is another engineering practice that should be planned. In this study, an analytical solution of the inflow to a tunnel in a fractured unconfined aquifer is obtained. The solution takes into account either the spherical or slab-shaped matrix block and the unsteady state interporosity flow. The instantaneous drainage water table and anisotropic hydraulic conductivities of the fractures network are also considered. Both uniform flux and uniform head boundary condition are considered to simulate the constant head boundary condition in the tunnel. The effects of the hydraulic parameters of the fractured aquifer on the inflow variation of the tunnel are explored. The application of the presented solution to obtain the optimum location and discharge of the well to minimize the inflow to a tunnel is illustrated.  相似文献   

13.
Interface Upconing Due to a Horizontal Well in Unconfined Aquifer   总被引:2,自引:0,他引:2  
  相似文献   

14.
15.
A tracer test was conducted to characterize the flow of groundwater across a permeable reactive barrier constructed with plant mulch (a biowall) at the OU‐1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat groundwater contaminated by trichloroethylene (TCE) in a shallow aquifer. The biowall is 139‐m long, 7.3‐m deep, and 0.5‐m wide. Bromide was injected from an upgradient well into the groundwater as a conservative tracer, and was subsequently observed breaking through in monitoring wells within and downgradient of the biowall. The bromide breakthrough data demonstrate that groundwater entering the biowall migrated across it, following the slope of the local groundwater surface. The average seepage velocity of groundwater was approximately 0.06 m/d. On the basis of the Darcy velocity of groundwater and geometry of the biowall, the average residence time of groundwater in the biowall was estimated at 10 d. Assuming all TCE removal occurred in the biowall, the reduction in TCE concentrations in groundwater across the biowall corresponds to a first‐order attenuation rate constant in the range of 0.38 to 0.15 per d. As an independent estimate of the degradation rate constant, STANMOD software was used to fit curves through data on the breakthrough of bromide and TCE in selected wells downgradient of the injection wells. Best fits to the data required a first‐order degradation rate constant for TCE removal in the range of 0.13 to 0.17 per d. The approach used in this study provides an objective evaluation of the remedial performance of the biowall that can provide a basis for design of other biowalls that are intended to remediate TCE‐contaminated groundwater.  相似文献   

16.
17.
18.
19.
Two active quarries are mining stone from the Silurian dolomite aquifer in Waukesha County in southeastern Wisconsin. The village in which the quarries are located uses local zoning to control the depth of mining and to institute a long-term water level monitoring program and well guarantee/one with the quarry owners. Water levels dropped as much as 40 feet in at least 24 residential wells surrounding the quarries over a period of a few hours to days. The rapid decline in head was caused by a single boring drilled lo a depth of 75 feel he low the floor of one quarry. The borehole penetrated a localized fracture zone under confined artesian head. Water levels recovered to previous static levels within nine days after grouting the borehole. The rapid drawdown event demonstrates the potential impact of mining in fractured aquifers. The apparent complete recovery of the aquifer demonstrates that quick response can sometimes restore an aquifer. However, the potential for blasting into a similar zone illustrates the need for a well-thought-out aquifer monitoring program and emergency response plan. The experience of the village is a good example of managing conflicting uses of a finite resource and collecting baseline data needed to make informed decisions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号